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Nature of the vibron self-trapped states in hydrogen-bonded macromolecular chains
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We study the influence of temperature and the values of basic energy parameters on the character of vibron
self-trapped states in quasi-one-dimensional hydrogen-bonded molecular chains. Investigations have been carried
out within the one-dimensional Holstein molecular crystal model employing the variational extension of the
Lang-Firsov unitary transformation. It was found that, in the low-temperature regime, only partially dressed
small-polaron states may exist. With the rise of temperature, the system enters the metastability region, where
partially dressed (light and mobile) and fully dressed (heavy and practically immobile) small-polaron states may
exist simultaneously.
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I. INTRODUCTION

The mechanism of a long-range intramolecular vibrational
energy transfer in biological macromolecules such as DNA
and α-helix has been studied extensively over the past three
decades due to its great importance for the functioning of
biological systems. However, despite all efforts, this prob-
lem has remained unresolved. An attractive explanation on
the microscopic level was proposed in the mid-1970s by
Davydov and co-workers [1]. The essence of their theory
is the assumption that the energy released by the adenosine
triphosphate (ATP) hydrolysis can be captured by the protein
molecules and then transported along the polypeptide chain
in a soliton form that arises due to the self-trapping (ST) of
the amide-I (vibron or C=O stretching mode) quanta. The
main argument in favor of such a concept has been a soliton’s
ability to maintain its shape and velocity for a long time and
to transfer energy over large distances without dissipation.
However, due to the lack of direct experimental evidence
of the existence of solitons in these substances, Davydov’s
idea has long been considered just an interesting theoretical
concept.

This situation changed at the beginning of the 1980s,
when Careri and Scott suggested [2] that the appearance
of the so-called unconventional amide-I band in absorption
spectra of crystalline acetanilide (ACN) [3] might be ex-
plained in terms of Davydov’s soliton theory. ACN is an
organic molecular crystal containing quasi-one-dimensionally
arranged hydrogen-bonded peptide groups. Its structure is
similar to that of proteins [3]. For that reason, it is be-
lieved that it provides a good model for studying various
phenomena, such as vibrational energy transfer in particular,
in protein macromolecules. Accordingly, these experiments
were considered to be direct proof that the soliton mechanism
might have a key role in the energy transfer in proteins
[2–5].

From the point of view of the general theory of ST
phenomena [6], the soliton mechanism cannot explain the
aforementioned experiments and transport processes in these
media. In particular, the formation of stable solitonlike ST
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states is possible provided that the energy parameters satisfy
adiabatic and strong-coupling conditions, i.e., only if the quasi-
particle (vibron) bandwidth and small-polaron binding energy
highly exceed the maximal phonon energy. Unfortunately, the
energy parameters of hydrogen-bonded chains correspond to
nonadiabatic and weak-coupling limits [2–5], which makes
soliton theory inapplicable. For these reasons, an alternative
interpretation of Careri’s experiments [7] and intramolecular
vibrational energy transfer [8] in terms of small-polaron (SP)
theories has been proposed.

The strength of vibron-phonon coupling in hydrogen-
bonded macromolecules falls in the weak to intermediate
limits, and conventional SP theories [9,10], which apply
in the strong-coupling limit, cannot be the basis for the
examination of vibron ST in these media. Consequently, a
proper theoretical description of the vibron ST requires an ap-
proach that goes beyond the conventional strong-coupling SP
theories.

In this paper, we examine the influence of temperature
and the values of system parameters on the nature of ST
states of vibron quanta in hydrogen-bonded macromolecules.
We focus on the question of under which conditions their
propagation attains coherent (bandlike) or incoherent (random
jumps between neighboring sites) character. For that purpose,
the degree of phonon-induced narrowing of vibron bands has
been studied.

