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We numerically analyze the scaling behavior of experimentally accessible dynamical relaxation forms for
polymer networks modeled by a finite multihierarchical structure. In the framework of generalized Gaussian
structures, by making use of the eigenvalue spectrum of the connectivity matrix, we determine the averaged
monomer displacement under local external forces as well as the mechanical relaxation quantities (storage and
loss moduli). Hence we generalize the known analysis for both classes of fractals to the case of multihierarchical
structure, for which even though we have a mixed growth algorithm, the above cited observables still give
information about the two different underlying topologies. For very large lattices, reached via an algebraic
procedure that avoids the numerical diagonalizations of the corresponding connectivity matrices, we depict the
scaling of both component fractals in the intermediate time (frequency) domain, which manifests two different
slopes.
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I. INTRODUCTION

In the last few decades a large and still open issue in
polymer physics is the relationship between the geometry of
macromolecules and their dynamics. While the first works
started from linear polymeric systems [1,2] and their segmental
dynamics, [3–5] in recent years attention turned to more and
more complex topologies such as star polymers [6–10], den-
drimers [6,8–16], hyperbranched polymers [11,13,14,17–22],
or small-world networks [23–27]. The concept of fractals
introduced by Mandelbrot [28] has turned out to be a useful
tool in a large variety of scientific domains, such as disordered
systems, growth phenomena, chemical reactions controlled by
diffusion, and energy transfer. Far from being merely a geo-
metrical property, the self-similarity of the structure influences
significantly the dynamics, from which the important concept
of scaling emerges clearly. Fractal lattices are hierarchical
structures, i.e., grown by replicating and by connecting a
native core through a certain procedure specific to each fractal.
When one uses a manifold growth algorithm one obtains a
multihierarchical structure. In this way the final structures will
appear akin to different fractals depending on the scale on
which they are observed.

We perform our calculations in the framework of gen-
eralized Gaussian structures (GGSs) [8,9,26,29,30], which
are the natural extension of the simple Rouse [1] model to
complex geometries. A GGS, being a generalization of the
Rouse model, has all the limitations of its predecessor: it
does not account for excluded volume interactions nor for
entanglement effects. However, one may note that excluded
volume effects are often screened. This occurs especially
in rather dense media, such as dry polymer networks and
polymer melts [4]. The entanglement effects, in turn, are
not dominant as long as one stays below the entanglement
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limit. In the case of polymer networks this means high
densities of cross-links, which then implies that the network
strands between the cross-link points are rather short. In
our model the hydrodynamic interactions are also neglected.
The hydrodynamic, solvent-mediated interactions are also
generally screened in dense systems [4]. The advantage of
using the GGS model is that it allows one, in principle,
to determine the full dynamical behavior of the structure
through the diagonalization of its connectivity matrix. A GGS
consists of beads, connected to each other by elastic springs
with elasticity constant K . The unique allowed connections
are between nearest neighbor beads, and, for simplicity, it is
assumed that all beads experience the same friction constant
ζ with respect to the solvent. In this model the solvent (or the
surrounding medium) is substituted by a continuous immobile
medium which is felt by the network beads through viscous
friction and thermal noise. The GGS assumption is that the
potential energy [29,30] is built only of harmonic terms,
involving monomers directly bound to each other and, also,
including interactions with external forces. The connectivity
matrix, denoted by A [4,29,31], plays a key role in investigating
the dynamics of the underlying structures. Being the discrete
version of the Laplacian operator, the connectivity matrix, A,
has found a plethora of applications in many fields of science.
It is a real symmetric matrix where the nondiagonal elements
Anm equal −1 if the nth and mth beads are directly connected
and 0 otherwise, while the diagonal elements Amm equal the
number of bonds emanating from the mth bead.

In previous works [20–22,32–35] we have analyzed the
scaling behavior for two classes of finite fractals, i.e.,
the dual Sierpinski gaskets and the Vicsek fractals. Because the
topological details of the structure under investigation show
up only in limited intermediate regions, which are bounded
by large crossover domains, very large fractal structures had
to be considered. Using iterative methods to determine the
eigenvalues of the connectivity matrix, A, we succeeded in
investigating the relaxation behavior for very large fractal
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structures (up to 319 beads for dual Sierpinski gaskets with
d = 2, d being the Euclidean dimension, and up to 413

bead for Vicsek fractals with f = 3, where f represents
the coordination number) and we showed that for both
fractals (in the Rouse case) the dynamical quantities, such as
the averaged monomer displacement, relaxation moduli, and
dielectric relaxation, scale very well in the intermediate (time
or frequency) regime, with slopes which strongly depend on
the spectral dimension.

Knowing the individual dynamical behavior of each fractal
and being motivated by the search of scaling, the challenge is to
create and investigate a new structure which is a combination
of both fractals. By replicating the Vicsek fractal in the shape of
the dual Sierpinski gasket we have built a new multihierarchi-
cal structure. We call it a Vicsek fractal replicated in the shape
of the dual Sierpinski gasket (VFRSDSG). Due to geometrical
restrictions we strictly used for the construction of the new
structure only dual Sierpinski gaskets with d = 2 and Vicsek
fractals with f = 3. The advantage of this multihierarchical
structure is that the eigenvalues of its connectivity matrix
can be obtained using iterative procedures, allowing us to
investigate the relaxation quantities at large generations. Also,
the weight of a certain fractal within the structure can be varied
by simply changing its generation.

