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Molecular field theory for biaxial nematic liquid crystals composed of molecules
with C2h point group symmetry
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The biaxial nematic phase is generally taken, either explicitly or implicitly, to have D2h point group symmetry.
However, it is possible for the biaxial phase to have a lower symmetry depending on that of its constituent
molecules. Here we develop a molecular field theory for a nematogen composed of C2h molecules in terms of
the nine independent second rank orientational order parameters defining the C2h biaxial nematic. In addition,
there is a rank one order parameter constructed from two pseudovectors which is only nonzero in the C2h phase.
The theory is simplified by removing all but the three dominant order parameters. The predicted phase behavior
is found to be rich with three possible biaxial nematic phases and with the transitions involving a biaxial nematic
phase exhibiting tricritical points.
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I. INTRODUCTION

Studies of thermotropic biaxial nematic liquid crystals
continue to intrigue, frustrate, and excite. For example, it
has long been appreciated that there should be more than
one type of biaxial nematic each with a different point group
symmetry. Recently, however, it has been shown how NMR
spectroscopy might be used to distinguish between biaxial
nematic phases with different point group symmetries; in
particular those with D2h and C2h symmetries [1]. Here we
refer to the symmetry of the singlet orientational distribution
function and not to the translational pair distribution function
[2]. The original prediction of the existence of biaxial nematic
phases was based on a molecular field theory analysis which
assumed implicitly that the molecules and hence the phase
could have D2h point group symmetry [3]. Subsequent theories
have made this assumption explicit [4,5]. However, just three
years after Freiser’s seminal work Boccara [6] in 1973 noted
that nematic liquid crystals could exist in a wide range of
possible symmetries. These are Cn, Cnv , Dn, Cnh, Dnh, S2n,
and Dnd where n is an integer. In addition, the influence of the
phase symmetry on the components of tensors representing its
properties was also considered. Indeed this analysis mimicked,
in part, that presented by Bhagavantam and Suryanarayana [7]
for the relationship between the orientational symmetry of
crystals and their tensorial properties.

The first molecular field theory of the biaxial nematic
phase to make explicit use of the D2h point group symmetry
of the constituent molecules and the ground state phase was
presented by Straley [4]. He also noted that nematic phases
with lower symmetry would also be formed by molecules
with the same low symmetry. However, he did not take
this idea further. In their paper describing the symmetries
of liquid crystal phases Goshen et al. [8] have returned to
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the question of the symmetries allowed for biaxial nematic
phases and added tetrahedral and octahedral to those given
by Boccara [6]. The nature of topological defects in nematics
depends on the phase symmetry and in considering these
Mermin [9], in his review of the theory of defects, noted
that there was no reason why only biaxial nematics with D2h

point group symmetry need to be considered. He pointed out
that the defects in the other biaxial nematics would also be
different but he did not pursue this interesting idea.

The influence of the symmetry of biaxial nematics on
their hydrodynamic behavior, both static and dynamic, has
been examined by Liu [10] who considered a range of other
phase symmetries. In addition to the standard D2h he also
included triclinic C1 and Ci as well as the less familiar
biaxial phases with symmetries D6h, C6v , C6h, C6, D6,
D3h, and C3h. These phases are distinguished by the differ-
ent numbers of independent elastic constants and viscosity
coefficients that they possess. An analogous study of the
hydrodynamic theory of biaxial nematics has been performed
by Kini [11]; this includes the flexoelectric polarization
resulting from deformations of the director field. Here the
phase symmetries considered are monoclinic, C2, C2h, and
Cs , in addition to the triclinic, C1 and Ci . The parameters,
elastic, viscous, and flexoelectric, required for each of the
biaxial phases were determined.

The work by Mettout et al. [12] is of more direct relevance
because it is one of the first papers to describe a theory
of biaxial nematic liquid crystals in which the molecular
symmetry and hence that of the phase is lower than D2h. This
development was prompted by the experimental observation
of a polar biaxial nematic phase formed by a semirigid
thermotropic liquid crystal polymer of hydroxybenzoic acid
and hydroxynaphthoic acid [13]. The theory is based on a
Landau approach and for this the dominant orientational order
parameters were identified as first rank; for the assumed Cs

symmetry of the molecules there are six order parameters.
Based on this the Landau theory predicts the formation of a
polar uniaxial nematic, that is with C∞v symmetry; and a polar
biaxial nematic phase with Cs symmetry. Introduction of a
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second rank ordering tensor into the theory clearly increases
the number of order parameter invariants, expansion coeffi-
cients, and hence the complexity. Indeed the theory predicts
the existence of nematic phases with point group symmetries
D∞h, C∞v , D2h, C2v , Cs , and, perhaps surprisingly, C1.