II. THEORETICAL ANALYSIS

In the early studies of vibrational transfer in hydrogen-
bonded macromolecules, theoretical analysis was carried out
within the idealized one-dimensional (1D) models involving
vibron coupling with acoustic and optical phonons. Never-
theless, incoherent neutron scattering studies of ACN [11]
indicate that the source of vibron ST in ACN is the coupling
with optical phonons, exclusively. In addition, recent IR
pump-probe experiments [12] seem to confirm the relevance
of the vibron coupling with optical phonons for the proper
understanding of IR absorption in ACN. For these reasons,
most of the recent studies [13–15] on the subject have been
based upon Holstein’s 1D molecular crystal model. It describes
the excess (quasi)particle, the vibron in the present case,
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interacting with nondispersive optical phonons in a 1D lattice.
The model Hamiltonian reads [9]

H = �
∑

n

A†
nAn − J

∑
n,δ=±1

A†
nAn+δ +

∑
q

h̄ωqb
†
qbq

+ 1√
N

∑
q,n

FqeiqnR0A†
nAn(bq + b

†
−q). (1)

Here A
†
n (An) describes the presence (absence) of the vibron

quanta on the nth lattice site, and � and J denote the vi-
bron excitation energy and nearest-neighbor transfer integral,
respectively. Operator b

†
q (bq) creates (annihilates) phonon

quanta with the energy h̄ωq = h̄ω0, Fq = F ≡ const denotes
the vibron-phonon coupling parameter, while R0 stands for
the lattice constant. The intersite transfer integral in ACN for
amide-I mode is about J ≈ 4 cm−1 (J ≈ 0.496 meV), while
the vibron-phonon coupling parameter attains F ≈ 25 cm−1

(F ≈ 3.1 meV) [2–4,7,13,14]. Only two dimensionless pa-
rameters are needed for the comprehensive description of the
SP properties: adiabatic parameter B = 2J/h̄ω0 and coupling
constant S = EB/h̄ω0. Here EB = F 2/h̄ω0 denotes the small
polaron binding energy, i.e., the energy gain due to the
formation of ST state in the transportless (J = 0) limit. Here
they become S = 0.25 and B = 0.16, and the ST states, if any
arise, would correspond to a partially dressed SP.

In order to examine under which conditions such
excitations represent dynamically stable eigenstates of
the system, we utilize a variational approach based
on the modified Lang-Firsov transformation U =
exp{− 1√

N

∑
q,n fqe−iqnR0A

†
nAn(b−q − b

†
q)} [7,10,16–22]. The

transformed Hamiltonian (H̃ = U †HU ) describes the dressed
vibron (i.e., SP) interacting with the new phonons in the lattice
with the shifted equilibrium positions of molecular groups.
To these new quasiparticles, i.e., a “dressed” vibron and new
phonons, correspond the following transformed operators:
an = U †AnU and b̃q = U †bqU . Quantities fq = f ∗

−q are
variational parameters that characterize the degree in which
the vibron distorts the lattice and its feedback on the
vibron, i.e., dressing. For the given set of system parameters
and temperature, they should correspond to the minimum
energy state, while the partially dressed SP would be the
approximate eigenstates of the system. As a function of
temperature, fq’s represent mean-field quantities that can
depend on the average properties of the system only. In
this particular single-particle (vibron) case, temperature
enters the transformed Hamiltonian only through the phonon
fluctuations around the new equilibrium positions. Thus, the
explicit temperature dependence may be introduced here by
the appropriate averaging of the transformed Hamiltonian
over the phonon subsystem. In particular, we define an
effective, mean-field Hamiltonian (H0) in the following way:
H̃ = H0 + Hint, where

H0 =
∑

k

ESP(k)a†
kak +

∑
q

h̄ω0b̃
†
q b̃q . (2)

Apparently, interaction Hint ≡ H̃ − H0 represents the polaron-
phonon interaction. Within the present approximation, it
has been neglected implicitly assuming that it cannot affect
the SP stability substantially. It is responsible for some

important phenomena, SP mobility in particular, and deserves a
separate examination. Some possible consequences have been
examined within the strong-coupling approximation in [23].