The paper is structured as follows: In Sec. II we briefly
discuss the GGSs and the way in which their structures give rise
to observable relaxation quantities; we focus on the motion of
single GGS monomers under locally acting forces and also on
the mechanical relaxation forms of the whole GGS. Section III
presents the construction of the multihierarchical structure and
the iterative procedure for the determination of the eigenvalues
of the topological matrix of the multihierarchical structure.
The corresponding relaxation patterns are then determined in
Sec. IV. We summarize the conclusions in Sec. V.

II. THEORY

Since the theory of generalized Gaussian structures was
explained in detail in previous works [29,30], we summarize
here the basic equations and the main formulas concerning the
relaxation dynamics patterns. In the Langevin framework, the
position vector Rn of the nth bead of the GGS, subject to an
external force Fn(t), obeys

ζ
dRn(t)

dt
+ K

N∑
m=1

AnmRm(t) = fn(t) + Fn(t), (1)

where ζ = 6πη0a is the friction constant of the beads (usually
formulated in terms of an effective radius a), K = 3kBT /l2 is
their elasticity constant (where kB is the Boltzmann constant,
T is the temperature, and l2 is the average length of an
isolated bond in thermal equilibrium), and A = {Anm} is the
connectivity matrix. The stochastic forces (thermal noise) fn(t)
are assumed to be Gaussian, with 〈fn〉 = 0 and 〈fnα(t)fmβ(t ′)〉 =
2kBT ζδnmδαβδ(t − t ′) (where α and β denote the x,y, and
z directions). A complete solution of the linear system of
difference-differential equations given by Eq. (1) is achieved
through the diagonalization of the matrix A (see, e.g., [8,36]),
a procedure which involves in general determining both the
eigenvalues λi and the eigenfunctions of A. We focus on the

motion (drift and stretching) of the GGS under a constant
external force F = Fθ (t − 0)ey , switched on at t = 0 and
acting on a single bead in the y direction. As discussed
in [8,24,30,37], the displacement of the bead along the y
direction, after averaging both over the fluctuating forces fn(t)
and over all the beads in the GGS, reads

〈Y (t)〉 = F t

ζN
+ Fτ0

ζN

N∑
i=2

1 − exp
[ − λi t

τ0

]
λi

, (2)

where τ0 = ζ/K and λ1 = 0. From Eq. (2) we remark that
for the calculation of the averaged monomer displacement we
need only the eigenvalues of the connectivity matrix A. We also
note that in Eq. (2), due to λ1 = 0, the motion of the center
of mass has separated automatically from the remaining sum.
The behavior of the motion for extremely short and for very
long times is obvious: one has in the limit of very short times,
from Eq. (2), 〈Y (t)〉 ∼ F t/ζ , whereas for very long times one
reaches 〈Y (t)〉 ∼ (F t)/(Nζ ). For linear Gaussian chains, in
the intermediate time domain, it has been shown [1,4,5,37]
that the averaged monomer displacement presents a scaling

〈Y (t)〉 ∼ tγ , (3)

with γ = 1/2.
We will also focus on readily measurable quantities for such

systems; these are, apart from the above-discussed averaged
monomer displacement, also the mechanical relaxation forms.
The mechanical part is represented by the complex dynamical
modulus G∗(ω) or, equivalently, by its real G′(ω) (the
storage modulus) and imaginary G′′(ω) (the loss modulus)
components [38,39]. For ω > 0, these quantities are given by
(see also Eqs. 4.159 and 4.160 of Ref. [4])

G′(ω) = C
1

N

N∑
i=2

(ω/2σλi)2

1 + (ω/2σλi)2
(4)

and

G′′(ω) = C
1

N

N∑
i=2

ω/2σλi

1 + (ω/2σλi)2
. (5)

For very dilute solutions, one has C = νkBT , where ν is the
number of polymer segments (beads) per unit volume. For
simplicity and without any loss of generality, in the following
we set the constants present in Eq. (4) and Eq. (5), which are
C 1

N
and σ , equal to one.

III. STRUCTURE AND EIGENVALUE SPECTRUM

As we have seen in the previous section, the GGSs allow
the determination of their main relaxation forms merely by
knowing the eigenvalue spectrum. At first glance the procedure
looks simple and straightforward: one has only to diagonalize
the connectivity matrix A in order to obtain the eigenvalues
and then to use them to calculate the relaxation quantities given
by Eqs. (2), (4), and (5). Indeed, it is straightforward for small
structures for which the precise numerical diagonalizations of
their connectivity matrices are easy to perform. But, as we
mentioned in Sec. I, the topological details of the structure
under investigation show up only in limited intermediate (time
or frequency) domains, which are bounded by large crossover
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FIG. 1. VFRSDSG structure at generations g = 2, l = 0; g = 2,
l = 1; and g = 2, l = 2.

domains. In order to extract information about the structure,
it is of absolute importance that the size of the structure to
be sufficiently large. Evidently, this leads to a quite large
connectivity matrix, A, whose exact numerical diagonalization
is practically impossible to perform.

