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Motion of an elastic capsule in a square microfluidic channel
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In the present study we investigate computationally the steady-state motion of an elastic capsule along the
centerline of a square microfluidic channel and compare it with that in a cylindrical tube. In particular, we
consider a slightly over-inflated elastic capsule made of a strain-hardening membrane with comparable shearing
and area-dilatation resistance. Under the conditions studied in this paper (i.e., small, moderate, and large capsules
at low and moderate flow rates), the capsule motion in a square channel is similar to and thus governed by the
same scaling laws with the capsule motion in a cylindrical tube, even though in the channel the cross section
in the upstream portion of large capsules is nonaxisymmetric (i.e., square-like with rounded corners). When the
hydrodynamic forces on the membrane increase, the capsule develops a pointed downstream edge and a flattened
rear (possibly with a negative curvature) so that the restoring tension forces are increased as also happens with
droplets. Membrane tensions increase significantly with the capsule size while the area near the downstream
tip is the most probable to rupture when a capsule flows in a microchannel. Because the membrane tensions
increase with the interfacial deformation, a suitable Landau-Levich-Derjaguin-Bretherton analysis reveals that
the lubrication film thickness h for large capsules depends on both the capillary number Ca and the capsule size
a; our computations determine the latter dependence to be (in dimensionless form) h ∼ a−2 for the large capsules
studied in this work. For small and moderate capsule sizes a, the capsule velocity Ux and additional pressure drop
�P + are governed by the same scaling laws as for high-viscosity droplets. The velocity and additional pressure
drop of large thick capsules also follow the dynamics of high-viscosity droplets, and are affected by the lubrication
film thickness. The motion of our large thick capsules is characterized by a Ux − U ∼ h ∼ a−2 approach to the
undisturbed average duct velocity and an additional pressure drop �P + ∼ a3/h ∼ a5. By combining basic
physical principles and geometric properties, we develop a theoretical analysis that explains the power laws we
found for large capsules.
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I. INTRODUCTION

The study of the interfacial dynamics of artificial or phys-
iological capsules (i.e., membrane-enclosed fluid volumes) in
Stokes flows has seen an increased interest during the last few
decades due to their numerous engineering and biomedical
applications. Artificial capsules have wide applications in the
pharmaceutical, food, and cosmetic industries [1]. In phar-
maceutical processes, for example, capsules are commonly
used for the transport of medical agents. In addition, the
motion of red blood cells through vascular microvessels has
long been recognized as a fundamental problem in physiology
and biomechanics since the main function of these cells, to
exchange oxygen and carbon dioxide with the tissues, occurs
in capillaries [2].

In the area of interest of the present paper, the study
of the motion and deformation of capsules and biological
cells in microfluidic channels is motivated by a wide range
of applications including drug delivery, cell sorting and cell
characterization devices [3–6], fabrication of microcapsules
with desirable properties [7,8], determination of membrane
properties [9,10], microreactors with better mixing properties
[11,12], and of course its similarity to blood flow in vascular
capillaries [1,2].

The motion of elastic capsules in cylindrical tubes
have been studied both experimentally and computationally.
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Quéguiner and Barthès-Biesel [13] studied computationally
the axisymmetric motion of small and large capsules in a
cylindrical tube with a hyperbolic entrance. The study included
strain-softening neo-Hookean spherical capsules and discoidal
area-incompressible hard-straining capsules, both with no
osmotic overinflation. Risso, Collé-Pailot, and Zagzoule [14]
investigated experimentally the motion of bioartificial capsules
in cylindrical tubes. The work includes a detailed study of
capsules with diameter smaller than the tube diameter and
several geometric properties, including capsule lengths and
ends curvatures. Owing to osmotic effects, the bioartificial
capsules were slightly overinflated (or prestressed). It is of
interest to note that the authors found that there is no mass
transfer through the membrane during the experiments and
thus the capsule volume remained constant.

The experimental findings of Risso et al. [14] motivated
the computational study of prestressed capsules in a cylin-
drical tube by Lefebvre and Barthès-Biesel [15] who mainly
considered hard-straining capsules with similar sizes as the
earlier experimental work subject to small and moderate flow
rates. The authors identified the effects of varying prestress on
the capsule dynamics and its shape. The computational results
for strain-hardening and strain-softening capsules were also
compared with the experimental findings [14] and found that
the bioartificial capsules were pre-inflated by about 3% while
their membrane was best modeled by the strain-hardening
Skalak et al. law [16].

Recent studies have also focused on capsule dynamics
in noncylindrical solid ducts. Doddi and Bagchi studied the
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lateral migration of a small neo-Hookean capsule in a plane
Poiseuille flow in a channel [17]. The same authors also studied
the dynamics of a semidense suspension of capsules in a
microchannel and focused on the development of the capsule-
free layer near the walls and the Fahraeus-Lindqvist effect [18].
Fiddes and co-workers [19] investigated experimentally the
flow of microgel capsules through topographically patterned
microchannels. Lefebvre et al. [9] proposed a method to char-
acterize the membrane mechanical properties of microcapsules
by flowing them into a cylindrical or square microchannel of
comparable dimensions, and deducing the membrane’s elastic
modulus by comparing the capsule steady-state deformation
with computational results.

We emphasize that rather limited information currently
exists for the steady-state motion of artificial capsules in
noncylindrical solid ducts, such as a square microfluidic
channel that is the interest of the current paper, despite the wide
range of applications for capsule motion in nonaxisymmetric
solid ducts as mentioned earlier. More generally, very limited
information is currently known for the scaling-law behavior of
capsules flowing in solid ducts, either tubes or channels. This
contrasts to the current knowledge for droplet motion in solid
ducts which has been studied rather extensively in the last four
decades (e.g., [12,20–22]).

The aforementioned constitute the goals of the current study
where we consider the motion of an elastic capsule along
the centerline of a square microfluidic channel. In particular,
we study the dynamics of a slightly overinflated capsule
made of a strain-hardening membrane following the Skalak
et al. constitutive law [16] (and thus called Skalak capsule
in this paper) with comparable shearing and area-dilatation
resistance. This capsule description may represent bioartificial
capsules such as the capsules made of covalently linked human
serum albumin (HSA) and alginate used in the recent exper-
imental study of Risso, Collé-Pailot, and Zagzoule [14]. As
reported in the earlier study, calcium-alginate gel beads coated
with HSA-alginate membranes were originally designed for
medical applications such as hepatocyte encapsulation for
bioartificial liver or encapsulation of genetically modified cells
for AIDS treatment.

After the mathematical formulation and the description
of our membrane spectral boundary element algorithm for
wall-bounded flows in Sec. II, we study the effects of the
flow rate on the steady-state motion of moderate capsules
in a square microfluidic channel in Sec. III. In addition, in
Sec. IV we study the effects of the capsule size for a fixed flow
rate by considering a wide range of small, moderate and large
capsules (with respect to the channel height). In both sections
the channel motion is compared with our results for capsule
motion in a cylindrical tube, and useful conclusions are derived
for the effects of the nonaxisymmetric solid geometry on the
capsule’s shape and dynamics. In Sec. V, using our findings
for capsule motion in square channels and cylindrical tubes,
we derive scaling laws for several geometric and physical
properties including capsule velocity and excess pressure
difference. In addition, using basic physical principles and
geometric properties, we develop a theoretical analysis that
explains the power laws we found in this work for moderate
and large capsules. A summary of our results is included in
Sec. VI.
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FIG. 1. An elastic capsule flowing at the centerline of a square
microchannel.

II. MATHEMATICAL FORMULATION AND
COMPUTATIONAL ALGORITHM

A. Fluid and membrane dynamics

We consider a three-dimensional capsule (with a spherical
undisturbed shape and an elastic interface) flowing along the
centerline of a straight microchannel with a (constant) square
cross section as illustrated in Fig. 1. The capsule’s interior
(fluid 1) and exterior (fluid 2) are Newtonian fluids, with
viscosities λμ and μ, and the same density. The capsule size is
specified by its volume V or equivalently by the radius a of a
sphere of volume 4πa3/3 = V . The channel’s half-length is �x

while the half-lengths of its square cross section are �y = �z.
Far from the capsule, the flow approaches the undisturbed

flow in a channel u∞ = (u∞
x ,0,0) which is given in pages

309–312 in Ref. [23], that is,
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while p is the dynamic pressure. By integrating over the
channel’s cross section, we can easily show that the volumetric
flow rate Q is given by
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The average velocity far from the capsule is U = Q/(�y�z)
while the maximum undisturbed velocity at the centerline of
the square channel is Umax/U ≈ 2.096. In our computations
we truncated the infinite (convergent) series associated with
the channel’s undisturbed flow when m = 40.

Assuming low-Reynolds-number flows, the governing
equations in fluid 2 are the Stokes equations and continuity,

∇ · σ ≡ −∇p + μ∇2u = 0 and ∇ · u = 0, (4)

where σ is the stress tensor and u the fluid velocity. Inside the
capsule the same equations apply with the viscosity replaced
by λμ. It is of interest to note that in small length-scale systems,
such as microfluidic channels, low-Reynolds-number flows
are easily achievable [11,12]. [For example, in a microfluidic
channel with size �y = 100 μm, the Reynolds number remains
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Re = O(10−3) even for velocities up to U = 10 mm/s when
we consider the density and viscosity of water.]

