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Interplay between energetics and dynamics in bacterial motility
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We study how self-propelled organisms administer their energetic resources in order to optimize space
exploration. Noting the existence of two very different time scales, we use a quasistatic approximation to
analyze the relation between bacterial dynamics and changes in the energy stored by a bacterium. We then find
both steady-state and time-dependent solutions for the bacterial speed and stored energy. The model also predicts
the volume of the region that a bacterium may visit in a resource-depleted medium.
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I. INTRODUCTION

The dynamics of self-propelled microorganisms is a fasci-
nating subject. It depends on many variables, including the in-
ternal state of the organism, nutrient distribution, chemotactic
interactions, interactions with walls and with other organisms,
etc. Although theoretical and experimental studies of microor-
ganism motion have been performed for decades [1–3], some
leading biophysics research groups have recently focused their
attention on various aspects of microorganism dynamics. The
nature of the flow field in the neighborhood of a microorganism
[4–7], the characterization of the hydrodynamic interactions
with a wall [8], of self-organization [9] and formation of
coherent structures [10], of enhanced shear adhesion [11], and
the ability to create ratchet effects and directional motion when
restricted to special geometries [12–16] are among the effects
that have sparked an explosion of high-quality publications
on the properties of microorganism motion. A review of the
hydrodynamics of swimming microorganisms was published
by Lauga and Powers in 2009 [17], while Berg’s 2004 book
describes in detail the properties of Escherichia coli, the
prototype of bacterial studies [18]. Since an external energy
supply is crucial for metabolism and space exploration, it
would be of great interest to understand the interplay between
nutrient intake and storage and microorganism motility. In this
connection, careful studies have been performed of the relation
between bacterial swimming and oxygen concentration and
transport in E. coli [19] and Bacillus subtilis [9]. In particular,
a sharp motility reduction has been observed to occur a few
minutes after the bacteria are deprived of oxygen [19]. The
model developed here allows us to estimate the size of the
region a nutrient-deprived bacterium may explore. This is
especially important for oceanic bacteria, which are generally
immersed in a medium where the nutrient is concentrated in
well-separated lumps [20,21].

In 1998 Schweitzer, Ebeling, and Tilch (SET) introduced
a model in which the energy taken from available nutrients
was stored and then used either for metabolic or motional
purposes. Motion was considered to be the result of the
combined action of Brownian forces and of the microorganism
propulsion system [22,23]. This model was later used to study
the effect of thermal noise on the mechanical efficiency of
the propulsion system [24] and to investigate microorganism
locomotion under starvation conditions [25]. Unfortunately,
not much comparison with realistic parameters was pursued
at that time. In the original papers, some results were obtained

under the assumption that equilibration was faster for the
energetic stores than for the microorganism speed. However, a
detailed analysis of the experimental data for bacteria reveals
that this assumption does not generally hold for realistic
systems. For instance, an upper estimate of the time required
to fill the energy depot can be made by assuming an uptake of
30 glucose molecules per second. This is in agreement with
theoretical predictions [3] and experimental measurements
[26] in a concentration of 1 nM, a concentration typically
found in the ocean. If, according to Mitchell [27], we assume
that 1% of the cell volume is energy reserve in the form of
glucose at maximum density, then the time required for a
0.5 μm bacterium to fill its stores is about 250 hours (of
course, the organism must find a higher concentration source).
If, under more favorable conditions, the concentration were
0.1 μM with 10% uptake efficiency, i.e., if 10% of the
bacterium surface behaved as a perfect absorber, then the time
would drop to 45 minutes. We can thus estimate that substantial
variation of the bacterial energetic stores occurs over times of
the order of hours. Note also that nutrient intake per unit mass
depends on bacterial size [28]. On the other hand, observation
shows that bacteria change their speed substantially in small
fractions of a second, for instance, accelerating from zero to
their run speed and stopping every time between two tumbles.
This time is even much shorter than the stopping time observed
in Ref. [19] for oxygen-deprived cells. There are, therefore,
two very different time scales: A long time scale (typically
a few hours) characterizes the filling and emptying of the
energetic stores, while a much shorter time scale (fractions of
a second) characterizes speed variations. A quasistatic (QS)
approximation can thus be implemented, which allows us to
work out some important properties of the model analytically.
The purpose of this paper is to adapt and correct the SET
model in order to investigate how the motion of self-propelled
microorganisms can be related to the availability of nutrient
sources and how it can be used to optimize space exploration.