Fortunately, we have built a multihierarchical structure
which has the advantage that the eigenvalue spectrum of its
topological matrix can be determined by iterative methods.
The multihierarchical structure on which we focus is displayed
in Fig. 1 at the generations g = 2, l = 0 (only dual Sierpinski
gasket); g = 2, l = 1; and g = 2, l = 2. Throughout this paper,
g is the generation of the dual Sierpinski gasket and l is
the generation of the Vicsek fractal. The structure is built
by replicating the Vicsek fractal in the shape of the dual
Sierpinski gasket. Generally, to build the structure at any
desired generation g and l, one has first to replace every bead of
the dual Sierpinski gasket at generation g with an arrangement
of beads in the shape of a Vicsek fractal at generation l and
then to connect with springs all these identical arrangements
in the dual Sierpinski gasket form. The total number of beads
of the dual Sierpinski gasket at generation g is 3g and the total
number of beads of the Vicsek fractal at generation l is 4l .
Because every bead of the dual Sierpinski gasket is replaced
with an arrangement of beads in the form of a Vicsek fractal,
the total number of the beads of the multihierarchical structure,
VFRSDSG, at generation g and l is N = 3g · 4l .

For a better understanding of the construction we will
discuss in the following the cases g = 2, l = 1 and g = 2,
l = 2 presented in Fig. 1. In order to obtain the VFRSDSG at
generation g = 2 and l = 1 (the middle structure of Fig. 1),
first every bead of the dual Sierpinski gasket at generation
g = 2 (the left-hand-side structure of Fig. 1) is substituted
with an arrangement of beads in the form of a Vicsek fractal at
generation one (sketched in transformation a) and then all the
arrangements are connected with springs in the dual Sierpinski
gasket form. In the same manner, but substituting now every
bead of the dual Sierpinski gasket at generation g = 2 (the
left-hand-side structure of Fig. 1) with an arrangement of beads
in the shape of a Vicsek fractal at generation two (sketched
in transformation b) and reconnecting with springs all the
arrangements in the form of a dual Sierpinski gasket, one
obtains the multihierarchical structure at generation g = 2,
l = 2, the right-hand-side object of Fig. 1. The continuation

is now obvious. It is also very important to observe that when
going from generation g and l to generation g and l + 1
every bead of the structure at generation g and l is replaced
with four new beads arranged in a star-wise fashion in the
structure at generation g and l + 1. The construction of the dual
Sierpinski gaskets and of the Vicsek fractals was presented in
previous works [20–22,32–35] and we do not repeat it here.
We recall that the fractal and the spectral dimensions for the
dual Sierpinski gasket with d = 2 are given by

d̄S = ln 3

ln 2
= 1.58496 . . . (6)

and

d̃S = 2 ln 3

ln 5
= 1.36521 . . . (7)

and for the Vicsek fractals with f = 3 they read

d̄V = ln 4

ln 3
= 1.26186 . . . (8)

and

d̃V = 2 ln 4

ln 12
= 1.15578 . . . . (9)

As we mentioned above, the multihierarchical structure,
displayed in Fig. 1, has the advantage that the eigenvalues
of its connectivity matrix can be determinated using iterative
procedures. The iterative methods for the determination of the
eigenvalues follow closely the way in which the structure was
built. In what follows we present the iterative methods that
allow us to obtain the eigenvalue spectrum of the VFRSDSG
structure. The determination of the eigenvalues, the solution of

(A − λI)� = 0, (10)

is achieved in two distinct stages. For the structure VFRSDSG
at any generation g � 1 and l � 1 the first stage consists in
the determination of the eigenvalues spectrum of the dual
Sierpinski gasket at generation g. For the dual Sierpinski
gasket with d = 2 the iterative procedure for the calculation of
the eigenvalue spectrum was discussed at length in Ref. [46]
and then generalized for any value of d in Ref. [33]. We follow
the in-depth analysis of Refs. [33] and [46]. One proceeds as
follows: given the eigenvalue spectrum at generation g − 1,
one obtains the eigenvalues at generation g by, first, assigning
to each nonvanishing eigenvalue λg−1 two new eigenvalues
λ±

g through the relation

λ±
g = 5 ± √

25 − 4λg−1

2
. (11)

We note that in this way the degeneracies of λg−1 carry over
to λ+

g and λ−
g . Second, to this spectrum we add the eigenvalue

3, with degeneracy (3g−1 + 3)/2, and the eigenvalue 5,
with degeneracy (3g−1 − 1)/2, as well as the nondegenerate
eigenvalue λ1 = 0. It is very easy to verify that the total number
of eigenvalues at the generation g of the dual Sierpinski gasket
is 3g . We use these eigenvalues as an input for the second stage.

In the second stage we determine the eigenvalue spectrum
of the VFRSDSG structure using a method based on a
real-space decimation. Here, we follow closely the procedure
developed in Refs. [20,21]. At every level of generation,
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the multihierarchical structure consists of three types of
beads: triple-coordinated beads (with three nearest neighbors),
double-coordinated beads, and single-coordinated beads (at
the ends of dangling bonds). In the following, we write
explicitly Eq. (10) for all types of beads and denote the
components of the eigenvector � by φj . For a particular
triple-coordinated bead one has

(3 − λ)φ0 =
3∑

j=1

φj , (12)

where φ0 is the eigenvector component of the triple-
coordinated bead and the φj s are the eigenvector components
of the nearest neighbors of the triple-coordinated bead; these
may themselves be either single- or double-coordinated. The
corresponding equation for the double-coordinated bead reads

(2 − λ)φj = φ0 + φm, (13)

where φm is the eigenvector component of the double-
coordinated neighbor of j . The characteristic eigenvalue
equation for the single-coordinated bead is