For the current problem, the system surface SB consists of
the capsule interface Sc, the channel’s solid surface Ss , and the
fluid surface Sf of the channel’s inlet and outlet far from the
capsule. At the capsule’s interface the velocity is continuous
and we define the surface stress vector (or hydrostatic traction)
� f from the stress tensor σ and the surface unit normal n,
that is,

u1 = u2 = u and � f ≡ n · (σ 2 − σ 1). (5)

Here the subscripts designate quantities evaluated in fluids
1 and 2, respectively, while n is the unit normal which we
choose to point into fluid 2. The boundary conditions on the
rest surfaces are

u = 0 on the solid boundary Ss, (6)

u = u∞ or f = f ∞ on the fluid boundary Sf , (7)

where f ∞ is the force associated with the undisturbed channel
flow u∞ far from the capsule.

Based on standard boundary integral formulation, the
velocity at a point x0 on the system surface SB may be
expressed as a surface integral of the force vector f = n · σ

and the velocity u over all points x on the boundary SB ,

� u(x0) = −
∫

Sc

[S · � f − μ(1 − λ) T · u · n] (x) dS

−
∫

Ss∪Sf

(S · f − μ T · u · n) (x) dS, (8)

where the coefficient � takes values 4πμ(1 + λ) and 4πμ for
points x0 on the surfaces Sc and Ss ∪ Sf , respectively. The
tensors S and T are the fundamental solutions for the velocity
and stress for the three-dimensional Stokes equations, that is,
known functions of the system surface SB [1,24,25].

Owing to the no-slip condition at the interface, the time
evolution of the material points of the membrane may be
determined via the kinematic condition at the interface

∂x
∂t

= u. (9)

To produce a closed system of equations, the surface stress
� f on the capsule interface is determined by the membrane
dynamics. Our membrane description is based on the well-
established continuum approach and the theory of thin shells
as described in detail in Sec. 2.2 of our earlier publication [25].
We emphasize that the thin-shell theory has proved to be an
excellent description of the membrane for a wide range of
artificial capsules and for red blood cells, where the membrane
thickness is several orders of magnitude smaller than the size
of the capsule and cell [1,25,26].

For a membrane with shearing and area-dilation resistance
considered in this work, the surface stress is determined by the
in-plane stresses, that is. � f = −∇s · τ which in contravariant
form gives

� f = −(ταβ |α tβ + bαβ ταβ n), (10)

where the greek indices range over 1 and 2, while Einstein
notation is employed for (every two) repeated indices. In this
equation, the ταβ |α notation denotes covariant differentiation,

tβ = ∂x/∂θβ are the tangent vectors on the capsule surface
described with arbitrary curvilinear coordinates θβ , and bαβ

is the surface curvature tensor [1,25,26]. The in-plane stress
tensor τ is described by constitutive laws that depend on
the material composition of the membrane. In this work we
employ the Skalak et al. law [16] which relates τ eigenvalues
(or principal elastic tensions τP

β ,β = 1,2) with the principal
stretch ratios λβ by

τP
1 = Gsλ1

λ2

{
λ2

1 − 1 + Cλ2
2[(λ1λ2)2 − 1]

}
. (11)

(To calculate τP
2 , reverse the λβ subscripts.) In the equation

above, Gs is the membrane’s shearing modulus while the
dimensionless parameter C is associated with the area-
dilatation modulus K of the membrane (scaled with its
shearing modulus). It is of interest to note that the Skalak et al.
law is a general constitutive equation able to describe strain-
hardening membranes with any area-dilatation resistance (e.g.,
[1,25,26]).

We further consider that the capsule is subjected to a
positive osmotic pressure difference between the interior and
exterior fluids, that is, the capsule is (slightly) overinflated and
thus prestressed. Such consideration is motivated by the fact
that, owing to osmotic effects during their fabrication, artificial
capsules are often slightly overinflated as the bioartificial
capsules used in the experimental investigation of Risso,
Collé-Pailot, and Zagzoule [14]. In addition, incorporation
of prestress into our elastic membrane model removes the
buckling instability observed in axisymmetric-like flows. (See
Sec. 6 in Ref. [26].)

Following Lefebvre and Barthès-Biesel [15], we define the
prestress parameter αp such that all lengths in the undeformed
capsule would be scaled by (1 + αp), relative to the reference
shape. Note that this is mathematically equivalent to scaling the
stretch ratios λβ , appearing in the constitutive law describing
the membrane by (1 + αp). Since the capsule is initially
spherical, its membrane is initially prestressed by an isotropic
elastic tension τ0 = τP

β (t = 0) which depends on the employed
constitutive law and its parameters but not on the capsule size.
For example, for a Skalak capsule with C = 1 and αp = 0.05,
the undisturbed capsule size a is 5% higher than that of the
reference shape and the initial membrane tension owing to
prestress is τ0/Gs ≈ 0.3401.

B. Definition of geometric and physical variables

To describe the capsule deformation, we consider several
geometric properties including the capsule’s dimensions and
profile curvatures; most of them have been used in previous
studies for capsule motion in cylindrical tubes (e.g., [14,15]).
In particular, we determine the capsule projection lengths
along the three axes, Lx , Ly , and Lz (where Ly = Lz for
this problem owing to symmetry) as the maximum distance
in the x, y, and z coordinates of the capsule surface. The
projection length along the x axis Lx is divided into two
parts with respect to the capsule’s volume centroid xc, that
is, the downstream projection length Ld

x and the upstream
length Lu

x . Furthermore, we calculate the minimum distance
(gap) h between the capsule surface and the solid walls. Note
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that we employ a Newton method to solve these optimization
problems.

In addition, we calculate the curvature at the downstream
and upstream edges of the capsule (i.e., its intersections with
the x axis). The curvatures are determined along the capsule’s
y = 0 profile (i.e., the cross section of the capsule surface
with the y = 0 plane) by employing our spectral discretization
at the middle point of the downstream and upstream spectral
elements. We also determine the maximum curvature along
the capsule’s y = 0 profile; to do this from the actual spectral
grid we interpolate spectrally to a dense grid with NB = 15
basis points and find the higher value of the curvature among
these spectral discretization points along the desired capsule’s
y = 0 profile.

In this study we assume that the flow rate Q (or the average
undisturbed velocity U) inside the channel is fixed. Thus we
apply velocity boundary conditions at the channel’s inlet and
outlet [see Eq. (5)] and we solve for the fluid force at the
channel ends. The fluid pressure at the channel’s inlet and
outlet, Pin and Pout, is determined as the surface average of the
normal force on these two surfaces:

Pin =
∫

in fx dS∫
in dS

and Pout = −
∫

out fx dS∫
out dS

. (12)

(Note that although we have chosen this way to determine the
pressure at the channel ends, our computational results show
that the fluid normal force, or pressure, at each channel end is
constant to at least four significant digits among the spectral
discretization points.) The pressure difference at the channel
ends is �P = Pin − Pout and we also calculate the additional
pressure difference owing to the presence of the capsule in the
channel,

�P + = �P − �P nc, (13)

where �P nc is the pressure difference at the channel ends when
no capsule is present in the channel. As the capsule moves in
the channel, its volume-average velocity is determine from
surface properties, that is,

U = 1

V

∫
V

u dV = 1

V

∫
Sc

(u · n) x dS. (14)

Our membrane description involves two moduli, one for
shearing and one for area dilatation. The parameter C that
stands for area dilatation is already dimensionless. The
shearing modulus Gs introduces the (elastic) capillary number
(i.e., a ratio of viscous flow forces to resistive elastic forces on
the membrane) defined in this paper as

Ca = μU
Gs

. (15)

It is of interest to note that the capillary number, as defined
by Eq. (15), does not contain any length scale, and thus
it may be considered as a dimensionless flow rate. For a
fixed capsule size a, varying the capillary number Ca can
easily be achieved in an experimental system by keeping the
exterior-fluid viscosity fixed and varying the flow rate, or
average velocity U . For a fixed capillary number Ca, varying
the capsule size a can be achieved by using different volumes
of capsules from the same membrane (and with the same
prestress level).

In this study, if no scale is present, the channel’s half-height
�z is used as the length scale, the velocity is scaled with the
average undisturbed velocity U , and thus time is scaled with
�z/U . In addition, the pressure is scaled with 
 = μU/�z and
the membrane tensions with Gs .

C. Membrane spectral boundary element algorithm

The numerical solution of the boundary integral
equation (8) is achieved through our spectral boundary element
method for membranes [25]. Briefly, each boundary is divided
into a moderate number NE of surface elements which are
parametrized by two variables ξ and η on the square interval
[−1,1]2. The geometry and physical variables are discretized
using Lagrangian interpolation in terms of these parametric
variables. The NB basis points (ξi,ηi) for the interpolation
are chosen as the zeros of orthogonal polynomials of Gauss
type. This is equivalent to an orthogonal polynomial expansion
and yields the spectral convergence associated with such
expansions.

The boundary integral equation (8) admits two different
types of points. The collocation points x0 where the equation
is required to hold and the basis points x where the physical
variables u and f are specified or determined. Our spectral
boundary element method employs collocation points x0 of
Legendre–Gauss quadrature, that is, in the interior of the
elements. As a result the boundary integral equation holds
even for singular elements, that is, the elements which contain
the corners of the channel geometry. (A similar approach has
been utilized in our earlier papers for droplets attached to solid
surfaces, and vascular endothelial cells or leukocytes adhering
to the surface of blood vessels, for example, [24,27,28].) In
addition, we use basis points x of Legendre–Gauss–Lobatto
quadrature and thus the physical variables are determined in
the interior and on the edges of the spectral elements. For the
time integration, we employed the second-order Runge-Kutta
scheme with a typical time step �t = 0.5 × 10−3. Further
details on our spectral boundary element algorithms are given
in our earlier publications (i.e., [25,29,30]).