II. THE MODEL

A. Formulation

SET investigated the motion of microorganisms due to
the combined action of their propulsion system and of
Brownian forces using a Langevin formalism [22]. The model
assumes that the microorganism can take up energy from the
environment at a rate q and store it internally. The stored
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energy E(t) can be either reconverted into kinetic energy, at
a rate k(v)E, or dissipated at a rate cE. This dissipation rate
is assumed to account for the nonmechanical expenditure of
the available energy. Therefore, the amount of stored energy
evolves according to the equation,

dE(t)

dt
= q − [c + k(v)] E(t) . (1)

The bacterial velocity �v is assumed to satisfy the modified
Langevin equation,

m
d �v
dt

= −γ �v + k(v)

v2
E(t)�v + �F (t) . (2)

Here, γ is the friction coefficient and �F (t) is a stochastic force.
Equations (1) and (2) are rather general. To obtain concrete

predictions we will make some additional assumptions:
(1) Equation (2) is valid for the speed, i.e., we treat it

as a scalar equation. Since we are interested in the relation
between energy absorption and microorganism speed, we will
consider only motion in the bacterial run phase, and the space
variable will describe the displacement along the run trajectory.
Of course, this assumption does not mean that the microor-
ganism is actually swimming in one dimension but embodies
the idea that changes in direction have little influence on the
relation between stored energy and kinetic energy.

(2) The rate of energy conversion, k(v), has a power-law
dependence on the speed, k(v) = dξv

ξ . This keeps the problem
relatively simple while allowing us to generate a reasonably
general family of models. Other functional forms could be
analyzed by methods that parallel those used here.

(3) Thermal noise can be neglected. The main effect of
thermal noise is to generate rotational diffusion, its influence
on speed being, in general, negligible. Since in this work we
are concerned only with the speed of the microorganisms, but
not with their direction changes, we can safely ignore noise.
Of course, the influence of noise could be important for small
bacteria moving at very low speeds, or for bacteria lacking a
propulsion system, but these are not the object of the present
study.

If, according to assumption 2, k(v) = dξv
ξ , it can be

readily verified that the leading contribution to the low-speed
acceleration experienced by the microorganism has the form
A ≈ (q/mc) dξv

ξ−1. Since the acceleration must be finite, but
not too small, we can thus argue that, at low speeds, ξ must
be close to unity: In the absence of noise, ξ = 1 leads to
constant acceleration, while ξ < 1 and ξ > 1 would require,
respectively, enormous torques and very long speed-up times.

Available experimental data can be used to refine the model:
Margariyama and coworkers measured simultaneously the
flagellar rotational speed ω and the swimming speed v of
Vibrio alginolyticus, showing that there is, approximately, a
linear relation between them (v ≈ αω), except at the highest
rotational speeds, for which the swimming speed saturates
[29]. If we accept the proportionality between v and ω, and
remember that the power delivered by the bacterial motor is
� = ωM , we see that the choice ξ = 1 is consistent with
results obtained from measurements of the torque M generated
by individual bacterial motors in E. coli, which indicate that the
torque is approximately constant up to high flagellar rotation
frequencies [18,30,31]. Of course, this does not imply that

other bacterial motors necessarily have the same torque-speed
relationship, or even that this is the case when E. coli is
propelled by the flagellar bundle during a run, which justifies
considering more general functional forms.