(1 − λ)φ1 = φ0, (14)

where φ1 denotes the corresponding eigenvector component.
As has been clearly shown in the Appendix of Ref. [21],

under real-space renormalization transformations involving
the decimations of the triple-coordinated, double-coordinated,
and single-coordinated beads, Eqs. (12)–(14) are replaced in
the new decimated structure by

[3 − P (λ)]φ̃0 =
3∑

j=1

φ̃j , (15)

[2 − P (λ)]φ̃f = φ̃0 + φ̃m, (16)

[1 − P (λ)]φ̃1 = φ̃0, (17)

where φ̃0, φ̃1, φ̃f , φ̃j , and φm are the eigenvector components
in the decimated structure and P (λ) is the polynomial

P (λ) = λ(λ − 3)(λ − 4). (18)

Important aspects of the decimation method have to be men-
tioned. In the decimation procedure of the triple-coordinated
beads, Eq. (15), only the double-coordinated nearest neigh-
bors beads get eliminated, while the decimation of double-
coordinated or dangling beads, Eqs. (17) and (18), implies the
elimination of both single- and double-coordinated beads (see
the Appendix of Ref. [21]). These transformations, used for
decimation of the Vicsek fractal, are also appropriate for the
decimation of the multihierarchical structure. Furthermore, the
double-coordinated beads formed by connecting with springs
two dangling beads belonging to different Vicsek fractals
(at the construction of the VFRSDSG structure) obey the
same transformation given by Eq. (16). These transformations,
Eqs. (15)–(17), allow one to decimate the multihierarchical
structure from any generation g � 1 and l � 1 to generation
g � 1 and l = 1. To have a complete decimation of the
structure, i.e., to attain the generation g � 1 and l = 0, every
three connected Vicsek fractals at generation l = 1 have to be
reduced to a dual Sierpinski gasket at generation g = 1. The
details of the transformation are presented in the Appendix.

The eigenvalue equation is

[2 − P (λ)]φ′
1 = φ′

2 + φ′
3, (19)

where φ′
1, φ′

2, and φ′
3 are the eigenvectors components of the

beads from the dual Sierpinski gasket at the stage g = 1 and
P (λ) is the polynomial given by Eq. (18). As can be seen from
the Appendix, the eigenvector components from Eq. (19) are,
in fact, the sums of four eigenvector components, one com-
ponent corresponding to the central bead (triple-coordinated)
and three components corresponding to its nearest neighbors.
Equations (15)–(17) and (19) allow one to iterate at will the
decimation procedure. Starting with p1(λ) = P (λ), in the kth
iteration P (λ) is replaced by pk(λ) = P [pk−1(λ)]. This means
that a part of the eigenvalues of the VFRSDSG structure
at generation g and l is connected with the eigenvalues at
generation g and l − 1 through the relation

P (λ(g,l)
i ) = λ

(g,l−1)
i . (20)

Note that in this way each previous eigenvalue λ
g,l−1
i �= 0 gives

rise to three new ones. by setting P (λ) = a, Eq. (18) reads

λ3 − 7λ2 + 12λ − a = 0. (21)

Equation. (21) can be solved analytically by introducing

p = 13

3
, (22)

q = 70

27
, (23)

ρ = |p/3|3/2. (24)

The roots of Eq. (21) are given by the Cardano-solution [47]

λg,l
ν = 7

3
+ 2ρ1/3 cos

(
μ + 2πν

3

)
, (25)

with ν ∈ 1,2,3, where

μ = arccos

(
a − q

2ρ

)
. (26)

More specifically, at a stage g and l of the multihierarchical
structure, a part of the eigenvalue spectrum is calculated from
the eigenvalues of stage g and l − 1 based on Eq. (21), where
the constant a is evidently identified with all λg,l−1s (except
for the vanishing eigenvalue λ1 = 0). These eigenvalues are
complemented by the nondegenerate vanishing eigenvalue
λ1 = 0, the nondegenerate eigenvalue 4, �

g,l

1 degenerate
eigenvalues equal to 1 each, and �

g,l

3 degenerate eigenvalues
equal to 3 each, where the degeneracies �

g,l

1 and �
g,l

3 are
given by

�
g,l

1 = 3g(1 + 4l−1) − 3

2
(3g − 1) (27)

and

�
g,l

3 = 3g − 1

2
. (28)

We mention in passing that at the first generation of the
structure (i.e., the generation g and l = 1) a part of the
eigenvalue spectrum is determined from the eigenvalues of
the dual Sierpinski gasket at stage g by making use of
Eq. (21), where the constant a is identified, of course, with
all λgs (apart from the eigenvalue λ1 = 0). To this eigenvalue
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spectrum is added, as mentioned above, the nondegenarate
eigenvalues 0 and 4, as well as the degenerate eigenvalues 1
and 3 with their degeneracies �

g,l

1 and �
g,l

3 given by Eqs. (27)
and (28).