The vibron operators are taken in the Fourier representation
for convenience: ak = 1√

N

∑
n eiknR0an,

ESP(k) = � − 1

N

∑
q

[(fq + f ∗
−q)Fq − h̄ω0|fq |2]

− 2J e−W (T ) cos(kR0) (3)

is the SP energy, while

W (T ) = 1

N

∑
q

|fq |2(2n̄ + 1)[1 − cos(qR0)] (4)

denotes the vibron band-narrowing factor, which characterizes
the degree of the reduction of the overlap integral or equiv-
alently the enhancement of the polaron effective mass. For
obvious reasons, it is sometimes called the “dressing fraction”
or the “dressing parameter.” Finally, n̄ = (eh̄ω0/kBT − 1)−1

denotes the phonon average number.
Optimized variational parameters were found by the min-

imization of the system ground-state energy. Note that the
ground-state vector of the effective Hamiltonian H0 reads
|�GS〉 = a

†
k|0〉v ⊗ ∏

q |0̄〉q (where
∏

q |0̄〉q is the phonon
vacuum vector) so that the ground-state energy corresponds
to the lowest level of SP energy, i.e., EGS = 〈�GS|H0|�GS〉 ≡
ESP(k). We must consider only the k = 0 case since it will be
the polaron ground state. This is also the most relevant for the
spectroscopy [13,24–26] due to the fact that the optical data of
a quasiparticle (vibron) with a dispersion much smaller than
its energy are in principle very similar to the data of a single
impurity ion embedded in a host lattice. In particular, optical
spectroscopy is restricted to the observation of excitations
with momentum k = 0, and the selection rules are the same
as for the case of a single impurity ion. Thus, imposing
∂ESP(k)

∂fq
|k=0 = 0, ∀q, we found

fq = F

h̄ω0 + 2J e−W (T )(2n̄ + 1)[1 − cos(qR0)]
. (5)

Note that in this way, each single-particle energy level is
minimized individually by this scheme, consequently the
free energy is also minimized and the present ansatz is
consistent with some other mean-field approaches based upon
the Bogolyubov variational principle [16–18,20–22].

III. RESULTS AND DISCUSSION

Substituting the above expression for fq into (3) and (4) and
performing the summation over the phonon quasimomenta by
virtue of the rule 1

N

∑
q · · · → R0

2π

∫ π/R0

−π/R0
· · · dq, we obtain the

self-consistent equations for the small-polaron ground-state
energy and band-narrowing factor (k = 0):

EMLF
GS

h̄ω0
= −S

1 + 3Be−W (τ )coth(1/2τ )

{1 + 2Be−W (τ )coth(1/2τ )}3/2
− Be−W (τ ),

(6)

W (τ ) = S
coth(1/2τ )

{1 + 2Be−W (τ )coth(1/2τ )}3/2
,

where τ = kBT
h̄ω0

is the normalized temperature.
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FIG. 1. The dependence of the vibron band-narrowing factor
on system parameters S and B for three values of the normalized
temperature.

These results are presented graphically in Figs. 1–3 for a
few different values of normalized temperature.

Obviously, the dressing fraction displays a peculiar depen-
dence on system parameters and temperature. In particular,
for small B and in the low-temperature limit, W is the
single-valued function of the coupling constant. With the rise
of B over some critical value (different for each temperature)
in system parameter space, there appears a region where, for
each pair of S and B, the dressing fraction has three solutions.
This indicates the possible appearance of three different types
of SP states corresponding to each of these solutions.

(a) (b)

(c)

FIG. 2. The set of adiabatic curves for three values of the
normalized temperature. The boundaries of the shadowed area
correspond to the stability curve. The cross section of the stability
curve and the adiabatic curve determines two points that have S

coordinates: SL(B,τ ) and SU (B,τ ).

Much better insight into this interesting issue may be
obtained by considering the functional dependence of the
dressing fraction on the coupling constant, taking the adiabatic
parameter and temperature as parameters. For that purpose,
in Fig. 2 we have visualized the dependence of the dressing
fraction on the coupling constant by the set of “adiabatic”
curves W = W (S), each corresponding to a particular fixed
value of the adiabatic parameter B at three different tem-
peratures τ . In such a way, each point on each adiabatic
curve, for the given S, B, and τ , represents a particular
solution of our self-consistent problem (6). Clearly, physically
meaningful, i.e., stable, solutions are only those corresponding
to the minima of the SP energy. Every point on each of these
adiabatic curves is bijectively associated with the extremal
value of the SP energy, whose dependence on the coupling
constant is presented in Fig. 3. The points that correspond to
the ground-state energy (i.e., to the minima of the SP energy)
define the particular stable eigenstate of the system. The
character of these eigenstates is determined by the magnitude
of W , whose small and large values correspond to slightly
dressed (practically free) or ST states, respectively.