B. Steady state

In the absence of noise, and assuming that the energy
transformation rate has the form k(v) = dξv

ξ , the steady-state
solution of Eq. (2) satisfies

γ dξv
ξ+1
s + γ cvs − qdξv

ξ−2
s = 0 . (3)

If ξ > 0, there is always a nontrivial solution. For 0 < ξ <

2, this solution is stable for every value of q. If ξ � 2, the
stationary speed is stable if the absorption rate is above a
ξ -dependent minimum absorption rate q

(ξ )
c , given by

q(ξ )
c = γ ξ

ξ − 2

[
c (ξ − 2)

2dξ

] 2
ξ

; ξ � 2 . (4)

If ξ > 1, v = 0 is a solution of Eq. (3) and a bifurcation
occurs. This trivial solution is always unstable for 1 < ξ < 2
and always stable for ξ > 2. There is a stability threshold at
the crossover point ξ = 2.

Thus, if ξ � 2, there is a lower threshold in the amount of
nutrient uptake required to keep the microorganism moving.
If it finds itself in a large region where nutrient concentration
is so low that q < q

(ξ )
c , all organized motion must eventually

stop.
Analytical forms for the nontrivial steady-state solution can

be easily found for ξ = 0,1,2. The case ξ = 2 was studied in
Refs. [22] and [24], and vs has the simple form

v(2)
s =

√
q

γ
− c

d2
, (5)

provided that � ≡ qd2

γ c
> 1, in agreement with Eq. (4).

For ξ = 1, the nontrivial stationary speed is

v(1)
s = − c

2d1
+

√
q

γ
+

(
c

2d1

)2

, (6)

while for ξ = 0,

v(0)
s =

√
qd0

γ (c + d0)
. (7)

The stability of the nontrivial solution can be oscillatory for
ξ � 2, i.e., the fixed point is a stable focus if the parameters
satisfy the condition[

(ξ − 2)
γ

m
+ c + dξv

ξ
s

]2
− 4ξdξγ v

ξ
s

m
< 0 . (8)

Here, vs is the steady-state solution satisfying Eq. (3). For the
case ξ = 2, this condition reduces to

�2

� − 1
− 8γ

mc
< 0 . (9)

The microorganism speed will seldom be equal to vs : not
only will it try to adapt to the instantaneous value of the stored
energy, but it will also fluctuate due to changes in the bacterial
state or in the flagellar configuration.
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C. QS approximation

An exact analytical solution to the system of Eqs. (1) and
(2), in the absence of noise, is possible only in the case
ξ = 0. The model equations can be solved numerically for
other values of ξ , but it is convenient to investigate their
solutions using analytical approximations. Since the variation
in E(t) is much slower than the variation in v(t), the system
of equations (1) and (2) can be separated. That this is the case
can be surmised from the fact that m ∼ 10−12 g and from
the discussion in the Introduction; we will later see that this
assumption is generally correct for bacteria. For each given
value of the slow variable E, the fast variable rapidly reaches
its quasiequilibrium value,

vQ(t) =
[
dξE(t)

γ

]ψ

, (10)

with ψ = (2 − ξ )−1 and ξ �= 2. For simplicity, in the following
we omit the superscripts specifying the value of ξ . Note that
the QS approximation breaks down for small speeds if ξ > 2
and that a QS solution cannot be determined for ξ = 2.

By using assumption 2 and inserting Eq. (10) into Eq. (1),
we obtain an equation for the time evolution of the available
energy:

dE(t)

dt
= q − d

2ψ

ξ γ −ξ/ψE(t)2ψ − cE(t) . (11)

Usually, the measurement interval 	t is much shorter than the
characteristic time for energy storage; then, the speed at time
t + 	t is given, for any ξ < 2, by,

v
2−ξ

Q (t + 	t) = e−	t/Tξ v
2−ξ

Q (t) + dξE(t)