In the determination of the eigenvalue spectrum, special
attention should be given to the type of eigenvalues. If, the
eigenvalues of the connectivity matrices of the classic fractals,
dual Sierpinski gasket, or Vicsek are found to be all persistent
(i.e., the eigenvalues appearing at one generation continue to
appear in all subsequent generations), then in the case of our
multihierarchical structure the eigenvalue spectrum consists
of persistent and nonpersistent eigenvalues. The persistent
eigenvalues are 1, 3, 4, and equally persistent are all those
that are obtained from them in the subsequent generations,
based on Eq. (21), as well as the eigenvalue λ1 = 0. The
nonpersistent eigenvalues are all λgs (apart from the vanishing
eigenvalue) and all those that are determined from them in the
subsequent generations, based on Eq. (21). The nonpersistent
eigenvalues appear only at a generation and each, according
to Eq. (21), produces three new nonpersistent eigenvalues
in the next generation, but they will not continue to appear
in subsequent generations. More clearly, the nonpersistent
eigenvalues in the first generation of the multihierarchical
structure (the generation g and l = 1, as said above) are
obtained from the λgs of the Sierpinski, but none of the λgs
can be found among the eigenvalues of the generation g and
l = 1 or further generations. In the second generation, g and
l = 2, the nonpersistent eigenvalues are determined from all
nonpersistent eigenvalues of the first generation and, again,
the nonpersistent eigenvalues of the first generation do not
appear among the nonpersistent eigenvalues of the second
generation nor in subsequent generations. The continuation
is now obvious.

Now, it is a simple matter to verify that in this way
one obtains at generation g and l a total of N = 3g · 4l

eigenvalues, which corresponds exactly to the number of
beads in the structure. We denote by N

g,l

1 the total number of
eigenvalues obtained from the persistent degenerate eigenvalue
1 (including the eigenvalue 1), with N

g,l

3 the total number of
eigenvalues obtained from the persistent degenerate eigenvalue
3 (including also the eigenvalue 3), with N

g,l

4 the total number
of eigenvalues obtained from the persistent nondegenerate
eigenvalue 4 (including the eigenvalue 4), and with N

g,l

S the
total number of nonpersistent eigenvalues. The expressions for
N

g,l

1 and N
g,l

3 are

N
g,l

1 =
l−1∑
i=1

3i�
g,l−i

1 , (29)

N
g,l

3 =
l−1∑
i=1

3i�
g,l−i

3 , (30)

which, with �
g,l

1 and �
g,l

3 given by Eqs. (27) and (28), become

N
g,l

1 =
l−1∑
i=1

3i

[
3g(1 + 4l−i−1) − 3

2
(3g − 1)

]

= 3g(4l − 3l) +
(

3l − 1

2

)(
3 − 3g

2

)
, (31)

N
g,l

3 =
l−1∑
i=1

3i�
g,l−i

3 =
(

3l − 1

2

)(
3g − 1

2

)
. (32)

The expressions for N
g,l

4 and N
g,l

S are

N
g,l

4 =
l−1∑
i=1

3i = 3l − 1

2
, (33)

N
g,l

S = 3l(3g − 1). (34)

Hence, the total number of eigenvalues at generation g and
l is N = 1 + N

g,l

1 + N
g,l

3 + N
g,l

4 + N
g,l

S , where the value 1
represents the vanishing eigenvalue λ1 = 0. Making use of the
Eqs. (31)–(34) one obtains

N = 1 + 3g(4l − 3l) +
(

3l − 1

2

) (
3 − 3g

2

)
+

(
3l − 1

2

)

×
(

3g−1

2

)
+

(
3l−1

2

)
+ 3l(3g−1) = 3g · 4l . (35)

IV. RELAXATION PATTERNS

We are now in a position to use the eigenvalues obtained
in Sec. III to calculate the different relaxation quantities
introduced in Sec. II. We start by focusing on the averaged
monomer displacement, 〈Y (t)〉, given by Eq. (2) in which
we set τ0 = 1 and F/ζ = 1. Figure 2 displays the results
obtained for the VFRSDSG structure with generations ranging
from g = 4 and l = 4 to g = 8 and l = 8; consequently,
the total number of beads in the structure varies from
N = 34 · 44 to N = 38 · 48. What appears immediately using
doubly logarithmic scales of Fig. 2 is that at very short
times 〈Y (t)〉 	 F t/ζ for all N , whereas at very long times
one reaches the domain 〈Y (t)〉 	 (F t)/(Nζ ), which, in the
absence of an external field (based on the Einstein relation
for GGS [10]) is the hallmark of simple diffusion. Typical
for the topological details of the structure under investigation
is the intermediate time domain. We know, from previous
works concerning fractals, that the intermediate time domain
of 〈Y (t)〉 appears as a straight line with a slope depending

FIG. 2. The averaged monomer displacement under local external
forces. Displayed is the normalized 〈Y (t)〉 for N = 34 · 44,36 · 46,
and 38 · 48, from above, in dimensionless units, evaluated according
to Eq. (2).
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FIG. 3. Slopes γ ′ of the averaged monomer displacement of
Fig. 2, plotted as a function of log10 t .

on spectral dimension. Surprisingly, we found that for our
multihierarchical structure the intermediate time regime of
〈Y (t)〉 consists of two scaling regions: one corresponding to
the component Vicsek fractal of the multihierarchical structure
followed at larger intermediate times by another corresponding
to the component dual Sierpinski gasket. Furthermore, both
scaling behaviors from the intermediate regime obey Eq. (3),
with, as we are going to show, γ depending on the spectral
dimension of the particular fractal, i.e., γV = 1 − d̃V

2 for the
Vicsek fractal and γS = 1 − d̃S

2 for the dual Sierpinski gasket,
respectively.