Three-dimensional views of the problem geometry are
shown in Fig. 2. In the present paper the majority of
computations were performed with a discretization employing
NE = 36 elements. The capsule surface, by being projected
onto a cube, is divided into a total of six elements as shown
in Fig. 2(a). The spectral element discretization of the channel
surface follows the capsule’s center of mass. The channel
surface in the capsule vicinity is divided into a row of one
spectral element per channel side (i.e., a total of four elements)
with half-size equal to �z. The (rest) upstream and downstream
channel surface is divided into three rows of four elements
each; the length of each row progressively increases with the
distance from the capsule as seen in Figs. 2(b) and 2(c). In
our computations the channel surface (which formally should
extend to infinity) has a half-length �x equal to 20 times the
cross-section’s half-length �z; this channel length is sufficient
to produce negligible error in all cases. Finally the channel’s
inlet and outlet are discretized into one element each as shown
in Fig. 2(b).

We note that our spectral boundary element algorithm
has the ability to utilize more complicated surface element
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FIG. 2. Spectral boundary element discretization of system sur-
face: (a) capsule surface, (b) solid surface of a square channel along
with the fluid surface at the channel end, (c) top view of the entire
geometry after removing the channel’s top side, and (d) solid surface
of a cylindrical tube along with the fluid surface at the channel
end. Each figure illustrates Lobatto distribution of nodal lines for
the corresponding geometry with basis points NB = 14.

divisions, that is, to use more elements on the capsule interface
and more than one elements per row for each channel side.
Such discretizations are not needed for the current problem
since our convergence runs have shown that our employed
element discretization produces a sufficient accuracy even in
the most challenging cases studied here.

In our work we mostly utilized NB = 12–14 basis points,
that is, a total number of spectral points for the entire
geometry N = NE N2

B = 5184–7056. To verify the accuracy
of our results, we performed convergence runs covering the
entire interfacial evolution (i.e., well past steady state) with
NB = 10–16 basis points for all moderate and high capsule
sizes we studied (i.e., 0.8 � a � 1.3) and for several smaller
capsule sizes (i.e., 0.1 � a � 0.7). Our convergence runs
showed that our results for the interfacial shape are accurate to
at least three significant digits except for the most challenging
cases studied in this work (i.e., largest capsules) where the
interfacial shape was determined with an accuracy of at least
two significant digits. In particular, in Sec. III, where we
investigate moderate capsules (a = 0.6,0.7,0.8) for capillary
number Ca = 0.1–0.5, the interfacial shape was determined
with an accuracy of at least three significant digits in all cases.
In Sec. IV, where we investigate small and large capsules for
a fixed capillary number (Ca = 0.1), the interfacial shape was
determined with an accuracy of at least three significant digits
for sizes a � 1.25, while the interfacial shape of the largest

capsule studied (a = 1.3) was determined with a maximum
relative error of 3 × 10−3. The capsule velocity Ux and the
additional pressure difference �P + are always accurate to at
least three significant digits.

In addition, we have compared our results with published
results for capsule motion in cylindrical tubes [15]. To do
this we used our three-dimensional membrane algorithm
and determine the capsule motion along the centerline of a
cylindrical tube. [The spectral element discretization of the
tube surface is shown in Fig. 2(d)]. All comparisons have
shown that our results are in very good agreement with
earlier results from axisymmetric methodologies. For example,
in tube flow and for a Skalak capsule with size a = 0.8,
prestress αp = 0.025, and capillary number Ca = 0.2, we
found Lx = 1.68 and Lz = 1.52, while for a = 0.9, αp = 0.1,
and Ca = 0.24 we found Lx = 2.03 and Lz = 1.60; both
results are in very good agreement with the results of Lefebvre
and Barthès-Biesel [15] shown in their Figs. 4 and 7. The
capsule profiles were also in very good agreement as we
verified via figure superposition. Lefebvre and Barthès-Biesel
also reported in their Table I that, for prestress αp = 0.05 and
capsule size a = 0.8, the rear curvature changes sign when
Ca = 0.1; we also found the same as shown in our Fig. 6.

The problem studied in this paper admits three independent
symmetry planes, y = 0, z = 0, and y = z. Exploiting these
symmetries reduces the memory requirements for the storage
of the system matrices by a factor of 82, the computational
time for calculating the system matrices by a factor of 8 and the
solution time of the linear systems via direct solvers by a factor
of 83. Most of our computations were performed on quad-core
computers utilizing the existing parallelization of our spectral
boundary element algorithm via OpenMP directives for the
calculation of the system matrices, and highly optimized,
parallelized routines from the LAPACK library for the solution
of the dense system matrices.

III. EFFECTS OF THE CAPILLARY NUMBER ON THE
STEADY-STATE PROPERTIES OF MODERATE-SIZE

CAPSULES

In this section we collect our steady-state results on the
geometric and physical variables of interest, described earlier
in Sec. II B, as a function of the flow rate for moderate-size
capsules. In particular, we consider Skalak capsules with
prestress αp = 0.05 and size a = 0.6,0.7,0.8 (i.e., smaller
than the channel size �z) and capillary number Ca in the
range [0,0.5] (i.e., small and moderate flow rates). To obtain
these steady-state results we initiate our computations from a
spherical capsule at the channel centerline using viscosity ratio
λ = 1 and compute the capsule dynamics until times t = 10–
20, that is, well-past steady state which usually is achieved
around time t = 2–4. Although the transient evolution is
affected by the viscosity ratio, at steady state there is no flow
inside the capsule and thus the steady-state capsule properties
are independent of the inner viscosity. For the same reason,
the membrane viscosity (if any), which is not accounted in
our computations, does not affect the capsule’s steady-state
properties.

Figure 3(a) shows the effects of the capillary number on
the steady-state capsule dimensions for the three capsule
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FIG. 3. Steady-state capsule lengths as a function of the capillary
number Ca for a Skalak capsule with C = 1 and αp = 0.05 in a square
microchannel. (a) Capsule lengths Lx/(2a) and Lz/(2a). (b) Capsule
lengths Ld

x/a and Lu
x/a. Capsules sizes a: �,0.6; ◦,0.7; �,0.8.

sizes studied in this section. The capsule length Lx/(2a) first
decreases with the flow rate and then increases. For the three
capsules studied here, only the largest capsule with a = 0.8
achieves eventually a length greater than its undisturbed size.
On the other hand, the behavior of the capsule height Lz

depends on the capsule size. The two smaller capsules with
a = 0.6,0.7 increase slightly their height Lz/(2a) as the flow
rate increases, however for a = 0.8 the capsule height Lz/(2a)
is decreased with the flow rate. This behavior can be attributed
to the nonmonotonic behavior of the capsule length Lx owing
to the preservation of the capsule volume.

Dividing the capsule length Lx into its downstream and
upstream parts (based on the capsule centroid), Fig. 3(b) shows
that the capsule’s downstream length Ld

x/a shows a monotonic
increase with the flow rate and the capsule size. In addition,
the capsule upstream length Lu

x/a first decreases with the flow
rate and then increases. Therefore, Fig. 3(b) suggests that
the capsule’s flow dynamics can be divided into two parts:
the downstream dynamics where a monotonic dependence
(e.g., length increase) is found with the flow rate, and the
upstream part which is characterized by a more complicated
flow dynamics and which may affect the entire capsule shape.
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FIG. 4. Steady-state capsule profile as a function of the capillary
number Ca for a Skalak capsule with C = 1, αp = 0.05, and size a =
0.8 in a square microchannel. (a) Capsule y = 0 profile (i.e., interface
intersection with the plane x = 0) for Ca = 0,0.1,0.2,0.3,0.4,0.5.
(b) Capsule x = 0 profile for Ca = 0,0.1,0.5. All profiles are shown
with centroid xc = 0.

The effects of the capillary number on the downstream
and upstream lengths of the capsule, Ld

x and Lu
x , can also

be seen in the y = 0 profiles of a capsule with size a = 0.8
presented in Fig. 4(a) since all these profiles have the same
centroid xc = 0. The monotonic increase of Ld

x/a with the flow
rate results from the relatively extension of the downstream
tip of the capsule. On the other hand, the late flow rate increase
of the upstream length Lu

x/a results form the development
of a pointed tail at the capsule rear close to the solid walls.
Looking at the capsule x = 0 profiles (i.e., perpendicular to
the flow direction) presented in Fig. 4(b), we observe that even
for the largest capsule (size a = 0.8) and at the highest flow
rate (Ca = 0.5) studied in this section, the capsule remains
almost axisymmetric.

For a better view of the three-dimensional capsule shape,
in Fig. 5 we present the steady-state capsule shape for size
a = 0.8 and for capillary number Ca = 0.1,0.5. For each
case we plot the shape perpendicular to the flow direction
inside the channel and askew from the flow direction. Note that
the three-dimensional views of the capsule shape presented
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FIG. 5. Steady-state shape of a Skalak capsule with C = 1, αp = 0.05, and size a = 0.8 in a square microchannel. Capillary number:
(a) Ca = 0.1 and (b) Ca = 0.5.

in this paper were derived from the actual spectral grid by
spectrally interpolating to NB = 25 and using orthographic
projection in plotting.