γ
(1 − e−	t/Tξ ),

(12)

where Tξ = m/[γ (2 − ξ )] is the speed equilibration time, i.e.,
the time required for the speed to reach the quasistatic value
corresponding to the instantaneous amount E(t) ≈ E(t +
	t) of available stored energy. Assuming, for simplicity,
a spherical microorganism of density ρ and radius a, and
writing γ = 6πηa, where η is the viscosity, we find that
Tξ ∼ 2a2ρ[9η(2 − ξ )]−1. This equilibration time is very short
for microorganisms, except in the case ξ → 2. For instance, for
ξ = 1 and a small bacterium (a ∼ 0.3 μm), T1 ∼ 2 × 10−8 s,
while for a large bacterium (a ∼ 10 μm), T1 ∼ 2 × 10−5s.

III. SPECIAL CASES

Next, we present results for some special cases. While
an exact solution is possible for ξ = 0, we use the QS
approximation for ξ = 1 and a numerical solution for ξ = 2.

A. ξ = 0

As mentioned earlier, it is possible to find an exact analytical
solution for the case ξ = 0. If E0 and v0 are, respectively, the
initial values of the stored energy and the speed, their values
for all times are given by

E(t) = qτ0 + (E0 − qτ0)e−t/τ0 (13)

and

v(t) =
{
v2

0e
−t/T0 + d0

γ

[
qτ0 + (E0 − qτ0)e−t/τ0

1 − T0/τ0

+
(

qτ0 − E0

1 − T0/τ0
− qτ0

)
e−t/T0

]}1/2

, (14)

where T0 = m/2γ is the speed equilibration time defined
above and τ0 = (c + d0)−1 is the energy-storage characteristic
time.

B. ξ = 1

As we have seen in Sec. II A, the case ξ = ψ = 1 is
especially important. In this case, Eq. (11) has an analytical
solution,

E(t) = E0 + (q − cE0/2)τ1 tanh(t/τ1)

1 + (
d2

1E0/γ + c/2
)
τ1 tanh(t/τ1)

, (15)

where τ1 is the characteristic time for the energy storage

τ1 =
[
qd2

1

γ
+

( c

2

)2
]−1/2

.

We can investigate the dependence of τ1 with bacterial size
by assuming that the microorganism is a sphere uniformly
covered with absorbers in a diffusion-limited medium; in this
case, q ∝ a [3]. If we also assume that the nonmechanical
expenditure of the energy is proportional to the cell vol-
ume, c is size-independent. As a result, τ1 is only weakly
dependent on size and we can estimate the characteristic
time for the filling of the energy depot in about 6.5 hours.
This time should be compared with the much shorter speed
equilibration time T1 calculated above, which validates the QS
approximation.

From Eq. (10), we see that, for ξ = 1, the quasistatic
value of the bacterial speed varies linearly with E, v̄(t) =
(d1/γ )E(t). The t → ∞ limit yields the steady states Es for
the stored energy and vs for the bacterial speed, which is that
given by Eq. (6). A comparison between the QS approximation
used in this paper, and that used in older work can be seen
in Fig. 1, where it is clear that the new approximation agrees
precisely with the exact numerical solution for Eqs. (1) and (2),
while the old SET approximation (inset) leads to the correct
asymptotic values, but over times that are about 11 orders of
magnitude shorter than for the exact solution. This occurs when
the depot is initially empty: the speed then adapts itself to the
value of the stored energy and it takes hours to reach a steady
state. If the depot is initially full, the old SET approximation
works better.