As demonstrated in Figs. 2 and 3, there are two clearly dis-
tinguished areas in the system parameter space, where W and
SP energy display qualitatively quite different behaviors. In
fact, for each τ there exists the critical adiabatic parameter BC ,
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(a) (b)

(c)

FIG. 3. The dependence of the extremal values of the SP energy
(energy is presented in h̄ω0 units) on S for several values of B and
three values of the system temperature.

such that, for all B < BC , the dressing fraction has only one
solution for each coupling constant. In that case, the magnitude
of W (S) increases smoothly as a function of coupling constant
(Fig. 2). At the same time (Fig. 3), the SP energy is in its
minimal (ground) state, which decreases monotonically with
the increasing coupling constant. This means that in this, say,
nonadiabatic regime (B � BC), all points on the “adiabatic”
curves correspond to stable eigenstates: small-polaron band
states with a gradual transition toward the self-trapped ones as
the coupling constant increases.

This tendency persists until B overgrows that critical value
when the functional dependence of the SP energy attains a
characteristic looplike form with three branches [Figs. 3(b)
and 3(c)]. Two lower branches correspond to the minima
of SP energy and may be associated with (meta)stable SP
eigenstates, while the remaining one corresponds to the energy
maxima and has no physical significance. For S < SL(B,τ )
and S > SU (B,τ ), the dressing fraction is a single-valued
function and attains small and large values, respectively.
Consequently, only stable eigenstates, free and localized ones,
appear in this region.

For the coupling constant from the interval SL(B,τ ) < S <

SU (B,τ ), two local minima and one local maximum in the
SP energy emerge simultaneously [Figs. 3(b) and 3(c)]. At
the same time, the dressing fraction becomes a three-valued
function of the coupling constant so that the self-consistent
equation (6) has three solutions, indicating the occurrence
and possible coexistence of three different types of SP states.
Clearly, only two of these solutions corresponding to the SP
energy minima may have physical significance, while the third

one is irrelevant and corresponds to the absolutely unstable
states. These states correspond to all the points in the S-W
plane (Fig. 2) lying inside the shadowed area. Surrounding this
area, there is a region wherein there are two relative minima
of the SP energy and two metastable eigenstates appear. They
are characterized by small and large values of the dressing
fraction, respectively, which implies the possible coexistence
of free and localized SP polaron states. In this metastability
region, a transition between these states takes place. Regardless
of where in this region a particular excitation undergoes a
transition, the quantum state of excitation undergoes an abrupt
change in character marked by a simultaneous discontinuous
increase of both dressing parameters and a concomitant jump
in the particle effective mass. This discontinuity is well known
and arises as a consequence of the two-minima structure of the
SP energy, which is sometimes even considered unphysical
and the artefact of the particular theoretical approach used.
Nevertheless, the rapid increase of the polaron effective mass
with the coupling constant in the adiabatic regime (B � 1)
is the main characteristic of the ST transition and represents
the general conclusion regardless of the particular theoretical
method [4,27–31]. Moreover, recent theoretical investigations
by Hamm and Tsironis [25] confirmed the two-minima
structure of the energy of the Holstein model in the SP regime
by means of the numerically exact diagonalization of the
Holstein model in D dimensions. Their results indicate the
coexistence of the free and ST polarons in a certain region of
the parameter space regardless of the system dimensionality.
It turns out that there exists an energy barrier separating the
free and localized SP states, while the transition between
them (small polaron crossover) was attributed to polaron
tunneling. In addition, the infrared absorption data in oxides
such as Pr2NiO4 [32] have been attributed to the simultaneous
presence of large (mobile) and ST polarons.