Figure 6 shows the effects of the flow rate Ca on the steady-
state curvatures along the capsule’s y = 0 profile. As the flow
rate increases, the capsule downstream edge becomes more
pointed while the scaled curvature there increases slightly with
the capsule size. At the same time, the capsule tends to decrease
the curvature at its upstream edge from a concave shape at
small Ca towards a flat edge and then a convex edge (with
negative curvature) as the flow rate increases. (Both effects are
also shown in the capsule y = 0 profiles presented in Fig. 4.)
For the three capsule sizes studied here, the transition to a
convex edge occurs around 0.1 � Ca � 0.2 and happens at a
smaller flow rate as the capsule size increases. After a slow
increase at very small flow rates, the maximum curvature along
the capsule’s y = 0 profile increases linearly with the capillary
number as seen in Fig. 6(b). The scaled maximum curvature
also increases with the capsule size. Thus the capsule develops
very pointed tails at its upstream section characterized by a
local length scale (or radius of curvature) which is of O(10)
(or more) smaller than the capsule size for the maximum flow
rate, Ca = 0.5, studied here.

Considering the variation of the capsule surface area Sc

with the flow rate (which can be regarded as an index of the
entire capsule deformation), Fig. 7(a) shows that after an initial
slow increase at small flow rates, the steady-state surface area
Sc increases linearly with the capillary number while capsules
with larger size a show a higher surface area increase. The

same pattern is valid for the maximum principal tension τP
max

on the membrane as seen in Fig. 7(b). It is interesting to note
that the maximum tension τP

max at steady state is always located
at the downstream element of the capsule, along the y = 0 (or
z = 0) profile and between the capsule downstream tip and the
element end. Therefore this location is the most probable to
rupture when a capsule flows in a microchannel.

Figure 8 shows the steady-state variation (with the flow rate)
of the volume-average capsule velocity Ux and the additional
pressure difference �P + as well as the minimum distance
h between the capsule surface and the channel’s walls. All
these variables are not affected much by the capillary number
for each of the three capsule sizes included in Fig. 8. As the
capsule size a increases, the smaller distance h between the
capsule surface and the walls results in a slower capsule motion
and in higher pressure drop.

A. Comparison with flow in a cylindrical tube

Owing to their nearly axisymmetric cross section in the flow
direction shown in Fig. 4(b), small and moderate capsules
in square channels should show dynamics similar to that in
cylindrical tubes. In particular, similar (qualitative) behavior
for the capsule’s length Lx , height Lz, and downstream
and upstream curvatures were found in earlier experimental
and computational studies (e.g., [13–15]). For example, see
Fig. 4 in the work by Lefebvre and Barthès-Biesel [15]
who considered the steady-state properties of capsules with
prestress αp = 0,0.025,0.1 and size a/R = 0.8 (where R is
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FIG. 6. Steady-state capsule curvatures as a function of the
capillary number Ca for a Skalak capsule with C = 1 and αp = 0.05
in a square microchannel. (a) Curvature at the downstream and
upstream edges of the capsule (i.e., its intersections with the x

axis). The curvatures are determined along capsule’s y = 0 profile
(i.e., the cross section of the capsule surface with the y = 0 plane).
(b) Maximum curvature along the capsule’s y = 0 profile. All
curvatures are scaled with the curvature of the undisturbed spherical
shape. Capsules sizes a: �,0.6; ◦,0.7; �,0.8. Also included are the
corresponding results for a capsule with size a = 0.8 in a cylindrical
tube (– – –).

the tube radius). We note that Fig. 11 of the earlier study shows
that in cylindrical tubes the pressure drop increases (almost)
linearly with the capillary number Ca; this appears to contrast
with our results presented in Fig. 8(b). This difference results
from the different scales used for the pressure; in particular,
the earlier study scaled the pressure based on membrane
properties (i.e., Gs/R) while we scale the pressure based
on flow properties (i.e., μU/�z). Scaling the pressure as in
our study, the results of Lefebvre and Barthès-Biesel [15]
presented in their Fig. 11 show that the pressure drop is rather
insensitive to the capillary number for moderate-size capsules
as also found in our study.

The similarity of the channel and tube dynamics at moderate
capsule sizes motivated us to make detailed comparisons of the
two cases to identify clearly their similarities and differences.
Since the earlier computational studies which considered
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FIG. 7. Steady-state capsule properties as a function of the
capillary number Ca for a Skalak capsule with C = 1, αp = 0.05,
and size a = 0.6,0.7,0.8 in a square microchannel. (a) Surface area
of the capsule Sc at steady state (scaled with the surface area S0

c

of the undisturbed spherical shape). (b) Maximum principal tension
τP

max among the spectral discretization points on the membrane. Also
included are the corresponding results for a capsule with size a = 0.8
in a cylindrical tube (– – –).

capsule dynamics in cylindrical tubes [13,15] did not report
results for the prestress level used in this paper, we studied this
problem for prestress αp = 0.05, capsule size a = 0.8, and
several flow rates using our (three-dimensional) membrane
algorithm. The spectral boundary element discretization of the
tube wall was identical to that for the channel (i.e., we defined
rows of four elements) while the tube’s inlet and outlet were
discretized into five elements each as shown in Fig. 2(d). For
this system, the tube radius R is used as the length scale while
all rest parameters are defined as for the channel problem
reported in Sec. II B. Considering the dynamics of a capsule in
both solid ducts at a given capillary number Ca means that we
apply the same average duct velocity U as seen in Eq. (15).

Figure 9 shows the variation of the capsule lengths in
channel and tube flow. In the channel the capsule is less
deformed (i.e., it is less extended along the flow direction
and more extended laterally) for the same capillary number
Ca than in the tube. The smaller interfacial deformation in the
channel results from the existence of the corners area which
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permits flow of the surrounding fluid and thus causes less
deformation on the capsule. In a similar manner, the capsule
in the tube shows larger downstream and upstream lengths, Ld

x

and Lu
x , than in the channel. Excluding small capillary numbers
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FIG. 9. Steady-state capsule lengths as a function of the capillary
number Ca for a Skalak capsule with C = 1, αp = 0.05, and size
a = 0.8, in a square channel (——) and a cylindrical tube (– – –).
(a) Capsule lengths Lx/(2a) and Lz/(2a). (b) Capsule lengths Ld

x/a

and Lu
x/a.

(e.g., Ca � 0.1), Fig. 9 shows that a capsule in a channel at a
given capillary number has the same dimensions as in a tube
flow but at a much lower capillary number. For example, the
capsule lengths in the flow direction, Lx , Ld

x , and Lu
x , are very

similar for channel flow with Ca = 0.35 and tube flow with
Ca = 0.2. The capsule height Lz in a channel with Ca = 0.35
corresponds to near Ca = 0.13 in a tube.

In contrast to the different interfacial deformation in
channels and tubes, the capsule curvatures are very similar
in these two system, as seen in Fig. 6. Thus for capsules
flowing in these two solid geometries, the interfacial curvatures
are mostly determined by the capsule size and the capillary
number, and not by the details of the cross section of the
solid geometry. It is of interest to note that, excluding small
capillary numbers, our results show that the curvature at
the downstream and upstream edges are rather insensitive to
the capillary number for both solid systems (i.e., they are
practically constant at moderate flow rates). On the other hand,
the maximum profile curvature which occurs at the capsule rear
end and close to the walls, increases fast with the capillary
number as seen in Fig. 6(b).
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The higher interfacial deformation in the tube flow results
in a higher surface area increase for the capsule and higher
membrane tensions as seen in Fig. 7. However, now the
correspondence in Ca for the two solid geometries are not as
different as for the capsule lengths; for instance, very similar
maximum principal tensions are obtained for Ca = 0.35 in
the channel and Ca = 0.3 in the tube. The higher interfacial
deformation in the tube flow also results in a higher gap
between the capsule and the walls as shown in Fig. 8(c).
However, the existence of the corners area in the channel
means that in this system the capsule blocks less the flow of
the surrounding fluid. Thus in a tube the same capsule causes a
much higher pressure drop and travels with a smaller velocity
than in a channel as seen in Figs. 8(a) and 8(b).

IV. EFFECTS OF THE CAPSULE SIZE ON THE
STEADY-STATE PROPERTIES

In this section we collect our steady-state results on
the geometric and physical variables of interest, described
earlier in Sec. II B, as a function of the capsule size a for
channel flow with capillary number Ca = 0.1. In particular,
we consider Skalak capsules with prestress αp = 0.05 and
size a = 0.1,0.2, . . . ,1.3, that is, both smaller and larger than
the channel height �z. To obtain these steady-state results, for
capsules with size a < 1 we initiated our computations from
a spherical capsule at the channel centerline and computed
the capsule dynamics for viscosity ratio λ = 1 until times
t = 10–20, that is, well-past steady state. For capsules with
size a � 1, we did the same but we initiated our computations
from an ellipsoidal capsule with width near 0.95 and appro-
priate length (greater than unity) to account for the specific
capsule volume.

To facilitate the comparison of the channel flow with that
in a cylindrical tube, we include our results for tube motion
in several figures in this section. However our discussion on
these comparisons are presented at this end of this section.
It is of interest to note that as the capsule size a increases,
negative tensions appear near steady state and cause numerical
instability, that is, the specific prestress used in our study
(αp = 0.05) is not adequate to enforce positive membrane
tensions at sufficiently large capsules. (The buckling instability
for axisymmetric-like flows is discussed in Sec. 6 in Ref. [26].)
Thus for this prestress we are unable to determine stable
steady-state shapes for size a � 1.4 for channel flow and
a � 1.2 for tube flow.