The discovery by Niori et al. of the banana phases [14]
and the ensuing experimental studies prompted Lubensky
and Radzihovsky [15] to propose a Landau theory of the
phases and the transitions between them. When formulating
the orientational order parameters the V-shaped or bent-core
molecules were taken to have C2v point group symmetry; the
phase symmetry was taken from experiment. Thus for the
uniaxial nematic with D∞h symmetry just a single quadratic
order parameter is needed. However, for this phase to undergo
a transition to a uniaxial polar nematic with C∞v symmetry
a polar or vector order parameter is required together with a
third rank tensor. This third rank tensor is introduced because
it is essential for the description of the spontaneously ordered
chiral phases with point group symmetries D2 and C2. The
set of three order parameters, first, second, and third rank,
is able to describe a host of nematic phases which also
includes those with point group symmetries D3h, C3v , D2d ,
and C1h. Also of relevance are the tensor order parameters
which are needed to create these order parameters from phases
with higher symmetry. Of particular interest for the bent-core
mesogens is the transition from a biaxial nematic with D2h

symmetry to an achiral nematic with symmetry D2 where
the mesophase separates into domains of opposite handedness
separated by domain walls. The extensive and detailed analysis
presented by Lubensky and Rodzihovsky [15] is aided by the
use of pictorial representations to show the idealized organi-
zation in the different phases and their change at the phase
transitions.

The major challenge of working on a theory for bent-core
molecules has also been addressed by Mettout [16] who used
a single second rank ordering tensor. As a result he was not
able to predict the rich polymorphism found by Lubensky
and Radzihovsky [15]. However, they did miss the biaxial
nematic phase having C2h point group symmetry and this was
noted by Mettout [16]. In his own paper he was primarily
concerned with so-called conventional nematics, that is those
with weakly biaxial molecules and unconventional nematics
with molecules having a more pronounced biaxiality such as
the bent-core mesogens. He points out that for unconventional
mesogens there are two second rank tensorial order parameters.
For the principal axes of these to coincide within the biaxial
nematic phase then this requires the phase to possess D2h

symmetry. If, however, only one of the principal axes for the
two tensors coincide then the biaxial nematic has C2h point
group symmetry and when none of the principal axes coincide
the phase symmetry is Ci . The origin of the driving force for
the change in symmetry from D2h to C2h and then Ci was not
explained. Indeed the fact that the phase symmetry C2h and Ci

is lower than that of the constituent molecules is puzzling and
was not commented on. Indeed it might have been expected
that the molecular symmetry should be the same or lower than
the liquid crystal phases that are formed.

Developing a molecular theory for biaxial nematic phases
formed by real mesogenic molecules is an especially challeng-
ing task. This obtains because the molecules are invariably

nonrigid and the conformers are of low symmetry. This
challenging task has been tackled by Mettout [17] albeit in
the rigid-molecule limit. In his novel approach he introduces
the concept of an effective molecular symmetry; this is defined
by considering the effect of the true molecular symmetry on
the elements of an orientational ordering tensor. This tensor is
taken to be the average of a Wigner function 〈DL

pm〉 of rank
L, although the tensor is often taken to be second rank. As
an example, when the molecular symmetry is D4h then the
nonzero order parameters would be 〈D2

p0〉. This would also
occur if the molecules have the higher point group symmetry
of D∞h which would be identified as the effective molecular
symmetry. With this effective symmetry it might be expected
that such molecules would only exhibit a uniaxial nematic
phase. However, Mettout [17] indicates that they should also
form a biaxial nematic with D2h point group symmetry. Clearly
to establish the symmetry of the nematic phase some model
theory is needed. This is appreciated by Mettout although he
does not describe the use of such an approach to determine the
symmetries of the stable nematic phases found for molecules
with a particular effective symmetry. For a group of symmetry
classes for the constituent molecules such as D2h and still
retaining a second rank ordering tensor to characterize the
effective symmetry it is apparent that this is the same as the
real molecular symmetry. It might have been anticipated that
the phase symmetry of this system in its ground state would
also be D2h. Again Mettout suggests that the phase symmetry
of the ground state could be lower, that is C2h.