Now, it is straightforward to determine numerically γV

and γS , which are nothing else than the slopes of the curves
in the intermediate time regime. Going from N = 34 · 44 to
N = 38 · 48 we have a change in the minimal slopes of the in-
termediate time regime from γV = 0.449 and γS = 0.357 (for
N = 34 · 44) to γV = 0.429 and γS = 0.321 (for N = 38 · 48).
The last values should be compared to γV = 1 − d̃V

2 = 0.422
and γS = 1 − d̃S

2 = 0.317, where d̃S and d̃V were calculated
from Eqs. (7) and (9). The accuracy attained is certainly enough
to assess that the sole parameters of importance are the spectral
dimensions of the component fractals of the multihierarchical
structure. Moreover, the scaling relations in the intermediate
time regime of 〈Y (t)〉 found in previous works [20,21,32–34]
for each fractal (dual Sierpinski gasket and Vicsek fractal) are
also maintained for the multihierarchical structure.

In order to render this analysis more quantitative we plot
in Fig. 3 the derivative of the curves in Fig. 2. Displayed is
the local slope γ ′ = d log10(〈Y (t)〉)/d log10(t) as a function of
log10 t for the VFRSDSG structure with generations ranging
from g = 4 and l = 4 to g = 8 and l = 8 awith total number
of beads in the structure varying from N = 34 · 44 to N =
38 · 48. In this way one can see clearly in the intermediate time
domain the appearance of two plateau regimes. For the largest
generation considered, N = 38 · 48, the approximate values
of the plateaus are 0.43 and 0.32, in very in good agreement
with the values of γV and γS obtained above. Furthermore,
oscillations due to the local structure and multihierarchical
construction are also evident.

Most measurements on polymers, however, are not mon-
itored in the time domain but in the frequency domain.
Micromanipulation techniques represent an important new

FIG. 4. The normalized storage mudulus G′(ω) shown in di-
mensionless units for N = 34 · 44,36 · 46, and 38 · 48, from below,
evaluated according to Eq. (4).

experimental development [40–45]. Such techniques allow
one to complement macroscopic measurements (such as the
determination of the mechanical moduli) by monitoring the
microscopic parts of the polymer through their response to
forces applied by optical tweezers or by attached magnetic
beads. Given the relative ease with which mechanical relax-
ation measurements can be performed nowadays, we focus on
the mechanical moduli G′(ω) and G′′(ω), given by Eqs. (4)
and (5) and presented in Figs. 4 and 5. For the calculation of
the relaxation moduli we used again the VFRSDSG structure
with generation ranging from g = 4 and l = 4 to g = 8 and
l = 8; hence, the total number of beads in the structure,
N , varies from 34 · 44 to 38 · 48. In Figs. 4 and 5 we plot
Eqs. (4) and (5) in dimensionless units, by setting σ = 1 and
C/N = 1. The scales in both figures are doubly logarithmic.
Immediately apparent from these figures are the limiting,
connectivity-independent behaviors at very small and very
large ω; for ω 
 1 one has G′(ω) ∼ ω2 and G′′(ω) ∼ ω, and
for ω � 1 one finds G′(ω) ∼ ω0 and G′′(ω) ∼ ω−1. Our main
focus is again the regime between the very small and the very
high frequencies. Similarly to the case of averaged monomer
displacement discussed above, we found, for both G′(ω) and
G′′(ω), that the in-between frequency regime consists of two
scaling regions: one corresponding to the component Vicsek

FIG. 5. The normalized loss mudulus G′′(ω) shown in dimension-
less units for N = 34 · 44,36 · 46, and 38 · 48, from below, evaluated
according to Eq. (5).
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FIG. 6. The effective slopes α′ of G′(ω) of Fig. 4 plotted as a
function of log10 ω.

fractal of the multihierarchical structure followed at larger
intermediate frequencies by another corresponding to the
component dual Sierpinski gasket. Each of the intermediate
scaling regions is dominated by the corresponding spectral
dimension. Based on theoretical grounds, we expect the slopes
in the intermediate frequency regions to have values equal to
half of the corresponding spectral dimension of the region, i.e.,
αV = d̃V

2 and αS = d̃S

2 . From Fig. 4 we determine for G′(ω),
by going from N = 34 · 44 to N = 38 · 48, the slopes in the
intermediate regime as being equal to αV = 0.571 and αS =
0.72 (for N = 34 · 44) and to αV = 0.559 and αS = 0.687 (for
N = 38 · 48). The values of the slopes obtained at generation
g = 8 and l = 8 should be compared with the theoretically
expected values, αV = d̃V

2 = 0.559 and αS = d̃S

2 = 0.683,
with d̃S and d̃V being calculated from Eqs. (7) and (9).

In the same manner, we determine the slopes in the interme-
diate frequencies regions of G′′(ω). In Fig. 5, going from N =
34 · 44 to N = 38 · 48 we have a change in the minimal slopes
of the intermediate frequency regime from αV = 0.526 and
αS = 0.648 (for N = 34 · 44) to αV = 0.545 and αS = 0.673
(for N = 38 · 48). Again, the values obtained at generation
g = 8 and l = 8 should be compared with the theoretically
expected values, αV = d̃V

2 = 0.559 and αS = d̃S

2 = 0.683. We
observe that the values of the slopes for G′′(ω) are slightly
lower than those for G′(ω) and that they bound the expected
theoretical values from below. On the other hand, the slopes
for G′(ω) tend to the expected theoretical value from above.
The main finding is that the scaling relations of mechanical
moduli observed in the previous works [20,21,32–34] for each
individual fractal still hold for the multihierarchical structure
which is a combination of both fractals.

