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Quantitative definition of patterns in soft-mode turbulence suppressing
the Nambu-Goldstone mode
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Chaotic patterns in electroconvection of homeotropic nematics, soft-mode turbulence (SMT), and the related
spatiotemporal chaos (STC) are discussed, and the quantitative definition of the patterns is considered. The
order parameter S, obtained directly from the 2D spectra of the patterns, is introduced. The contribution of the
Nambu-Goldstone mode and the increase in pattern regularity under the influence of an external magnetic field
H are evaluated. We propose a schematic phase diagram of STC patterns based on the value of S.
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I. INTRODUCTION

Numerous patterns can be observed in nonlinear systems
far from equilibrium, and have attracted the attention of
many researchers. They frequently show chaotic behavior [1],
especially when regularity is broken and replaced by disorder
state. Rayleigh-Bénard convection is a standard example of
such systems, and produces several complex patterns including
chaos and turbulence with variations of the control parameter
[2]. In order to properly classify them, quantitative definitions
of regularity and complexity become important [3].

One new example of the above mentioned systems is
ac-driven electroconvection in a nematic liquid crystal. This
system shows very rich spatial and temporal disordered
patterns [4–7], and supplies a wide range of opportunities
for the quantitative definition of such patterns and of chaos.
Moreover, this system has two big advantages: well controlled
external fields and initial symmetry [8]. By controlling the
electric and/or magnetic fields, the chaoticity of the pattern can
be adjusted qualitatively. In addition, there are two realizations
of these systems, planar and homeotropic nematics, which are
related to translational and rotational initial symmetry. Here we
focus on pattern formation in homeotropic nematics because
they exhibit various nontrivial chaotic patterns.

In the homeotropic system, treating the electrodes
with a surfactant such as N,N-dimethyl-N-octadecyl-3-
aminopropyltrimethoxysilyl-chloride (DMOAP) can align the
average orientation of the nematic, the director n, perpendicu-
lar to the confining surfaces. Therefore there exists continuous
rotational symmetry on a plane parallel to the electrodes
(the x-y plane). Due to negative dielectric anisotropy of the
material, there is a threshold of applied voltage Vac(t) =√

2V cos(2πf t), called Fréedericksz threshold VF (=3.5 V),
above which n tilts with respect to the z axis, and the rotational
invariance in the x-y plane is broken. Since the two-
dimensional director c(r), where r = (x,y), which is the
projection of n onto the x-y plane, can freely rotate in this plane
[9–11], the azimuthal rotation of the tilted director behaves
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as a Nambu-Goldstone mode. After increasing V beyond the
convection threshold Vc, electroconvection occurs with local
wave vector q(r). The electroconvection interacts with the c(r)
director [8]. This interaction induces unstable states and yields
a new type of spatiotemporal chaos (STC) called soft-mode
turbulence (SMT) [12,13]. With respect to the ac frequency f

of the applied voltage, there are two types of SMT patterns
in the oblique roll (OR) and normal roll (NR) regimes [14]
in which the corresponding ac frequency is below and beyond
the Lifshitz frequency fL, respectively [15,16]. Additionally, by
applying an external magnetic field H = (H,0,0) the behavior
of the pattern is changed, since the application of H suppresses
the Nambu-Goldstone mode [17].

Several articles have considered the effects of applying H
to electroconvective patterns [11,15,18–22]. The stabilization
of patterns owing to H in the NR regime as well as the corre-
sponding destabilization via creation of dislocations has been
reported and compared with the theory [18]. While at the OR
regime, Huh et al. [15,21] observed the H dependence of the
patterns and discovered two types of disordered patterns which
are qualitatively different observed at two different fixed values
of H that are 400 [G] and 1000 [G]. These were referred to as a
spatially isotropic pattern (STC A) and a spatially anisotropic
pattern (STC B), respectively. However, the difference and the
boundary between the patterns, especially in the OR regime,
are unclear.

In the present paper we introduce an improved order
parameter to understand such changes in SMT patterns
affected by suppression of the Nambu-Goldstone mode. Using
this order parameter, we make a quantitative definition of the
pattern structures including STC A and STC B. Finally, we
applied the order parameter to construct a schematic phase
diagram of patterns describing variety of routes of changes
in the pattern. The present research can provide quantitative
criteria of pattern regularity and enable the classification of
electroconvective patterns types.