Figure 10(a) shows the effects of the capsule size a on
the steady-state capsule dimensions. Note that we prefer not
to scale the capsule lengths with the capsule size a since for
large capsules such scaling is not appropriate for properties
associated with the capsule height. The capsule length Lx

shows a monotonic increase with a while its height Lz, after
an initial fast increase, slows down as it reaches the channel
height. It is of interest to note that both dimensions increase
identically until size a ≈ 0.9 and then their behavior diverges.
For higher capsule sizes, as the capsule height Lz is restricted
by the channel height, the capsule length Lx increases faster
to accommodate the capsule’s larger volume. Considering
the downstream and upstream parts of the capsule length in
Fig. 10(b), we see that after an initial common increase, the
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FIG. 10. Steady-state capsule lengths as a function of the
capsule’s size a for a Skalak capsule with C = 1, αp = 0.05,
and capillary number Ca = 0.1, in a square channel (——) and
a cylindrical tube (– – –). (a) Capsule lengths Lx/2 and Lz/2.
(b) Capsule lengths Ld

x and Lu
x .

upstream length Lu
x increases slower for sizes 0.5 � a � 0.9,

and then shows a fast increase similar to that of the downstream
length Ld

x .
To explain the behavior of the upstream length Lu

x , it is
beneficial to see the steady-state y = 0 profiles of small and
large capsules plotted in Figs. 11(a) and 11(c). For small
capsule sizes a � 0.4, the hydrodynamic forces associated
with the flow rate Ca = 0.1 are weak and cause minimal
deformation; thus the capsule is nearly spherical. For moderate
capsule sizes 0.5 � a � 0.9, the length Lx and the height Lz

are practically equal to their undisturbed value 2a. However,
now the hydrodynamic forces are stronger owing to the
smaller gap between the capsule interface and the solid
walls, and cause the capsule to deform into a shape with a
pointed downstream edge and a flattened rear. Because of
this interfacial deformation, the capsule centroid is shifted
to the back, that is, its upstream length Lu

x decreases with
respect to its downstream length Ld

x . For size a ≈ 0.9, the
capsule height Lz has reached the channel’s height and further
increase is limited owing to the strong hydrodynamic forces
in the narrow gap between the capsule surface and the wall.
The capsule obtains a bullet-like shape and further increase
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FIG. 11. Steady-state profile of a Skalak capsule with C = 1, αp = 0.05, and capillary number Ca = 0.1 in a square channel. (a) Capsule
y = 0 profile (i.e., interface intersection with the plane x = 0) for size a = 0.4,0.5,0.6,0.7,0.8,0.9. (a) As in (a) but for x = 0 profile.
(c) Capsule y = 0 profile for size a = 0.9,1,1.1,1.2,1.3. (d) As in (c) but for x = 0 profile. (e) Interface intersection with the planes
x = −1, − 0.5,0,0.5,1,1.5 for size a = 1.3. All profiles are shown with centroid xc = 0.

in its size results mainly in a length increase, and thus
increase of both downstream and upstream parts of the capsule
length.

Looking at the x = 0 profile of the different capsules
included in Figs. 11(b) and 11(d), we observe that the
capsule remains axisymmetric until a ≈ 0.8. At higher sizes
the capsule’s x = 0 profile becomes a square with rounded
corners, especially for the larger capsules, as seen in Fig. 11(d).
Thus the capsule interface becomes parallel to the channels

walls and rounded at the channel’s corners. This development
clearly suggests that for capillary number Ca = 0.1 the capsule
shape becomes nonaxisymmetric (i.e., fully three dimensional)
for capsule sizes a � 0.9.

It is of interest to note that this nonaxisymmetric interfacial
deformation is associated mainly with the capsule’s upstream
portion (i.e., from its centroid to its rear end), and not with
its downstream portion which remains axisymmetric. To show
this, in Fig. 11(e) we plot the capsule’s interface intersection
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FIG. 12. Steady-state shape of a Skalak capsule with C = 1, αp = 0.05, and capillary number Ca = 0.1 in a square channel. Capsule’s
size: (a) a = 1.1 and (b) a = 1.3.

with different x planes (with respect to the capsule centroid).
The profiles at x = 1,1.5 are circular and thus the downstream
portion of the capsule is like a cylinder with an end spherical
cap.

Looking at the capsule’s x = 0 profiles shown in Fig. 11 as
well as in Fig. 4 from the previous section, we note that when
the hydrodynamic forces on the capsule are increased (i.e., by
increasing the flow rate for a given capsule or by increasing
the capsule size for a given flow rate), the capsule develops
a pointed downstream edge and a flattened rear (possibly
with a negative curvature). This is similar to the deformation
of droplets which try to increase the downstream curvature
and decrease the upstream curvature so that they increase
the restoring (surface) tension force [3,12]. Therefore this
capsule deformation results from the curvature term in the
membrane traction [Eq.(10)] as we identified for the high-
curvature tips of elastic capsules in strong planar extensional
flows in our earlier studies [25,31]. We emphasize that in
the present study the membrane tensions at steady state are
always positive owing to prestress and thus negative curvature
or dimples on the capsule interface cannot result from local
negative tensions.

The three-dimensional shapes of two large capsules with
size a = 1.1,1.3 are shown in Fig. 12. Beyond the dimple
with negative curvature which occurs at the capsule’s rear
end, we also observe the development of dimples at the
capsule lateral surface and near its rear, at each side of
the channel. This lateral dimple is also shown in the capsule
profiles in Fig. 11(d). Similar lateral dimples can be seen in the
experimental photos (i.e., capsule profiles) of large capsules
moving in square microfluidic channels in the recent work
of Lefebvre et al. [9]. (See Figs. 10 and 11 in the earlier
study.) In addition, lateral dimples have also been found on
large capsules moving in cylindrical tubes, in experimental

and computational studies, although in this case the dimple is,
obviously, axisymmetric [13,14].

Figure 13(a) shows the effects of the capsule size on the
steady-state scaled curvature at the downstream and upstream
edges of the capsule (i.e., its intersections with the x axis).
Note that the curvatures are scaled with the curvature of
the undisturbed spherical shape, and thus Fig. 13(a) is more
suited for the capsules with size smaller than the channel’s
height. This plot shows that even at small sizes a � 0.4
the capsule downstream edge becomes more pointed while
the opposite happens at its upstream edge. [Note that these
curvature variations cannot be easily observed in the capsule
profiles shown in Fig. 11(a).] For moderate capsule sizes
0.4 � a � 0.9, the significant capsule deformation shown
earlier in Fig. 11(a) is associated with a faster increase of
the curvature at the downstream edge and a faster decrease of
the curvature at the upstream edge. Thus the downstream edge
becomes more pointed (relatively to the undisturbed spherical
shape) while the upstream edge flattens as seen in the profiles
of Fig. 11(a). Note that a dimple with negative curvature
has been developed at the rear end of the capsule with size
a = 0.9.

In Fig. 13(b) we present the variation with the capsule size
of the (unscaled) curvature at the downstream and upstream
edges of the capsule. Thus Fig. 13(b) is more suited for the
larger capsules where the capsule covers almost the entire
channel height. This plot shows that for large capsules, for
example, a � 0.9, the curvature at the downstream edge
decreases slightly only with the capsule size (i.e., it is
practically independent of the size a). Similar is the variation
of the curvature at the upstream edge which becomes slightly
more negative with the capsule size.

Figure 13(c) shows the maximum curvature along the
capsule’s y = 0 profile (scaled with the curvature of the
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FIG. 13. Steady-state capsule curvatures as a function of the capsule’s size a for a Skalak capsule with C = 1, αp = 0.05, and capillary
number Ca = 0.1, in a square channel (——) and a cylindrical tube (– – –). (a) Scaled curvature at the downstream and upstream edges of the
capsule (i.e., its intersections with the x axis). The curvatures are determined along capsule’s y = 0 profile (i.e., the cross section of the capsule
surface with the y = 0 plane). (b) As in (a) but for unscaled curvatures. (c) Maximum scaled curvature along the capsule’s y = 0 profile. In (a)
and (c) the curvatures are scaled with the curvature of the undisturbed spherical shape.

undisturbed spherical shape). Figure 13(c) shows that the
variation of the maximum profile curvature with the capsule
size is divided into three distinct areas owing to the corre-
sponding types of capsule profiles shown earlier in Fig. 11.
In particular, for small sizes, a � 0.4, the maximum curvature
occurs at the downstream edge of the nearly spherical capsules.
For moderate sizes, 0.4 � a � 1, the maximum curvature
increases fast with the size owing to the development of
the tail at the capsule rear and close to the walls. Finally,
for large sizes, a � 1, a further increase of the maximum
curvature occurs owing to the development of the lateral
dimple near the capsule rear. Thus large capsules develop
at their rear tail and close to the walls, pointed local areas
characterized by a local length scale (or radius of curvature)
which is of O(10) smaller than the capsule size, as we
also found for moderate-size capsules at high flow rates in
Sec. III.

We now turn our attention to properties associated with
the entire capsule deformation, and in Fig. 14 we present the
variation with the size a of the capsule’s surface area Sc and
the maximum principal tension τP

max on the membrane. After

an initial slow increase at small capsule sizes, both properties
increase fast with the capsule size for large capsules. Even for
the large capsules studied in this section, the maximum tension
τP

max at steady state is always located at the downstream element
of the capsule, along the y = 0 (or z = 0) profile and between
the capsule downstream tip and the element end. Therefore
this location is the most probable to rupture when a capsule
flows in a microchannel.

Figure 15 shows the steady-state variation with the capsule
size a of the volume-average capsule velocity Ux and the
additional pressure difference �P + as well as the minimum
distance h between the capsule surface and the channel’s walls.
In contrast to the insensitivity of these variables with the flow
rate Ca found in Sec. III, now we observe that the capsule
velocity Ux decreases and the pressure drop �P + increases
significantly as the capsule size increases owing to the smaller
gap h between the capsule surface and the walls. It is of interest
to note that capsules, larger than the channel height, move with
a velocity just higher than the channel’s undisturbed average
velocity U and cause a very significant pressure drop in the
channel.
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FIG. 14. Steady-state capsule properties as a function of the
capsule’s size a for a Skalak capsule with C = 1, αp = 0.05,
and capillary number Ca = 0.1, in a square channel (——) and a
cylindrical tube (– – –). (a) Surface area of the capsule at steady state
Sc (scaled with the surface area S0

c of the undisturbed spherical shape).
(b) Maximum principal tension τP

max among the spectral discretization
points on the membrane.