In order to display a more quantitative analysis of the
dynamical relaxation we proceed again to plot the quan-
tities α′ = d log10 G′(ω)/d log10 ω (in Fig. 6) and α′′ =
d log10 G′′(ω)/d log10 ω (in Fig. 7) for the VFRSDSG structure
with generation ranging from g = 4 and l = 4 to g = 8 and
l = 8; hence, the total number of beads in the structure, N ,
varies from 34 · 44 to 38 · 48. α′ and α′′ are the derivatives of the
curves (i.e., the slopes) of Figs. 4 and 5. Immediately apparent
are for very small and for large ω the limiting, theoretically
expected values, namely 2 and 0 for α′ (in Fig. 6) and 1 and
−1 for α′′ (in Fig. 7). The intermediate frequencies domain,

FIG. 7. The effective slopes α′′ of G′′(ω) of Fig. 5 plotted as a
function of log10 ω.

for both relaxation moduli, indicates clearly the appearance
of two plateau regimes. In Fig. 6 for the largest generation
considered, namely N = 38 · 48, the approximate values of
α′ at the plateaus are 0.56 and 0.68, in very good agreement
with the values of αV and αS obtained for G′(ω) (Fig. 4).
Also, in Fig. 7 for the largest generation considered, namely
N = 38 · 48, the approximate values of α′′ at the plateaus are
0.56 and 0.68, in very in good agreement with the values of αV

and αS obtained for G′′(ω) (Fig. 5 ). In both figures oscillations
due to the local structure and multihierarchical construction are
also evident.

V. CONCLUSIONS

In the present work we have analyzed the scaling behavior
of a new multihierarchical structure. We have built the structure
by replicating the Vicsek fractal in the shape of the dual
Sierpinski gasket. The calculations have been performed in the
framework of generalized Gaussian structures, which are the
extensions of the simple Rouse model to complex geometries.
As we mentioned in Sec. I excluded volume interactions,
entanglement effects, and hydrodynamic interactions were
neglected. By including the hydrodynamic interactions the
first inconvenience is that the eigenvalues of the product
matrix HA (H being the mobility matrix [4,12]) cannot be
determined iteratively. This restricts us to the investigation of
the relaxation quantities at small generations of the multihier-
archical structure because the eigenvalues must be calculated
by numerical diagonalizations and for matrices larger than
5000 × 5000 the numerical diagonalizations are by no means
trivial. Furthermore, for fractal structures which present loops
[48], as our multihierarchical structure, the inclusion of the
hydrodynamic interactions leads to the loss of scaling in the
intermediate time and frequency domains for both relaxation
moduli and averaged monomer displacement. The advantage
of using the GGS model is that it allows one, in principle,
to determine the full dynamical behavior of the structure
by making use of only the eigenvalues of its connectivity
matrix. Following the iterative method for the determination
of the eigenvalues of the dual Sierpinski gasket, developed by
Ref. [46], and the iterative method for the determination of
eigenvalues of the Vicsek fractal, developed by Refs. [20,21]
and complemented with the additional transformation to have
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a complete decimation of the structure, we have calculated the
whole eigenvalue spectrum at any generation of the multihier-
archical structure. With the eigenvalues obtained iteratively we
have evaluated basic experimental quantities. The quantities
considered have been the stretching of the macromolecules
under local external forces, 〈Y (t)〉, as well as the mechanical
relaxation moduli, G′(ω) and G′′(ω). Interestingly, we have
found for both relaxation quantities that the intermediate
(time or frequency) domain is composed of two scaling
regions, one corresponding to the Vicsek fractal and the other
corresponding to the dual Sierpinski gasket. As we already
showed, the slopes within these regions depend strongly on the
spectral dimensions. Furthermore, the scaling relations found
for the dual Sierpinski gasket and the Vicsek fractals treated
separately are preserved by the multihierarchical structure. The
geometry of the multihierarchical structure is well reflected by
its dynamical behavior.
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APPENDIX

As we mentioned in Sec. III, to attain the generation
g � 1 and l = 0 an additional transformation is needed. This
transformation is as follows: every three connected Vicsek
fractals of generation l = 1 have to be reduced to a dual
Sierpinski gasket at generation g = 1. The situation is sketched
in Fig. 8. We follow here the method developed by Ref. [21].
As in Ref. [21] our starting point is Eq. (10), which gives
the relations between the components φ of the eigenvector �

belonging to a certain eigenvalue λ. The eigenvalue equations
we needed for our calculations are

(3 − λ)φ10 = φ11 + φ12 + φ13, (A1)

(1 − λ)φ11 = φ10, (A2)

(2 − λ)φ12 = φ10 + φ21, (A3)

(2 − λ)φ13 = φ10 + φ31, (A4)

1

2 3

1312

11

10

12 13

0302

22 3323 32

FIG. 8. Decimation step from the generation g = 1 and l = 1 to
the generation g = 1 and l = 0.

(3 − λ)φ20 = φ21 + φ22 + φ23, (A5)

(2 − λ)φ21 = φ20 + φ12, (A6)

(3 − λ)φ30 = φ31 + φ32 + φ33, (A7)

(2 − λ)φ31 = φ30 + φ13. (A8)

By inserting Eqs. (A2), (A3), and (A4) into Eq. (A1) one
obtains

(3 − λ)φ10 = φ10

1 − λ
+ φ10 + φ21

2 − λ
+ φ10 + φ31

2 − λ
(A9)

and with few algebraic calculations one has

(−λ3 + 6λ2 − 8λ + 2)φ10 = (1 − λ)φ21 + (1 − λ)φ31.