There would seem to be some doubt as to whether
lowering the molecular symmetry from D2h to C2h point group
symmetry is necessary for the creation of the C2h biaxial
nematic phase. However, it is certainly to be expected that the
ground state nematic structure constituted of molecules with
C2h symmetry should also have the same symmetry. At a higher
temperature the C2h biaxial nematic could undergo a transition
to a biaxial nematic with D2h symmetry. A sketch showing the
idealized organization of molecules with C2h symmetry in
these two biaxial nematic phases is shown in Fig. 1. The key
feature in these sketches is the orientation of the constituent
molecules and not their translational distribution. Following
the ideas of Lubensky and Radzihovsky [15] it is of interest to
consider an average structure for the molecules in the different
phases. Thus in the D2h biaxial nematic phase there are two
types of molecule which are related by a 180o rotation about
the molecular x axis, a so-called internal rotation [16]. The
addition of these two gives a structure with D2h point group
symmetry having an H-shaped cross section in the xy plane
[see Fig. 1(c)].

The ability to identify a biaxial nematic unambiguously has
proved to be a major problem in the study of this intriguing
phase [18,19]. In view of the subtleties in the differences
between nonpolar biaxial nematics with C2h and D2h

symmetries as well as Ci the identification of these new biaxial
nematics promises to present even greater problems [1]. To
help in this challenging task we have developed a molecular
field theory for the phases, isotropic, uniaxial nematic, biaxial
nematic both D2h and C2h formed by molecules with C2h sym-
metry. In this way we hope to contribute to our understanding
of thermotropic biaxial nematics and their investigation. The
results of our theoretical studies are described in this paper.
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FIG. 1. A sketch of the idealized organization of elongated
molecules with C2h point group symmetry in a biaxial nematic phase
with (a) C2h symmetry and (b) D2h symmetry. The coordinate systems
are those for the phase (XYZ) and for the molecule (xyz). (c) The cross
sections of the average molecular structure formed by combining two
molecular orientations.

We note that we shall not consider the possible formation of
a biaxial nematic phase with Ci symmetry here. As we shall
see, the problem we have set ourselves is already a challenging
task and so we defer its extension to include the triclinic biaxial
nematic until later.

We begin in Sec. II with the orientational order parameters
used to characterize the nematic phases formed by the biaxial
molecules. In Sec. III these are then employed together with
the intermolecular interaction coefficients allowed by the
molecular symmetry [20] to construct the internal energy of
the phases. A variational analysis analogous to that proposed
by de Gennes [21] for uniaxial molecules in a uniaxial phase
is then used to determine the potential of mean torque and the
anisotropic Helmholtz free energy. The somewhat involved
forms for these are subsequently simplified by reducing the
number of order parameters and intermolecular interaction
coefficients to just three for each which is sufficient to
characterize the three nematic phases. These conventional
second rank order parameters are found to be augmented by a
new order parameter based on a rank one Wigner function but
with a pseudovector character. We end with a description and
discussion of the phases, as well as the transitions between
them, predicted by the simplified or truncated model.

II. ORDER PARAMETERS

The orientational order parameters are defined as the
averages of the Wigner functions D2

pm(Ω), where Ω denotes
the Euler angles α, β, γ , linking the molecular and laboratory
frames [2]. The molecular axis z is defined as the twofold
rotation axis and x and y are in the mirror plane orthogonal to z.
It is convenient to take these axes to be those that evolve,
without rotation, into the other twofold rotation axes when the

molecule is changed from C2h to D2h point group symmetry.
In our model this would correspond to the two outer boards
constituting the molecule overlapping exactly (see Fig. 1).
In the biaxial nematic phase, also with C2h symmetry, Z

corresponds to the twofold rotation axis and X and Y are
the axes in the mirror plane orthogonal to Z. At the transition
to the D2h biaxial nematic the X and Y axes would transform
into the axes with twofold rotational symmetry. In these axis
systems the order parameters 〈D2

pm〉 with p,m = ±1 vanish
and the remaining independent order parameters are 〈D2

00〉,〈D2
02〉, and 〈D2

0−2〉. The first label refers to the phase and so
these three order parameters appear when the uniaxial nematic
phase is formed. They remain in the biaxial nematic phase
and are joined by six more 〈D2