II. EXPERIMENT AND DISCUSSION

We performed an experiment using a nematic liquid
crystal N-(4-methoxybenzylidene)-4-butylaniline (MBBA)
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sandwiched between two glass plates with the distance d =
52 ± 1 μm. The setup was similar to that described in a
previous paper [23]. Circular electrodes of indium tin oxide
(ITO) with a diameter of 12.9 mm were coated on the glass
plates. The measurements were conducted at a stabilized
temperature of 30.00 ± 0.05 ◦C. The dielectric constant ε|| and
the electric conductivity σ|| of the sample cell were 6.4 ± 0.1
and 8.7 ± 0.1 × 10−7 �−1 m−1, respectively. A constant H ,
applied collateral to the electrodes, was generated from an
electromagnet (TAMAGAWA GP060-60R), and the strength
was measured by a Gauss meter (Yokogawa 3251). A CCD
camera (Sony XCL 5005) was mounted on a microscope, and
software (DPX-CLM 100 basic) was used to capture pattern
images in the x-y plane. The size of the images was 1.14 mm ×
1.14 mm (1000 pixels × 1000 pixels).

The following procedure was used to obtain the images.
First, we defined a control parameter ε ≡ (V/Vc)2 − 1. Note
that in the previous publications [18,22] an effect of ordering
in SMT patterns due to variation of frequency f of applied
voltage was reported. Therefore, to avoid the change in SMT
pattern due to shift of the Lifshitz frequency fL by varying H ,
we used a fixed normalized frequency of η ≡ f −fL(H )

fL(H ) = −0.5,
which corresponds to the oblique rolls (OR) regime [8]. We
applied a constant H below the Fréedericksz threshold HF

(=1050 G) and waited for 1 min. Then we increased V above
VF and waited 10 min until a homogenous state of c(r) director
was reached. Then we raised V above Vc to obtain a desired
value of ε, and waited 20 min for any transient state to pass.
Images were captured at intervals of 2 min. Image analysis
was performed by ImageJ and customized software.

The typical convective patterns at fixed ε = 0.2 and η =
−0.5 for various H are shown in Figs. 1(a)–1(d), while
Figs. 1(e)–1(h) show the corresponding 2D spectra. We
observed an increase in the degree of regularity of the
convective patterns with increasing H [see Figs. 1(a)–1(d)].
The corresponding 2D spectra [Figs. 1(e)–1(h)] changed from
a uniform ring to a more heterogeneous one, and focused into a
narrow region near the qx axis in the direction of H. To observe
the change in the homogeneity of the spectrum increasing in
H , we plotted the intensity I of the spectrum as a function
of the azimuthal angle φ (as shown in Fig. 2). The intensity
profiles became higher and sharper, indicating q(r) oriented
along a single preferred direction as H increased; that is, a
more ordered pattern was observed. According to the naming
by Huh et al., the patterns shown in Fig. 1(a) [corresponding
to Fig. 1(e)] is called STC A, and those of Figs. 1(b) and 1(c)
[corresponding to Figs. 1(f) and 1(g)] are called STC B, while
Fig. 1(d) [corresponding to Fig. 1(h)] is an ordered pattern, but
no comprehensive quantitative definition was done. Therefore,
we attempted it as follows.

We define an improved order parameter S indicating the
pattern regularity based on the intensity modulation in the ring
of the 2D spectra, as follows:

S =
∫ π/2
−π/2[I (φ) − Imin]dφ

∫ π/2
−π/2[I (φ)]dφ

, (1)

where I and Imin are the intensity of the spectrum as a function
of φ and its minimum value, respectively. Qualitatively, S may
be described as the comparison of the power spectral of the
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FIG. 1. The decrease in complexity of the convective patterns
under the influence of H for (a) H = 50 G, (b) H = 350 G, (c) H =
450 G, and (d) H = 650 G for a fixed ε = 0.2. The corresponding
2D spectra are shown in (e), (f), (g), and (h), respectively. The length
of the bar is 200 μm. The image contrast was enhanced, so that the
rolls and low intensity spectra are easier to see.
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FIG. 2. (Color online) The intensity I of the first-mode spectrum
vs azimuthal angle φ for various values of H at fixed ε = 0.2. Solid
lines indicate the Lorenzian functions.
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FIG. 3. (Color online) (a) Magnetic field H dependence of the
order parameter S. For higher ε, the value of S increased more
gradually, since the original pattern (H = 0) was more chaotic. The
lines were added as a visual guide. (b) The threshold field Hth at which
the value of S linearly increased (red rectangles), and the saturated
field Hsat indicates that S began to saturate (brown circles). See text
for details.

signal response to its total power, including the background.
The approach used here is sufficient to characterize the changes
in orientation of q(r) regarding both the amplitudes and the
widths of the 2D spectra. The H dependence of S for various
values of ε are shown in Fig. 3.