C. ξ = 2

In this case, the QS approximation is not valid, and we must
obtain numeric solutions of Eqs. (1) and (2). The bacterium
reaches the stationary speed given by Eq. (5) if � > 1;
otherwise the stationary solution is v = 0, because the energy
intake is too low to keep the bacterium moving. As shown
by the numerical results presented in Fig. 2, if � < 1, the
bacterial speed goes smoothly to zero. If � > 1, the speed can
either go smoothly to the nonzero stationary solution (for high
masses) or oscillate before stabilizing into its stationary speed

011911-3



C. A. CONDAT AND MARIO E. DI SALVO PHYSICAL REVIEW E 84, 011911 (2011)

FIG. 1. Predicted speed and energy increase for a bacterium
starting with an empty energy storage. Here, ξ = 1, a = 0.4 μm,
γ = 7.54 × 10−6 g/s, q = 2.15 × 10−8 erg/s, d1 = 1.5 × 10−4

s/cm2, c = 8.49 × 10−5 s−1, and v0 = 0. The current QS approxi-
mation (solid lines) agrees extremely well with the simulation results
(triangles). Note that the old QS approximation (E instantaneously
follows the value of v) is inadequate except under stationary
conditions (inset, note the time scale).

(for low masses), in accordance with the condition specified
by Eq. (9). The parameters used in Fig. 2 have been chosen
to show the transition between the smooth and oscillatory
regimes. If real bacterial parameters were chosen, we would
be well in the oscillatory regime on account of the small mass
of the organism.

FIG. 2. Speed as a function of time (arbitrary units) for ξ = 2.
If � < 1, the bacterial speed goes smoothly to zero. If � > 1, the
speed of a high-mass organism goes smoothly to the steady state,
while a low-mass organism would undergo a large number of speed
oscillations before stabilizing into its “cruising” speed. Parameters
were chosen to exhibit the transition between smooth and oscillating
accelerations.

IV. STARVING BACTERIUM

In the ocean, individual patches of dissolved organic matter
are small but abundant [21]. It is important that the bacterial
energy stores last long enough to allow it to find neighboring
patches. Therefore, we can ask ourselves what is the volume
that a given bacterium can explore in a nutrient-depleted
medium. This can be done by setting q = 0 in Eq. (1). If
ξ < 2, the QS approximation can be used to find vQ(t), which,
after further integration, yields the total displacement. Next
we present explicit results for the case ξ = 1.

Taking q = 0 in Eq. (15), we obtain an equation for the
depletion of available energy in a starving bacterium. Using
Eq. (10), we then get an explicit expression for the QS
speed,

vQ(t) = (d1E0/γ ) [1 − tanh(ct/2)]

1 + (
1 + 2d2

1E0/cγ
)

tanh(ct/2)
. (16)

This speed goes smoothly to zero as t → ∞ (of course, it is
reasonable to expect that the bacterium will either die or stop
completely when the available energy goes below a threshold
E+). To find the (linear) distance x(t) covered by the bacterium
from time t = 0 up to a time t , we can integrate Eq. (16)
between these limits, obtaining

x(t) = 1

d1
ln

{
cγ + tanh(ct/2)

(
cγ + 2d2

1E0
)

cγ [tanh(ct/2) + 1]

}
. (17)

In Fig. 3, we show x(t) at various times as a function of d1.
The maximum theoretical distance X the bacterium can

cover in a nutrient-depleted medium is

X = x(∞) = 1

d1
ln

(
1 + d2

1

cγ
E0

)
. (18)

The maximum reachable distance grows logarithmically with
the initial energy: it decreases if more energy is either
spent metabolically (c) or due to external friction (γ ). More
interesting is the dependence with the coefficient d1 of energy

FIG. 3. Linear distance covered by a starving bacterium as a
function of d1 for the indicated times. The bacterium starts with a
full energy storage, E0 = 2.52 × 10−4 erg. The rest of the parameters
are as described in the legend of Fig. 1. Again our QS approximation
(solid lines) agrees very well with the simulation results.
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transference to the motors. If d1 is small, the speed is very low
and the bacterium cannot go far; most of the energy is spent
metabolically. If d1 is large, v is high, and a lot of energy is
spent against dissipation. Therefore, there is an optimum value
of the coefficient that maximizes X. Numerically, we find
that this optimal value is d1M = 1.9803(cγ /E0)1/2, and the
corresponding distance, XMAX = 0.8047

√
E0/cγ . The value

of d1 that optimizes x(t) depends on t , as it can be seen from
Fig. 3. Of course, since d1M was obtained without setting any
constraints on the system efficiency, this “optimal” value for
d1 gives only an upper bound for the true maximum covered
distance XMAX.