20〉, 〈D2
−20〉, 〈D2

22〉, 〈D2
2−2〉,

〈D2
−22〉, and 〈D2

−2−2〉, when this phase has C2h symmetry. If,
however, the biaxial nematic has D2h symmetry then some
order parameters become equal, namely〈

D2
20

〉 = 〈
D2

−20

〉
, (1)

〈
D2

22

〉 = 〈
D2

−22

〉
, (2)

〈
D2

2−2

〉 = 〈
D2

−2−2

〉
. (3)

This set of order parameters based on the Wigner functions
does not provide a completely convenient choice with which
to distinguish between the two biaxial nematic phases and to
do this we use the following combinations. The three order
parameters

〈I20〉 = (〈
D2

20

〉 − 〈
D2

−20

〉)
/2i, (4)

〈
Ra

22

〉 = [(〈
D2

22

〉 + 〈
D2

−2−2

〉)
− (〈

D2
−22

〉 + 〈
D2

2−2

〉)]
/2, (5)

〈
I a

22

〉 = [(〈
D2

22

〉 − 〈
D2

−2−2

〉)
− (〈

D2
−22

〉 − 〈
D2

2−2

〉)]
/2i (6)

vanish in the biaxial nematic with D2h point group symmetry
but are nonzero in that with C2h symmetry. The remaining three

〈R20〉 = (〈
D2

20

〉 + 〈
D2

−20

〉)
/2, (7)

〈
Rs

22

〉 = [(〈
D2

22

〉 + 〈
D2

−2−2

〉)
+ (〈

D2
−22

〉 + 〈
D2

2−2

〉)]
/2, (8)

〈
I s

22

〉 = [(〈
D2

22

〉 − 〈
D2

−2−2

〉)
+ (〈

D2
−22

〉 − 〈
D2

2−2

〉)]
/2i (9)

are nonzero in both biaxial nematics. In keeping with these
definitions the nonzero order parameters for the uniaxial
nematic are written as

〈R00〉 = 〈
D2

00

〉
, (10)

〈R02〉 = (〈
D2

02

〉 + 〈
D2

0−2

〉)
/2, (11)

〈I02〉 = (〈
D2

02

〉 − 〈
D2

0−2

〉)
/2i. (12)

There is, in fact, an additional order parameter which
vanishes in all but the biaxial nematic with C2h symmetry.
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As we show in Appendix A this order parameter is defined in
terms of a first rank Wigner function D̃1

00(Ω). Here the tilde
indicates that the function is written in terms of pseudovectors
and not polar vectors. As a consequence the order parameter
〈D̃1

00〉 does not change sign on inversion through the center of
symmetry and so the order parameter does not vanish in the C2h

biaxial nematic. This contrasts with the polar order parameter
〈D1

00〉 defined in terms of polar vectors, which does vanish
in the C2h phase. We see, therefore, that the pseudovector
based order parameter 〈D̃1

00〉 also provides a way to distinguish
between the biaxial nematics with D2h and C2h point group
symmetry. We note that in our current notation the rank of the
Wigner functions has been suppressed and so for the two order
parameters of rank 1 we shall retain 〈D̃1

00〉 and 〈D1
00〉.

In devising the notation for these nine combinations of
second rank Wigner functions based order parameters we have
decided against the use of simple letters, there are just too
many. Instead we build on the notation suggested by Biscarini
et al. [22] for the case when the molecules and phase have D2h

symmetry since this gives some information about the structure
of the composite order parameter. Thus 〈R02〉 denotes the real
part of 〈D2

02〉 while 〈I02〉 is its imaginary part. Extending this
notation 〈Ra

22〉 denotes the antisymmetric combination of the
real part of 〈D2

22〉 and that of 〈D2
−22〉. Similarly, 〈I s

22〉 is the
symmetric combination of the imaginary part of 〈D2

22〉 and
that of 〈D2

−22〉.
Although the Wigner function representation of the ori-

entational order parameters is powerful when developing the
molecular field theory it does not always provide a physically
familiar description of the order. This can be achieved with the
Cartesian description given by the supertensor SAB

ab [21,23]
defined as

SAB
ab = 〈(3laAlbB − δaAδbB )〉/2, (13)

where the superscripts denote laboratory axes and subscripts
molecular axes; laA is the direction cosine between axes a and
A. The components of the Cartesian supertensor are related
to the averages of combinations of Wigner functions by (see
Appendix A)