A. Comparison with flow in a cylindrical tube

Comparison between channel and tube flow with respect to
capsule size reveals similar results to those with respect to flow
rate presented in Sec. III A. As shown in Fig. 10, the behavior
of the capsule lengths in tube flow for increasing capsule size
is similar to that in the channel. In the latter geometry, large
capsules are less deformed and thus less extended in the flow
direction and more extended laterally, owing to the existence
of the corners area which permits flow of the surrounding flow
and thus causes less deformation on the capsule.

Figures 13(a) and 13(b) shows that the curvature at the
downstream edge is practically the same for both solid systems.
The same is true for the curvature at the upstream edge until
sizes near a = 0.8; for higher capsule sizes the upstream
curvature is practically constant in tube flow but decreases
into higher negative values in channel flow. This behavior
in the tube is consistent with the results of Lefebvre and
Barthès-Biesel [15] who showed at their Table I that for capsule
sizes a = 0.8,0.9,1 the upstream curvature is practically zero
for a fixed capillary number and not very small prestress. (In
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FIG. 15. Steady-state capsule properties as a function of the
capsule’s size a for a Skalak capsule with C = 1, αp = 0.05,
and capillary number Ca = 0.1, in a square channel (——) and a
cylindrical tube (– – –). (a) Capsule velocity Ux . (b) Additional
pressure drop �P +. (c) Minimum distance h between the capsule
surface and the channel’s walls.

particular for Ca = 0.1 when αp = 0.05 and Ca = 0.2 when
αp = 0.1.)

The identical curvature evolution at the downstream edge in
both solid systems can be understood since in both systems the
downstream portion of the capsule remains axisymmetric as
we show for the channel flow in Fig. 11(e). On the other hand,
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TABLE I. Scaling laws with respect to capsule size a for a Skalak capsule with C = 1, αp = 0.05, and
capillary number Ca = 0.1 in a square channel and a cylindrical tube at steady state. SDC is the curvature
at the downstream edge scaled with the curvature a−1 of the undisturbed spherical shape. (Similar scaling
for small capsule sizes we also found for the scaled downstream and maximum curvatures.) The length scale
Ls is the channel’s half-height �z or the tube radius R and the pressure scale is 
 = μU/Ls .

Square channel Cylindrical tube

Property Small size a Large size a Small size a Large size a

Lx − Lz/2 a 1.25 a3 a 1.50 a3

Lz/2 = 1 − h a a

h 0.13 a−2 0.15 a−2

Sc/S
0
c − 1 0.015 a4 0.019 a4

SDC − 1 0.73 a2 0.47 a3/4 0.80 a2 0.50 a3/4

(Umax − Ux)/U (3.5/3) a2 (4.0/3) a2

(Ux − U)/U 0.27 a−2 0.20 a−2

�P +/
 9.5 a5 ≈ 9.5 a5 16 a5 ≈ 16 a5

(τP
max − τP

0 )/Gs 0.42 a2 0.95 a4 0.50 a2 1.30 a4

the different upstream curvature in the tube and channel at high
enough capsule sizes can be attributed to the development of
the (nonaxisymmetric) rounded square cross section of the
upstream portion of the capsule for sizes a � 0.9 as shown
in Fig. 11(d). For the same reason, a large capsule in a tube
flow does not show as high maximum profile curvature as in a
channel [Fig. 13(c)].

The higher interfacial deformation in the tube flow for large
capsules results in a higher surface-area increase and higher
membrane tensions as seen in Fig. 14. Figure 15(a) shows
that a capsule in a tube has always lower velocity than in a
channel while this difference decreases at large capsule sizes.
We note that in this figure the velocity is scaled with the average
fluid velocity U which is an appropriate scale mainly for large
capsules. [As shown in Fig. 15(a), small-size capsules travel
with the maximum fluid velocity while large capsules travel
with a velocity closer to the average fluid velocity.] Even when
we scale our velocity findings with the maximum fluid velocity
in each solid system (not shown), we observe that small- and
moderate-size capsules travel slower in the tube. Owing to the
existence of the corners area, a capsule in a channel causes
less fluid blocking, and thus a smaller pressure drop compared
to that in a tube, as shown in Fig. 15(b).

V. ANALYSIS AND SCALING LAWS

In this section, using our computational results for capsule
motion in square channels and cylindrical tubes for capillary
number Ca = 0.1 presented in Sec. IV, we derive scaling laws
with respect to the capsule size a for the geometric and physical
variables we consider in our work. We note that most capsule’s
geometric and physical properties are also affected by the flow
rate Ca as seen in Sec. III. Exceptions are the capsule velocity
Ux and additional pressure difference �P + for small- and
moderate-size capsules which are practically independent of
the capillary number for the small and moderate flow rates
studied in this work. In addition, based on basic physical
principles and geometric properties, we develop a theoretical
analysis that explains the power laws we found in this
work.

It is of interest to note that very limited information is
currently known with respect to the scaling-law behavior
of capsules flowing in solid ducts. In particular, it appears
that the only available information is two power laws for
the additional pressure difference and capsule velocity as a
function of the capillary number from the work of Quéguiner
and Barthès-Biesel [13]. Using their axisymmetric results
for a strain-softening neo-Hookean capsule in a cylindrical
tube, the authors determined, via least-square fitting, the
coefficients for �P + = k1 Ca−n1 and Ux − U = k2 Can2 that
match best a given capsule size, for capsule sizes a/R =
0.8,0.9,1,1.2,1.4. We note that the four coefficients in these
two power laws were found to vary with the capsule size, while
a power-law behavior with respect to the capsule size was not
identified.

The limited information on the scaling-law behavior of
capsule motion in solid ducts is in contrast to the current
knowledge from the corresponding problem of droplet motion
in wall-bounded Stokes flows which has been studied rather
extensively in the last four decades, for example, [12,20–22].
The viscosity ratio does affect the steady-state behavior of
droplets, and different dynamics have been identified for low-
and high-viscosity droplets. We note that capsule motion
corresponds better to the dynamics of high-viscosity droplets
since at steady state both a capsule and a high-viscosity
droplet translate in the duct flow as a solid with zero inner
velocity.

Table I presents the power laws (with respect to the capsule
size a) we found for several steady-state geometric and
physical properties of capsules flowing in square channels and
cylindrical tubes. The corresponding figures that show these
laws and the range of validity in capsule size are given in the
Appendix. For both channel and tube flows, the table’s column
“small size a” represents small and moderate capsule sizes
while the table’s column “large size a” represents moderate and
large capsule sizes up to the maximum capsule size studied in
this work, that is a = 1.1 for tube flow and a = 1.3 for channel
flow. Note that in the latter case, the associated scaling laws
may also be valid for larger capsule sizes as supported by our
analysis below.
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Several conclusions can be drawn from Table I. For any
capsule size, the scaling laws for channel flow are identical
to those in tube flow except for the multiplication coefficient,
even though in the channel the cross section in the upstream
portion of large capsules is nonaxisymmetric, that is, square-
like with rounded corners, as shown in Figs. 11 and 12. The
different multiplication coefficients in these two types of solid
geometries are to be expected since for a given flow rate
Ca the same capsule in the channel is less deformed than
in the tube owing to the existence of the corners area (gutters)
which permits flow of the surrounding flow and thus causes
less deformation on the capsule. Therefore in the tube the
capsule shows a higher length Lx and smaller height Lz as
well as a higher downstream curvature, surface area increase
and membrane tensions. In addition, the corners gutters reduce
significantly the excess pressure difference in the channel flow.

Furthermore, the existence of identical power laws for large
capsules in channel and tube flows show that the parameter
space studied in the present work does not represent squeezing
capsule motion (i.e., large capsules at sufficient low flow rates
so that the capsules travel very tightly inside the solid ducts)
since in such case the channel flow should be governed by
different laws (with respect to the tube flow) owing to the
significant fluid flow at the corners gutters as found for droplet
motion [12].

For small and moderate sizes, the capsule velocity Ux and
additional pressure drop �P + in tube flow are governed by
exactly the same scaling laws as for high-viscosity droplets,
that is, the predictions of Hetsroni et al. [20] and Brenner [21].
In particular, Hetsroni et al. [20] determined analytically the
velocity of a very small droplet moving along the centerline
of a cylindrical capillary; their results for high viscosity ratio
(i.e., λ → ∞) give

Ux − Umax

U = −4

3

( a

R

)2
+ O(a3). (16)

Brenner [21] provided the additional pressure drop for the
same system; his results for high-viscosity droplets are

�P +

μU/R
= 16

( a

R

)5
+ O(a10). (17)

The identical scaling-law behavior of capsules and high-
viscosity droplets in a tube flow supports clearly our earlier
conclusion that the capsule steady-state motion in solid ducts
corresponds better to the motion of high-viscosity (i.e., λ →
∞) droplets. It is interesting to note that the predictions of
Hetsroni et al. [20] and Brenner [21] show that, for small and
moderate droplet sizes, the velocity Ux and additional pressure
difference �P + are independent of the capillary number Ca,
as we also found for small and moderate capsules in Sec. III.