Figure 3 shows that S increased from zero with increasing
H , and finally saturated at sufficient H . For ε < 0.15 the
value of S immediately increase even for small H showing an
exponential type against H . However, for ε � 0.15 the value
of S becomes constant after small increase at small H . Since
then with increases H , S sharply increases similar a shape of
logistic curve type with a plateau regime in the middle (actually
not fit well to logistic equations). Thus, a clear shape change
of S-H curves is observed at some H (hereafter called Hth).
Therefore we introduce for convenience two distinguishable
fields Hth above which S sharply increases and Hsat is defined
by H at which S starts to saturate. In Fig. 3 we observed
there were two different profiles of S, namely a convex and
a concave versus H for ε < 0.15 and ε � 0.15, respectively.
From the presence of such different S profiles, two important
conclusions can be drawn.

First, for ε � 0.15, the fluctuations of c(r) and q(r) were
considerably robust. After applying H � Hth, c(r) could
no longer freely rotate, because the symmetry of c(r) was
broken by the application of H. However, q(r) still freely
rotates because of the uncompensated torque [8,17,20]. Further

evidence can be seen in the flat profile of I (φ) in Fig. 2 for
H = 50 G, which indicates that all directions of q(r) remained
possible. The pattern therefore remained similar to the SMT
[see Fig. 1(a)], and was now called STC A [21]. Here the
values of S have a concave-type increment, for example,
plateau-like at constant S ≈ 0.1 indicating the influence of
the Nambu-Goldstone mode for H � Hth (STC A). Then, S

monotonically increased with increasing H > Hth, because
q(r) no longer freely rotates. The regularity of the convective
pattern increased, and was called STC B [see Fig. 1(c)] [21].
Therefore, as shown in Fig. 3(a), Hth is the threshold field
between STC A [formed by free rotation of q(r)] and STC B
[q(r) no longer freely rotates].

Second, for ε < 0.15, both c(r) and q(r) infirmly fluctuate.
With the application of H, free rotation of c(r) is sufficiently
suppressed, and c(r) no longer behaved as the Nambu-
Goldstone mode. q(r) also no longer freely rotates. As a result,
the pattern drastically changed from isotropic to more regular;
that is, STC B [21]. The corresponding spectrum in Fig. 2
changed from a flat profile to a narrow peak. Consequently,
the value of S steeply increased, forming a convex profile.

These results can be explained as follows. For small ε

(slightly above the onset ε = 0), the patterns are produced by
flow induced by electroconvection. Such flow involves weak
chaos (slow dynamics of irregular motions in convection), and
the application of H easily leads to more regular patterns.
On the other hand, for larger ε, the flow becomes stronger
and induces faster and more irregular motions. In that case, a
strong H is necessary to obtain more regular patterns.

Furthermore, increasing H above the saturated field Hsat,
the values of S for both ε < 0.15 and ε � 0.15 become
saturated. The Hsat values are given in Fig. 3(a). In this regime,
the convective pattern is periodic [see Fig. 1(d)] because the
rotational freedoms of c(r) as well as q(r) are almost fully
suppressed. The local wave vector q(r), however, slightly
fluctuates in the H direction for finite ε.

In order to obtain more information on the pattern structure
in the saturated regime of S, specifically ε = 0.05 with
H = 500 G, we employed crossed polarizer observations. As
shown in Figs. 4(a) and 4(b), we observed the coexistence of

FIG. 4. (Color online) Typical patterns obtained from crossed
polarizer observation with ε = 0.05 and a fixed η = −0.5 under the
influence of H = 500, 550, and 600 G in (a), (b), and (c), respectively.
(d), (e), and (f) are the corresponding images after rotating the crossed
polarizer 20 deg clockwise. The red (dark) and yellow (bright) arrows
indicate the directions of c(r) and q(r), respectively.
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zig and zag formations; that is, an abnormal zigzag pattern
(Z-II) was formed [5]. The zig (zag) domain corresponds to
the dark (bright) areas in Fig. 4(a), in which the c(r) director
was parallel (not parallel) with one of the polarizers. A 20 deg
azimuthal angle of c(r) between a zig and a zag domain was
obtained by rotating the crossed polarizer (see Fig. 4). After
increasing H to H = 550 G, the zag area decreased. Finally,
the abnormal zigzag formation was eliminated at higher H

(600 G) for ε = 0.05. The orientation of c(r) in the x-y plane
became uniform, leaving a normal zigzag (Z-I) pattern [see
Figs. 4(c) and 4(d)] [5]. It is an evident that in the saturated
regime there was a pattern transition from abnormal zigzag
pattern (Z-II) to normal zigzag ones (Z-I).

Based on S, we can categorize the electroconvective
patterns and the degree of regularity under a symmetry
breaking caused by H , as follows:

(i) An original SMT pattern (H = 0) is indicated by S = 0.
(ii) STC A (H � Hth) exists in the regime corresponding

to 0 < S � 0.1 including the plateau region at S ≈ 0.1 in
the present study. Such a plateau indicates an occurrence of
STC A. In this regime, q(r) can still freely rotate. The pattern
is therefore chaotic and isotropic like SMT.