〈R00〉 = SZZ
zz , (14)

〈R02〉 = 1√
6

(
SZZ

xx − SZZ
yy

)
, (15)

〈I02〉 =
√

2

3
SZZ

xy , (16)

which are nonzero in all of the nematic phases and related to
the molecular symmetry. Thus 〈R02〉 provides a measure of
the biaxiality in the molecular ordering when the molecular
symmetry is D2h and 〈I02〉, corresponding to an off-diagonal
element in the Saupe ordering matrix [23], indicates the effect
on the ordering when the molecular symmetry is C2h. Within
the biaxial nematic phase with D2h symmetry the three new
order parameters are

〈R20〉 = 1√
6

(
SXX

zz − SYY
zz

)
, (17)

〈
Rs

22

〉 = 1

3

[(
SXX

xx − SYY
xx

) − (
SXX

yy − SYY
yy

)]
, (18)

〈
I s

22

〉 = 2

3

(
SXX

xy − SYY
xy

)
, (19)

where 〈I s
22〉 clearly represents a new term reflecting the phase

biaxiality and is related to the C2h molecular symmetry.
Finally, there are four new order parameters which distinguish
between the C2h and the D2h biaxial nematic phase. At the
second rank level there are three of these, namely

〈I20〉 = −
√

2

3
SXY

zz , (20)

〈
Ra

22

〉 = 2

3

(
SXY

xy + SYX
xy

)
, (21)

〈
I a

22

〉 = −2

3

(
SXY

xx − SXY
yy

)
, (22)

which result from the SXY
ab off-diagonal elements of the

supermatrix. The fourth order parameter of this set is the
pseudovector based first rank Wigner function 〈D̃1

00〉. This
is related to the antisymmetric combination of elements of the
supermatrix by

〈
D̃1

00

〉 = 2

3

(
SXY

xy − SYX
xy

)
(23)

(see Appendix A).

III. MOLECULAR FIELD THEORY

To construct a molecular field theory based on these nine
independent order parameters we use the variational approach
described by de Gennes [21]. This starts with the construction
of the thermodynamic internal energy from the dominant order
parameters. As experiment and simulation demonstrate these
are invariably second rank [24,25] which explains our prior
concentration on the 〈D2

pm〉; they also allow us to distinguish
between the phases. We now need to construct a scalar
product of these order parameters bearing in mind that the
intermolecular coefficients u2mn are also tensorial [20]. This
gives

〈U 〉 = −1/2
∑

u2mn

〈
D2

pm

〉 〈
D2

−pn

〉
. (24)

Since m and n both take values from −2 to 2 there are 25
intermolecular coefficients but this number can be reduced
to just six independent terms by taking account of the system
symmetry and the C2h molecular symmetry [20]. They are u200,
u202 ≡ u220, u20−2 ≡ u2−20, u222, u2−2−2, and u2−22 ≡ u22−2.
The symmetry-based arguments leading to this result are given
in Appendix B. As we shall see, to emphasise the symmetry of
the problem we shall take combinations of these coefficients
just as we did for the orientational order parameters. The
Helmholtz free energy is given, in the molecular field theory,
as

A = − (1/2)
∑

u2mn

〈
D2

pm

〉 〈
D2

−pn

〉

+ kBT

∫
f (Ω) ln f (Ω)dΩ, (25)

where, as yet, the singlet orientational distribution function
f (Ω), is unknown. It is determined by a functional minimiza-
tion of A with respect to f (Ω) subject to the constraints that
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it is normalized and that the order parameters 〈D2
pm〉 are the

averages of D2
pm(Ω) with f (Ω). This minimization also leads

to the potential of mean torque U (Ω); the resultant expression
is somewhat formidable given its dependence on nine order
parameters and six intermolecular coefficients. To simplify
its appearance we have divided it into three parts, the first
is responsible for the formation of the uniaxial nematic, the
second drives the appearance of the biaxial nematic with D2h

symmetry, and the third part is responsible for the creation of
the biaxial nematic with C2h symmetry. The potential is then

U (Ω) = UU (Ω) + UD2h
(Ω) + UC2h

(Ω), (26)

where the individual terms responsible for driving the appear-
ance of the three nematic phases NU , ND2h, and NC2h [26]
are