For the large capsules studied in this work, the additional
pressure difference �P + follows the same scaling-law be-
havior as for small and moderate capsules. Furthermore, the
velocity of large capsules approaches the average undisturbed
duct velocity as Ux − U ∼ a−2 as shown in Table I. As
the capsule size increases, the maximum membrane tensions
increase their dependence on the capsule size from τP

max −
τP

0 ∼ a2 at small and moderate sizes, to τP
max − τP

0 ∼ a4 for
large capsules.

By combining basic physical principles and geometric
properties, we present now an analysis that explains the power
laws we found for large capsules. Since for our study we
found the same scaling laws for both tube and channel flows,
our analysis is based mostly on the (simpler) tube flow. In
our analysis, at first we accept as given the dependence of the
lubrication film thickness h on the capsule size a from our
computations, that is, h/R = 0.15 (a/R)−2 for tube flow, and
by employing this relationship, we derive the scaling laws we
found for the additional pressure difference and the capsule
velocity. Afterward we propose a scaling analysis to justify
the dependence of h on the capsule size a. To facilitate the
notation, in some inline equations the variables scales are
omitted and thus the default scales are assumed as happens
in our entire study (see end of Sec. II B). For tube flow, the
length scale Ls is the tube radius R and the pressure scale is

 = μU/Ls .

To justify the power law for the capsule velocity Ux − U
found in our work for large capsules, we utilize the velocity at
high-viscosity ratio (i.e., λ → ∞) of a long cylindrical droplet
in a tube flow given by Eq.(4.5) in the paper by Lac and
Sherwood [22], that is,

Ux

U = 2

1 + δ2
, (18)

where δ is the dimensionless half-width of the capsule, that is,
δR = Lz/2. This finding is based on the laminar annular flow
of two concentric fluids in a cylindrical tube and thus it is valid
for both slender and thick droplets. Lac and Sherwood used
this relationship for slender droplets (i.e., for δ � 1); here we
apply it for thick capsules with δ → 1. Simple algebra reveals
that

Ux − U
U = 1 − δ2

1 + δ2
≈ h

R
(19)

while using the scaling law h/R = 0.15 (a/R)−2 from Table I
we obtain the correct scaling behavior for the capsule velocity
as well as good agreement for the numerical coefficient,
that is,

Ux − U
U ≈ 0.15

( a

R

)−2
. (20)

To derive the pressure difference associated with the capsule
motion, observe that as shown in Fig. 12, our large capsules
resemble a cylinder with length Lf along with a semispherical
cap of radius δR = Lz/2, and thus Lf = Lx − δR. The pres-
sure difference �P between the upstream and the downstream
end of the capsule is thus the sum of the pressure difference
in the cylindrical part �Pcyl and that in the semispherical cap
�Pcap. However, �Pcap is expected to be much smaller than
�Pcyl as found for droplet motion in duct flows [12,22], and
thus

�P ≈ �Pcyl = −dP

dx
Lf . (21)

The pressure gradient dP/dx can be derived from the corre-
sponding finding of the laminar annular flow of two concentric
fluids in a cylindrical tube, that is, Eq. (4.3) in the paper by
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Lac and Sherwood [22], for the case of high-viscosity ratio
(i.e., λ → ∞)

dP

dx
= −8μU

R2

1

1 − δ4
(22)

and therefore for large thick capsules with δ = 1 − h/R → 1,
we get

dP

dx
≈ −2μU

R2

R

h
≈ −2 


h
, (23)

where 
 = μU/R is the pressure scale.
To derive the scaling for the length Lf of capsule’s

cylindrical part, we note that the volume of the cylindrical
part along with the volume of the semispherical cap is equal
to the capsule volume, that is,

π δ2 Lf + 2
3 π (δR)3 ≈ 4

3 π a3 or
(24)

δ2 Lf ≈ 4
3 a3 − 2

3 (δR)3.

For large thick capsules with small lubrication gaps (i.e.,
a/R � 1 and δ → 1) this equation leads to

Lf = Lx − δR = Lx − Lz

2
≈ 4

3

a3

R2
≈ 1.33

a3

R2
(25)

in (quantitative) agreement with the scaling law for Lf found
in our computations presented in Table I.

Since the pressure gradient in the tube flow in the absence
of the capsule is (dP/dx)nc = −8
/R, using Eqs. (21), (23),
and (25), the additional pressure difference owing to the
capsule presence is

�P +



≈ − 1




[
dP

dx
−

(
dP

dx

)nc]
Lf ≈

(
2

h
− 8

R

)
4

3

a3

R2

(26)

and thus

�P +



≈ 8

3

a3

h R2
(27)

for large thick capsules with small lubrication gaps (i.e.,
h/R � 1). (Observe that in essence, �P + ≈ �P since the
pressure difference in the capsule absence is very small.)
Using the scaling law h/R = 0.15 (a/R)−2 from Table I we
obtain the correct scaling behavior for the additional pressure
difference as well as good agreement for the numerical
coefficient, that is,

�P +



≈ 8

3 × 0.15

( a

R

)5
≈ 17.8

( a

R

)5
. (28)

This derivation also explains the reason that the large
capsules considered in this work show the same scaling law for
the additional pressure difference as for small capsules, that is,
for our large capsules �P + ∼ a3/h while h ∼ a−2, and thus
�P + ∼ a5 as found for small capsules.

To complete our analysis, we need to explain the depen-
dence on the capsule size a of the thickness h of the lubrication
film between the capsule surface and the solid walls, that
is, h ∼ a−2. In agreement with the droplet motion in solid
ducts, the film thickness should follow the Landau-Levich-
Derjaguin-Bretherton (LLDB) prediction [32–34]

h

R
∼ (Caeff)2/3. (29)

We emphasize that the LLDB relationship is based on a
local force balance between the deforming hydrodynamic
lubrication forces and the restoring (surface) tension forces in
the interfacial area where the downstream semispherical-like
part meets the cylindrical-like part of the deformable object
(i.e., a droplet) [33,34]. In addition, while originally Bretherton
[32] derived this relationship for inviscid bubbles (i.e., λ � 1),
it has been found to be valid for any viscosity ratio [33].

For droplets with constant surface tension γ , the effective
capillary number in Eq. (29) is identical to the (droplet)
capillary number Caeff ≡ Ca = μU/γ , and thus in this case
the film thickness h depends only on the capillary number
Ca [32,33].

For capsules, where the tensions increase with the inter-
facial deformation, the effective capillary number needs to
include this tensions increase, and thus in this case the LLDB
prediction becomes

h

R
∼

( μU
τ Gs

)2/3
, (30)

where the dimensionless tension τ accounts for the tensions
increase owing to the interfacial deformation (which is a
function of both the capsule size a and the flow rate Ca),
and can be expressed as

τ ∼
( a

R

)c1

Cac2 . (31)

It is of interest to note that, owing to the nonlinear dependence
of the membrane tensions on the interfacial deformation, the
coefficients c1 and c2 cannot be determined analytically, and
thus their determination requires usage of our computational
findings. Based on the above for thick capsule motion the
LLDB prediction becomes

h

R
∼

[ μU(
a
R

)c1 Cac2 Gs

]2/3
∼

( a

R

)− 2
3 c1

Ca
2
3 (1−c2) (32)

which reveals that for capsules the film thickness h depends
on both the capillary number Ca and the capsule size a owing
to the variable membrane tensions.

In our computations for large capsules presented in this
paper we considered a specific (low) capillary number, Ca =
0.1, and thus we cannot identify the exact dependence of h

on the capillary number Ca, that is, the constant c2. (This
will be investigated in a future work of ours.) In the present
study we can focus on the effects of the capsule size a; using
our computational results for the film thickness h ∼ a−2 we
derive that c1 = 3. Since the maximum principal tension for
large capsules increases as τP

max − τP
0 ∼ a4 while its location

is near the downstream capsule’s tip, we believe that it is not
unrealistic to request that the characteristic tension scales as
τ ∼ a3 in the LLDB interfacial area. (Note that the LLDB
area lies on the capsule’s front between the location of the
maximum principal tension and the solid walls.) In addition,
we emphasize that the usage of the LLDB prediction in our
scaling analysis is in agreement with our conclusion presented
in Secs. III and IV that the capsule’s pointed downstream
edge results from the curvature term in the membrane traction
[Eq.(10)].

As seen in Table I, the pressure drop �P + in the channel
flow is significantly lower than that in the tube flow. As
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discussed earlier this results from the corners gutters in the
channel which permit flow of the surrounding fluid and thus
lower the pressure drop due to the capsule presence. Utilizing
simple analysis based on the average film thickness h̄sq in the
channel, we can explain why the numerical coefficient of the
pressure power law is nearly 40% lower in the channel than in
the tube. The average film thickness has been used by Lefebvre
et al. [9] to associate the capillary number in a square channel
with that in a cylindrical tube so that the capsule has the same
deformation in both duct flows. Here we want to explain the
difference in the excess pressure drop for the same capillary
number and capsule size in these solid ducts.