(iii) STC B (H > Hth) exists in the regime corresponding
to S > 0.1, and S linearly increases with increasing in H .
Both c(r) and q(r) in this regime are no longer free to rotate.
Therefore, more ordered patterns were observed.

(iv) The transition from an abnormal zigzag pattern (Z-II) to
a normal zigzag pattern (Z-I) (H � Hsat) occurs in the regime
with saturated S. Both an abnormal zigzag pattern (Z-II) and
a normal zigzag pattern (Z-I) are almost ordered patterns
(S � 0.8). Crossed polarizer observation is necessary to
distinguish them.

The schematic phase diagram of patterns in the H -ε plane
is shown in Fig. 5.

Using S, as defined in Eq. (1), the relative degree of order
showing regularity, that is, deviation from the chaotic state,
can be measured quantitatively [24]. Thus, S can serve as
a new measure of pattern regularity in SMT. The value of
S is bounded as 0 � S � 1, and with S = 0 (or S = 1) the
pattern corresponds to that of SMT (or a completely striped
one). Therefore, the value of S is also related to how much
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FIG. 5. (Color online) The schematic phase diagram of the
patterns in the H -ε plane. The type of patterns can be defined based
on the values of S.
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FIG. 6. (Color online) (a) ε dependence of ξφ for fixed H = 400 G
(red diamonds), H = 450 G (black rectangles), H = 500 G (blue
triangles), and H = 550 G (green circles), while the solid lines
indicate ξφ ∝ ε−1/2. (b) H dependence of ξφ for selected values of ε,
the ξφ profiles scaled into two different lines. See text for details.

of a contribution the Nambu-Goldstone mode makes to the
convective patterns, for example, a full contribution for S = 0
and no contribution for S = 1.

Additionally, since S is obtained directly from the 2D
spectra, it is worth considering the H and ε dependence of the
azimuthal peak width ωφ of the 2D spectra, which correspond
to the inverse of the correlation length ξφ of the pattern [23]. For
SMT (also for STC A), the ε dependence of ξφ was previously
reported (see Refs. [25,26]). Here we will only consider the ε

dependence of ξφ for STC B. In order to obtain ωφ , we fit I of
the first-mode spectrum as a function of φ with the Lorenzian
function (see Fig. 2).

Figure 6 shows the H and ε dependence of ξφ . As shown in
Fig. 6(a), we observed a nontrivial ε dependence of ξφ , that is,
ξφ ∝ ε−1/2. Such divergent behavior of ξφ with power −1/2
on azimuthal angle of rolls was also observed in a rotating
Rayleigh-Bénard convection, in which a Küppers-Lortz (KL)
instability occurred above the critical temperature difference
�Tc(�c) between the bottom and the top of a cell, where �c is
the critical dimensionless rotation rate [27]. Both SMT and KL
instability in the rotating Rayleigh-Bénard convection produce
STC above the onsets via a single supercritical bifurcation
caused by the weak nonlinearity [20,27]. For this reason,
both are of special interest, although their mechanisms are
different because there is no Nambu-Goldstone mode in the
KL instability.
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Figure 6(b) shows the linear relationship between ξφ and H ,
indicating the response of c(r) to H. Note that q(r) originated
from c(r) [8]. Therefore H, in this manner, acts as an indirect
force to the orientation of q(r). As shown in Fig. 6(b) the
profiles of ξφ scaled in to two different lines. For small ε (ε <

0.15), the response of q(r) to H was sensitive, and the profile
of ξφ steeply increased with respect to H . On the other hand,
the q(r) response to H was less sensitive for large ε (ε � 0.15),
because the higher ε exerted more uncompensated torque on
q(r). These results are consistent with the two different profiles
of S, as explained above.

III. SUMMARY

We investigated the increase in pattern regularity of
electroconvective patterns under the influence of an external
magnetic field. We defined S, an improved order parameter
for the convective patterns that is easily obtained from 2D
spectra of the patterns. The value of S is directly related to
the degrees of free rotation of the local wave vector q(r).
S can also be used as a quantitative measure of the degree
of pattern regularity and the extent of contribution from the

Nambu-Goldstone modes. Hence, the degree of regularity of
the patterns in SMT under the influence of H can be measured
using S. We successfully classified two types of spatiotemporal
chaos, STC A (0 < S � 0.1 with the plateau at S ≈ 0.1 in the
present study) and STC B (S > 0.1 in the present study). The
transition between two ordered patterns; an abnormal zigzag
pattern (Z-II) and a normal zigzag pattern (Z-I), was also
clarified. The possible schematic phase diagram of patterns
in the H -ε plane was proposed.
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