UU (Ω) = − [(〈R00〉 + 2γs〈R02〉 − 2γa〈I02〉) R00(Ω)

+ (2γs〈R00〉 + 4λs〈R02〉 − 2λ0〈I02〉) R02(Ω)

+ (−2γa〈R00〉 − 2λ0〈R02〉 − 4λa〈I02〉) I02(Ω)] ,

(27)

UD2h
(Ω) = − 2

{(〈R20〉 + γs

〈
Rs

22

〉 − γa

〈
I s

22

〉)
R20(Ω)

+ [
γs〈R20〉 + λs

〈
Rs

22

〉 − (1/2)λ0
〈
I s

22

〉]
Rs

22(Ω)

+ [−γa〈R20〉 − (1/2)λ0
〈
Rs

22

〉 − λa

〈
I s

22

〉]
I s

22(Ω)
}
,

(28)

UC2h
(Ω) = − 2

{(〈I20〉 + γs

〈
I a

22

〉 + γa

〈
Ra

22

〉)
I20(Ω)

+ [
γa〈I20〉 + (1/2)λ0

〈
I a

22

〉 − λa

〈
Ra

22

〉]
Ra

22(Ω)

+ [
γs〈I20〉 + λs

〈
I a

22

〉 + (1/2)λ0
〈
Ra

22

〉]
I a

22(Ω)
}
.

(29)

In these expressions for U (Ω) we have scaled the potential
of mean torque with the intermolecular coefficient u200. More
importantly, the particular combinations of order parameters
appropriate for the three nematic phases have lead us to
introduce related combinations of intermolecular coefficients.
These real, scaled combinations are

γs = (u220 + u2−20)/2u200,

γa = (u220 − u2−20)/2iu200,

λs = (Reu222 + u2−22)/2u200,

λa = (Reu222 − u2−22)/2u200,

λ0 = (u222 − u2−2−2)/2iu200, (30)

where the labels s and a denote symmetric and antisymmetric
combinations of particular intermolecular coefficients. This
choice is especially convenient because when the mesogenic
molecule has D2h symmetry the antisymmetric combinations
vanish as does λ0 since then u222 is real and equal to
u2−2−2. This leaves the expected three independent coefficients
as u200, u220, and u222. When, however, the molecule has
C2h symmetry the three coefficients γs , λa , and λ0 are no
longer zero and provide a measure of the extent to which
it deviates from D2h symmetry. These coefficients enter all
three contributions to the potential of mean torque since the

molecular symmetry influences the orientational ordering in
all three nematic phases. In contrast, the key order parameters
for the contributions to the potential for the three nematic
phases only appear in the potential of mean torque associated
with that phase.

Given the potential of mean torque we can construct
the orientational Helmholtz free energy. This can then be
minimized with respect to the order parameters to determine
their temperature dependence from which the transition
temperatures and phase map are estimated [27]. However,
since there are nine order parameters and six intermolecular
coefficients for this nematogen it is a formidable task. We have,
therefore, sought to simplify the problem while retaining its
essential physics. One possible strategy with which to achieve
this is suggested by the four independent order parameters
when both the molecules and the biaxial nematic phase have
D2h symmetry. These order parameters 〈R00〉, 〈R02〉, 〈R20〉,
and 〈Rs

22〉 are of particular interest since, in the limit of high
order, as 〈R00〉 tends to unity, the order parameters 〈R02〉
and 〈R20〉 tend to zero while 〈Rs

22〉 also tends to unity [see
Eqs. (14), (15), (17), and (18)]. At higher temperatures 〈R00〉
and 〈Rs

22〉 remain dominant and a molecular field theory based,
in essence, on just these two order parameters with u220 set
equal to zero to ensure the order parameters remain zero
also captures much of the essential behavior [28]. For biaxial
nematogenic molecules with C2h symmetry in a biaxial phase
also with C2h symmetry we see that in the high order limit
〈R00〉, 〈Rs

22〉, and 〈Ra
22〉 are expected to be large, whereas the

remaining six order parameters should be small. If we set them
to zero in the potential of mean torque together with γs , γa ,
and λ0 then we obtain the truncated potential

Utrun(Ω)/u200 = − [〈R00〉R00(Ω) + 2λs

〈
Rs

22

〉
Rs

22(Ω)