For the large capsules studied in this paper, the pressure
difference �P ≈ �P + is mainly balanced by the viscous
dissipation in the thin lubrication film between the capsule
interface and the solid walls [9,12], and thus

Af �P + ∼ Al τsh or π (δR)2 �P + ∼ 2 π δR Lf

μU
h

,

(33)

where Af = π (δR)2 is the capsule’s frontal area along the
tube flow Al = 2 π δR Lf the capsule’s lateral surface area
where the lubrication dynamics occurs, and τsh = μU/h the
shear stress in the lubrication film. (Observe that large capsules
with small lubrication gaps travel with a velocity close to the
average undisturbed velocity, that is, Ux ≈ U .) For both tube
and channel flows with R = �z, Eq. (33) is valid but for the
channel the film thickness is now the average film thickness
h̄sq which is related to the minimum thickness in the channel
hsq via

h̄sq ≈ 4 �2
z − π (δsqR)2

2 π R
≈ 4 �2

z − π (R − hsq)2

2 π R
or

(34)

h̄sq ≈ 4 − π

2 π
R + hsq

for small film thickness. Taking the ratio of the force balance
[Eq.(33)] for channel and tube flows and noting that δsq ≈ δcyl,
we get

�P +
sq

�P +
cyl

≈ (Lf )sq

(Lf )cyl

hcyl

h̄sq
≈ 1.25

1.50

0.15
(

a
R

)−2

4−π
2 π

+ 0.13
(

a
�z

)−2 ,

(35)

where we used our results from Table I for the lubrication
length Lf and the minimum thickness h for channel and tube
flows. Using a/R = 1 as a representative capsule size and the
actual pressure drop in the tube we obtain

�P +
sq

�P +
cyl

≈ 0.47 or �P +
sq ≈ 7.5

( a

�z

)5
, (36)

where the numerical coefficient of the power law is close to
that found in our computations.

VI. CONCLUSIONS

In this paper we have investigated computationally the
steady-state motion of an elastic capsule along the centerline
of a square microfluidic channel and compared it with that
in a cylindrical tube. In particular, we have considered a

slightly overinflated elastic capsule made of a strain-hardening
membrane (following the Skalak et al. constitutive law) with
comparable shearing and area-dilatation resistance. This study
is motivated by a wide range of applications including drug
delivery, cell sorting and cell characterization devices, micro-
capsule fabrication, determination of membrane properties,
microreactors with better mixing properties, and of course its
similarity to blood flow in vascular capillaries.

To our knowledge, this is the first work which studies
systematically the steady-state motion of an elastic capsule
in a square microfluidic channel, as well as the first study to
derive power laws and theoretical analysis for this problem.
Our investigation complements earlier axisymmetric studies
on capsule motion in cylindrical tubes (e.g., [13–15]) and
has revealed a number of new physical results and insight
for the dynamics of elastic capsule in square channels and
cylindrical tubes. Furthermore, our results on capsule’s bulk
properties may be used to infer the same properties on
any rectangular channel at high enough capillary numbers
(where the interfacial shape is axisymmetric) as recent find-
ings on air finger dynamics in rectangular channels suggest
[35]. We summarize briefly some of the more important
conclusions.

(i) Under the conditions studied in this paper, that is, small,
moderate, and large capsules at low and moderate flow rates,
the capsule motion in a square channel is similar to and thus
governed by the same scaling laws with the capsule motion in
a cylindrical tube, even though in the channel the cross section
in the upstream portion of large capsules is nonaxisymmetric
(i.e., square-like with rounded corners). Therefore the present
work does not represent squeezing capsule motion in a square
channel.

(ii) Nevertheless, for the same capillary number Ca, a cap-
sule in a square channel is less deformed than in a cylindrical
tube owing to the existence of the corners area (gutters) which
permits flow of the surrounding fluid. In addition, the corners
gutters reduce significantly the excess pressure difference in
the channel flow. The correspondence between channel and
tube flow is nontrivial, and depends strongly on the geometric
or physical property of consideration.

(iii) When the hydrodynamic forces on the membrane
increase (i.e., by increasing the flow rate for a given capsule
or increasing the capsule size for a given flow rate), the
capsule develops a pointed downstream edge and a flattened
rear (possibly with a negative curvature) so that the restoring
tension forces are increased. Similarly to droplets, this de-
formation results from the curvature term in the membrane
traction, Eq. (10) as we identified for the high-curvature tips
of elastic capsules in strong planar extensional flows [25,31].
We emphasize that in the present study, the membrane tensions
at steady state are always positive owing to prestress and thus
dimples with negative curvature on the capsule interface cannot
result from local negative tensions.

(iv) Capsule motion in duct flows corresponds better to
the dynamics of high-viscosity droplets since at steady state
both a capsule and a high-viscosity droplet translate in the
duct flow as a solid with zero inner velocity. It is of interest to
mention that in planar extensional flows (where there is also no
flow inside the capsule at steady state), the capsule dynamics
corresponds better to the dynamics of low-viscosity drops, and
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very pointed edges are developed on both deformable objects
at high flow rates as our earlier studies have revealed [25,31].

(v) The maximum membrane tensions increase significantly
with the capsule size from τP

max ∼ a2 at small and moderate
sizes, to τP

max ∼ a4 for our large capsules. The area near
the downstream tip is the most probable to rupture when
a capsule flows in a microchannel. Because the membrane
tensions increase with the interfacial deformation, a suitable
Landau-Levich-Derjaguin-Bretherton analysis reveals that the
lubrication film thickness h for large capsules depends on
both the capillary number Ca and the capsule size a; our
computations determine the latter dependence to be h ∼ a−2

for the large capsules studied in this work.
(vi) For small and moderate sizes, the capsule velocity Ux

and additional pressure drop �P + are governed by the same
scaling laws as for high-viscosity (i.e., λ → ∞) droplets, that
is, the predictions of Hetsroni et al. [20] and Brenner [21]. The
velocity and additional pressure drop of large thick capsules
also follow the dynamics of high-viscosity droplets, and are
affected by the lubrication film thickness. The motion of our
large thick capsules is characterized by a Ux − U ∼ h ∼ a−2

approach to the undisturbed average duct velocity and an
additional pressure drop �P + ∼ a3/h ∼ a5.

(vii) By combining basic physical principles and geometric
properties, we developed a theoretical analysis that explains
the power laws we found.

Finally, we note that our analysis for large thick capsules can
be used to analyze the duct motion of other artificial capsules
and of erythrocytes as long as their shape in axisymmetric-like
narrow capillaries resembles the one found in this study for
large strain-hardening capsules.
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APPENDIX

In this Appendix we present the figures that show the
scaling laws (with respect to the capsule size a) for several
steady-state capsule properties for channel and tube flows
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FIG. 16. Scaling laws for a Skalak capsule with C = 1, αp = 0.05, and capillary number Ca = 0.1 in a square channel at steady state.
(a) Capsule length Lx − Lz/2. (b) Minimum distance h between the capsule surface and the solid walls. (c) Capsule surface area Sc (scaled
with the surface area S0

c undisturbed spherical shape). (d) Curvature at the downstream and upstream edges of the capsule (scaled with the
curvature of the undisturbed spherical shape).
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(a) Capsule velocity Umax − Ux . (b) Capsule velocity Ux − U . (c) Additional pressure drop �P +. (d) Maximum principal tension τP

max among
the spectral discretization points on the membrane.

included in Table I in Sec. V. To derive these laws we tried
to find the multiplication and power-law coefficients that
optically match best our computational results. In the figures
below we present our computational results as thick solid
lines and the proposed scaling laws as dashed or dot-dashed
straight lines. The very good match of the scaling laws with
our computational results in the associated plots suggests at
least a near three significant-digit accuracy in determining
the power laws owing to the fact that we use thin lines for
plotting.

Figure 16 shows the power-law behavior of several geo-
metric properties of a capsule flowing in a square channel,
including the capsule’s length, film thickness, surface area,
and edges curvatures. For the capsule length Lx − Lz/2, we
are able to identify a power-law behavior at small and moderate
capsule sizes (i.e., 0.1 � a � 0.8) as well as a power law at
larger capsule sizes. The power-law behavior of the minimum
distance h between the capsule surface and the solid walls at
moderate and large capsule sizes (i.e., 0.6 � a � 1.3) is shown
in Fig. 16(b). As seen in Figs. 16(c) and 16(d), our results
for the capsule surface area Sc and the capsule curvatures
(i.e., downstream, upstream, and maximum profile curvatures)
show a power-law behavior for small and moderate capsule

sizes while the downstream curvature also appears to follow a
power law at large capsule sizes.

Figure 17 shows the power-law behavior of several physical
properties of a capsule flowing in a square channel, including
the capsule velocity Ux (with respect to the maximum or the
average undisturbed velocity), the additional pressure drop
�P + and the maximum principal tension τP

max. It is of interest
to note that the velocity difference Umax − Ux is more appro-
priate for small capsules which flow with a velocity Ux smaller
but close to the maximum undisturbed velocity Umax. On the
other hand, the velocity difference Ux − U is more appropriate
for moderate and large thick capsules a (i.e., for small gaps
h), where the capsule flows with a velocity Ux greater but
close to the average undisturbed velocity U . Figure 17(c)
shows that the additional pressure drop follows only one
scaling law, that is, �P + ∼ a5, for all capsule sizes studied.

We also found similar scaling laws (with identical power-
law coefficients but different multiplication coefficients) for
all geometric and physical properties of interest for capsule
motion in cylindrical tubes. Figure 18 shows the power laws
for the capsule physical properties, that is, capsule velocity,
additional pressure drop, and maximum principal tension.
We emphasize that Fig. 18 shows clearly that for small and
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FIG. 18. Scaling laws for a Skalak capsule with C = 1, αp = 0.05, and capillary number Ca = 0.1 in a cylindrical tube at steady state.
(a) Minimum distance h between the capsule surface and the solid walls. (b) Capsule velocity Umax − Ux . (c) Capsule velocity Ux − U .
(d) Additional pressure drop �P +. (e) Maximum principal tension τP

max among the spectral discretization points on the membrane.

moderate sizes, the capsule velocity Ux and additional pressure
drop �P + are governed by exactly the same scaling laws as

for high-viscosity droplets, that is, the predictions of Hetsroni
et al. [20] and Brenner [21] as we discuss in Sec. V.
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