Let us now briefly comment on the determination of
particular values of the aforementioned critical parameters
SL(B,τ ), SU (B,τ ), and BC . For that purpose, it is useful to
consider the adiabatic curves as a functional dependence of
the coupling constant on the dressing fraction rather than vice
versa. In this way, it is easy to notice that in the B > BC regime,
two extrema (minimum and maximum) arise on each adiabatic
curve. All these points lie on a single curve (“stability curve”),
which is defined as the locus of the points where the first
derivative of S(W ) vanishes: ∂S

∂W
= 0. An analytical function

that represents the stability curve in the (S, W ) plane has
the following form: S = tanh( 1

2τ
)W ( 3W

3W−2 )3/2. The stability
curves are represented in Fig. 2 by the boundaries of the
shadowed areas. The crossing points of the stability curve
and the particular adiabatic curve determine the critical values
of the coupling constant, SL(B,τ ) and SU (B,τ ).

The value of the critical adiabatic parameter BC cor-
responds to the adiabatic curve, which goes through the
minimum of the stability curve. Thus, minimizing it with
respect to W , we obtain BC = e5/3

3 tanh(1/2τ ). From Figs. 2
and 3, one can notice that with an increase of the system
temperature, the critical value of the adiabatic parameter BC

decreases, and at a normalized temperature τ = 4 (which
corresponds to room temperature for ω0 ≈ 50 cm−1) it lies in
the antiadiabatic region. In such a way, the rising temperature
for a given set of system parameters may drive the system
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toward the metastability region and the simultaneous existence
of free and localized states. This is the consequence of the
fact that temperature enters the dressing fraction only through
the renormalization of the coupling constant and adiabatic
parameter: S(τ ) = S(2n̄ + 1) and B(τ ) = B(2n̄ + 1)—see
Eqs. (6). Thus, the rise in temperature increases the effective
adiabatic parameter, which, in the final instance, may cause
the aforementioned transition.

IV. CONCLUSIONS

On the basis of the results presented herein, it follows that
in the hydrogen-bonded macromolecules, vibron self-trapping
would result in the creation of partially dressed small-polaron
band states. With the increase of temperature, a heavily
dressed, practically localized small polaron may appear along
with the band states. This coexistence of free and localized
SP states has usually been considered to be an artifact of the
particular theoretical method employed. However, in view of
the study of Hamm and Tsironis [25], it follows that the results
obtained here are consistent, at least on a qualitative level,
with the exact numerics. Moreover, the present variational
method is in close correspondence with their supplementary
variational treatment of the problem by means of the Toyozawa
ansatz [28]. To that end, we stress that the whole procedure
that has been carried out here in a few separate steps may be
unified by defining the trial state,

|�k〉 = U
∑

n

eik·nψnA
†
n|0〉e ⊗

∏
q

|0̄〉q,

where ψn is the vibron Wannier function, k represents the
polaron momentum, while |0〉 and |0̄〉q stand for the vibron
and the phonon vacuum, respectively. By means of the identity
UA† ≡ UA†U †U , the above trial state attains precisely the

form used in [25]:

|�k〉 =
∑

n

ψneik·nA†
n|0〉e ⊗ |βn〉,

|βn〉 = exp

{
−

∑
q

[(
1√
N

fqeiqnR0

)
b†q − H.c.

]}∏
q

|0̄〉q .

The equivalence with our approach becomes apparent after the
choice of the Wannier state as ψn = 1√

N
. This is justified in

the present case (nonadiabatic weak-coupling limit) where the
occurrence of the large polaron (soliton) cannot be expected.
Otherwise, one must use the Wannier state in the general form
to describe large-polaron solutions.

Note, however, that by means of such an approach, the
analysis would be restricted to the zero-temperature case. Here
we used a slightly more flexible method in order to discuss the
temperature dependence of the character of SP states and to
stress the importance of the residual polaron-phonon interac-
tion. In the latter respect, our study represents the background
for further investigations, especially for the understanding
of the boundary between coherent and incoherent polaron
motion. For that purpose, the present variational estimates
represent just the first step, while further investigation will
require an evaluation of the temperature-dependent mean
lifetime of the localized stats. This will be determined by the
diagonal (without change of phonon number) and nondiagonal
transition due to the residual interaction.
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