We have just estimated the linear distance covered by a
starving bacterium before it stops. Because of its run-and-
tumble strategy [32], the bacterium effectively performs a
random walk and we can also estimate the size of the region
that it explores. A measure of this size is given by the mean
square displacement (MSD),

〈
x2(t)

〉
. Since the speed decreases

with time, the diffusion coefficient D will also depend on
time. Neglecting the time and energy loss due to the tumbles,
and considering the run duration θ to be a constant, we can
calculate the MSD as

〈x2(t)〉 = 2n

∫ t

0
D(t ′)dt ′ = 1

θ

∫ t

0

[∫ t ′+θ

t ′
v(t ′′)dt ′′

]2

dt ′.

(19)

Here, n is the system dimensionality. A numerical integration
of Eq. (19) is shown in Figs. 4 and 5. After a normal diffusion
period, which is longer for larger bacteria, the motion becomes
subdiffusive. The effective bacterial search time is taken as the
time at which the corresponding curve becomes horizontal,
i.e., when the bacterium has run down its energetic stores.
We see that the radius of the region covered by an a = 1 μm
bacterium is about 1 cm, while a 0.5 μm bacterium can cover
a 0.5 cm region.

Under the reasonable assumptions that 1% of the cell
volume is energy reserve in the form of glucose at the

FIG. 4. Radius of the region explored by a starving bacterium
(q = 0) for various values of the energy transfer coefficient d1 (cm−1),
v0 = 50 μm/s, and the rest of the parameters as described in the
legend of Fig. 1. Triangles represent numerical results and the solid
lines are guides to the eye.

FIG. 5. Radius of the region explored by a starving bacterium
(q = 0) for various values of the bacterial radius. Parameters were
chosen so that in all cases the initial speed (which we took to be
equal to the corresponding stationary speed) is 100 μm/s. Triangles
represent numerical results and the solid lines are guides to the eye.

maximum density and that all the energy goes to drive the
motors, with the efficiency of the propulsion system being
1%, Mitchell estimated the length of time that a bacterium
can swim at the (fixed) minimum speed required to perform
chemotaxis [27]. He found that a 1 μm bacterium can swim for
9 hours and a 0.2 μm bacterium for 4 min. With the same value
for the energy reserves and initial speeds, we find that a 1 μm
bacterium can swim for almost 15 hours before stopping and a
0.2 μm bacterium for 7 min. We obtain a longer survival time
because we consider the speed reduction due to nutrient drain.
We do not require a minimum speed because the bacterium
moves in a nutrient-depleted medium.

V. CONCLUSION

In this paper, we introduced a quasistatic approximation
of the SET model that leads to some interesting predictions
about bacterial motion. We have analyzed in some detail the
implications of a power-law relation between speed and energy
conversion rate. We believe that such a relation allows us to
investigate the main qualitative properties of the problem. It is,
of course, possible that individual bacteria may have various
conversion-rate regimes, perhaps increasing the value of ξ as
they speed up. For instance, we concluded that, at low speeds,
the exponent of the transfer function should be unity or very
close to it. This is in agreement with the experimental results
of Refs. [18,30,31]. At high speeds, stronger accelerations
would result for higher values of ξ , but we ignore if nature
avails itself of this possibility. The numerical results for ξ =
2, which indicate the presence of strong speed oscillations
before reaching the stationary speed, seem to indicate that
microorganisms always swim in the ξ < 2 regime. Explicit
expressions for the time evolution of the stored energy and of
the bacterial speed were obtained as well as the size of the
region a nutrient-deprived bacterium may explore.

In practice, there are many responses that bacteria may
resort to when they are not in the presence of energy-yielding
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substrates; these responses may modify their metabolic pro-
cesses and make some results difficult to verify experimentally
[33]. Our model could also be applied to describe the motion of
microbots [34], for which k(v) and the power intake q (q = 0
if battery-powered) would be precisely known.