(A10)

Rewriting the expression −λ3 + 6λ2 − 8λ + 2 as −λ3 +
7λ2 − λ2 − 12λ + 4λ + 2, while adding and subtracting φ21

and φ31, leads to

[2 − (λ3 − 7λ2 + 12λ)]φ10 = λ2φ10 − 4λφ10 + (2 − λ)φ21

−φ21 + (2 − λ)φ31 − φ31.

(A11)

Making use of Eqs. (A6) and (A8) on the right-hand side of
Eq. (A11) and, also, remarking that λ3 − 7λ2 + 12λ is exactly
the polynomial P (λ) from Eq. (18), we get

[2 − P (λ)]φ10 = λ2φ10 − 4λφ10 + φ12 + φ13

+φ20 − φ21 + φ30 − φ31. (A12)

Combining Eqs. (A1), (A2), and (A3) leads to

(−λ3 + 6λ2 − 10λ + 4)φ11 = φ10 + φ21 + (2 − λ)φ13.

(A13)

By rewriting expression −λ3 + 6λ2 − 10λ + 4 as −λ3 +
7λ2 − λ2 − 12λ + 2λ + 2 + 2 and using Eq. (A4), Eq. (A3)
yields

[2 − (λ3 − 7λ2 + 12λ)]φ11 = λ2φ11 − 2λφ11 − 2φ11

+ 2φ10 + φ21 + φ31.

(A14)

Now, identifying λ3 − 7λ2 + 12λ with P (λ) from Eq. (18),
one obtains

[2 − P (λ)]φ11 = λ2φ11 − 2λφ11 − 2φ11

+ 2φ10 + φ21 + φ31. (A15)

Inserting Eqs. (A1) and (A6) into Eq. (A3) results in

(−λ3 + 7λ2 − 14λ + 7)φ12 = (2 − λ)φ11 + (2 − λ)

×φ13 + (3 − λ)φ20. (A16)

Rewriting in Eq. (A16) the expressions −λ3 + 7λ2 − 14λ +
7 as −λ3 + 7λ2 − 12λ − 2λ + 2 + 5 and (2 − λ)φ11 as (1 −
λ)φ11 + φ11 one has

[2 − (λ3 − 7λ2 + 12λ)]φ12 = 2λφ12 − 5φ12 + (1 − λ)

×φ11 + φ11 + (2 − λ)

×φ13 + (3 − λ)φ20. (A17)
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Using Eqs. (A2), (A4), and (A5) on the right-hand side of
Eq. (A17), and again identifying the polynomial P (λ) from
Eq. (18), one obtains

[2 − P (λ)]φ12 = 2φ10 + φ11 + 2λφ12 − 5φ12 + φ21

+φ22 + φ23 + φ31. (A18)

Inserting Eqs. (A1) and (A8) into Eq. (A4) leads to

(−λ3 + 7λ2 − 14λ + 7)φ13 = (2 − λ)φ11 + (2 − λ)

×φ12 + (3 − λ)φ30. (A19)

Again, rewriting the expressions −λ3 + 7λ2 − 14λ + 7 as
−λ3 + 7λ2 − 12λ − 2λ + 2 + 5 and (2 − λ)φ11 as (1 −
λ)φ11 + φ11 one obtains

[2−(λ3−7λ2+12λ)]φ13 =2λφ13 − 5φ13 + (1 − λ)φ11 + φ11

+ (2 − λ)φ12 + (3 − λ)φ30.

(A20)

Using Eqs. (A2), (A3), and (A7) on the right-hand side of
Eq. (A20), and again identifying the polynomial P (λ) from
Eq. (18), leads to

[2 − P (λ)]φ13 = 2φ10 + φ11 + 2λφ13 − 5φ13 + φ21

+φ31 + φ32 + φ33. (A21)

Summing Eqs. (A12), (A15), (A18), and (A21) leads to

[2 − P (λ)](φ10 + φ11 + φ12 + φ13)

= 2φ10 − (2 − λ)φ12 − (2 − λ)φ13 + φ20 + 2φ21

+φ22 + φ23 + φ30 + 2φ31 + φ32 + φ33. (A22)

We mention that the expressions λ2φ10 − 4λφ10 and λ2φ11 −
2λφ11 were rewritten as

λ2φ10 − 4λφ10 = −λ(3 − λ)φ10 − λφ10

= −λφ11 − λφ12 − λφ13 − λφ10 (A23)

and

λ2φ11 − 2λφ11 = −λ(1 − λ)φ11 − λφ11

= −λφ10 − λφ11. (A24)

Using Eqs. (A3) and (A4) on the right-hand side of Eq. (A22)
leads to

[2 − P (λ)](φ10 + φ11 + φ12 + φ13)

= φ20 + φ21 + φ22 + φ23 + φ30 + φ31 + φ32 + φ33. (A25)

From Eq. (A25) it is simple to identify

φ′
1 = φ10 + +φ11 + φ12 + φ13, (A26)

φ′
2 = φ20 + +φ21 + φ22 + φ23, (A27)

φ′
3 = φ30 + +φ31 + φ32 + φ33. (A28)

With results (A26)–(A28), Eq. (A25) reads

[2 − P (λ)]φ′
1 = φ′

2 + φ′
3, (A29)

which is nothing else than Eq. (19) from Sec. III. In this way,
every three connected Vicsek fractals at generation l = 1 have
been reduced to a dual Sierpinski gasket at generation g = 1.
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