ACKNOWLEDGMENTS

We thank two anonymous reviewers for helpful comments.
This work was supported by SECyT-UNC (Project No.
05/B354), ANPCyT (PICT 2205/33675), and CONICET (PIP
112-200801-00772) (Argentina).

[1] G. I. Taylor, Proc. R. Soc. London A 209, 447 (1951).
[2] H. C. Berg and D. A. Brown, Nature (London) 239, 500 (1972).
[3] H. C. Berg and E. M. Purcell, Biophys. J. 20, 193 (1977).
[4] J. Teran, L. Fauci, and M. Shelley, Phys. Rev. Lett. 104, 038101

(2010).
[5] K. Drescher, R. E. Goldstein, N. Michel, M. Polin, and I. Tuval,

Phys. Rev. Lett. 105, 168101 (2010).
[6] J. S. Guasto, K. A. Johnson, and J. P. Gollub, Phys. Rev. Lett.

105, 168102 (2010).
[7] I. Rushkin, V. Kantsler, and R. E. Goldstein, Phys. Rev. Lett.

105, 188101 (2010).
[8] T. Kaya and H. Koser, Phys. Rev. Lett. 103, 138103 (2009).
[9] I. Tuval et al., Proc. Natl. Acad. Sci. USA 102, 2277 (2005).

[10] T. Ishikawa and T. J. Pedley, Phys. Rev. Lett. 100, 088103
(2008).

[11] M. Whitfield, T. Ghose, and W. Thomas, Biophys. J. 99, 2470
(2010).

[12] P. Galajda, J. Keymer, P. Chaikin, and R. Austin, J. Bacteriol.
189, 8704 (2007).

[13] M. B. Wan, C. J. Olson Reichhardt, Z. Nussinov, and
C. Reichhardt, Phys. Rev. Lett. 101, 018102 (2008).

[14] J. Tailleur and M. E. Cates, Europhys. Lett. 86, 60002 (2009).
[15] G. Lambert, D. Liao, and R. H. Austin, Phys. Rev. Lett. 104,

168102 (2010).
[16] R. Di Leonardo et al., Proc. Natl. Acad. Sci. USA 107, 9541

(2010).

[17] E. Lauga and T. R. Powers, Rep. Prog. Phys. 72, 096601 (2009).
[18] H. C. Berg, E. coli in Motion (Springer, New York, 2004).
[19] C. Douarche, A. Buguin, H. Salman, and A. Libchaber, Phys.

Rev. Lett. 102, 198101 (2009).
[20] J. G. Mitchell and K. Kogure, FEMS Microbiol. Ecol. 55, 3

(2006).
[21] R. Stocker, J. R. Seymour, A. Samadani, D. E. Hunt, and M. F.

Polz, Proc. Natl. Acad. Sci. USA 105, 4209 (2008).
[22] F. Schweitzer, W. Ebeling, and B. Tilch, Phys. Rev. Lett. 80,

5044 (1998).
[23] W. Ebeling, F. Schweitzer, and B. Tilch, BioSystems 49, 17

(1999).
[24] C. A. Condat and G. J. Sibona, Physica A 316, 203 (2002).
[25] G. J. Sibona, Phys. Rev. E 76, 011919 (2007).
[26] B. E. Logan and D. K. Kirchman, Mar. Biol. 111, 175 (1991).
[27] J. G. Mitchell, Microb Ecol. 22, 227 (1991).
[28] H. N. Schulz and B. B. Jørgensen, Annu. Rev. Microbiol. 55,

105 (2001).
[29] Y. Margariyama et al., Biophys. J. 69, 2154 (1995).
[30] H. C. Berg and L. Turner, Biophys. J. 65, 2201 (1993).
[31] X. Chen and H. Berg, Biophys. J. 78, 1036 (2000).
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