+ 2λa

〈
Ra

22

〉
Ra

22(Ω)
]
. (31)

The Helmholtz free energy associated with this takes the form

A/u200 = (1/2)
(〈R00〉2 + 2λs

〈
Rs

22

〉2 + 2λa

〈
Ra

22

〉2 )
−T ∗ ln Q, (32)

where the partition function is given by

Q =
∫

exp
[−U ∗

trun(Ω)/T ∗] dΩ, (33)

U ∗
trun(Ω) is the scaled potential of mean torque Utrun(Ω)/u200

and T ∗ is the scaled temperature kBT /u200.
We have not included terms involving the pseudovector

based order parameter 〈D̃1
00〉 in the molecular field theory. Our

reason for the omission is not that the order parameter is small;
it is not, as we shall show in Sec. IV. Our argument for ignoring
this contribution is the following. The new term in the internal
energy would take the form

〈U 〉 = −(1/2)ũ100
〈
D̃1

00

〉2
. (34)

Since the order parameter is invariant under inversion through
the center of symmetry for the constituent molecules then
for the contribution to the internal energy not to vanish the
intermolecular coefficient ũ100 should also be invariant under
inversion. For molecules with C2h point group symmetry the
supertensor intermolecular coefficients uLmn will vanish if L

is odd [20]. However, this would not be the case for ũ100
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if it is a component of a pseudosupertensor; this would be
consistent with ũ100 being constructed from an antisymmetric
molecular interaction second rank tensor. We are not aware of
molecular interactions which involve nonsymmetric tensors
[7] so that the antisymmetric components can be assumed to
be insignificant. However, relating the supertensor components
to the excluded volume between two molecules [4] may
change this perception. We shall consider this possibility in
the following section.

It seems appropriate to finish this section by commenting
on the likely reliability of the predictions of our theory
for molecules with C2h point group symmetry. Molecular
field theories clearly have the advantage of simplicity which
results from the major approximation of decoupling the direct
orientational correlations between molecules. The effect of this
approximation has been explored for nematics by comparing
the predictions with the results of computer simulations. In
these the pair potential is usually chosen to be consistent
with the Helmholtz free energy which forms the basis of the
molecular field theory. Using this approach there have been
numerous tests of the predictions of the Maier-Saupe theory
for uniaxial nematics [24,29,30]. These have shown that the
predictions are surprisingly reliable. As the system becomes
more complicated, for example, the molecules and phase are
biaxial with D2h point group symmetry, it is important to
see if the molecular field predictions are any less reliable.
Again simulation results are available for this symmetry and it
appears that the predictions are still good [22,31,32]. Of par-
ticular importance is the phase map showing how the nematic
phases formed vary with the molecular biaxiality parameters.
The agreement between theory and simulation appears to be
reliable at both a qualitative and even semiquantitative level.
This agreement extends to the temperature variation of the
order parameters characterizing the different phases. It seems
likely, therefore, that the predictions of our molecular field
theory will be just as reliable; indeed this expectation is
consistent with preliminary results of computer simulations.

IV. CALCULATIONS, PARAMETERIZATION,
AND RESULTS

In order to determine the phase stability at a given tempera-
ture, the scaled free energy is mininized with repect to the three
order parameters 〈R00〉, 〈Rs

22〉, and 〈Ra
22〉 using the MATLAB

minimization function fmincon. It is a function to find the
minima of a nonlinear smooth function with nonlinear smooth
constraints. In the computer program we specifically chose
the method of Active Set Sequential Quadratic Programming.
The algorithm is an application of Newton’s method to the first
order optimality conditions for the minimization of a function.
It generates a quadratic program at each step and can be solved
to obtain the search direction and so find the next iterate. In
fmincon at each step a quasi-Newtonian approximation of the
Hessian matrix is employed instead of a direct calculation. In
addition, the Active Set method is used to deal with constraints.
A description of these methods can be found in the book by
Nocedal and Wright [33]. Since this method only finds local
minima of the free energy corresponding to different nematic
phases, we often need to make comparison between the values
of the free energy at the local minima to obtain the global

minimum at a given temperature. Moreover, the integration of
the partition function over the Euler angles is performed by a
method suggested by Bisi, Romano, and Virga [34].

The first step in the application of our molecular field
theory is to select the scaled parameters λs and λa . It would be
desirable to relate these parameters to the molecular geometry
even for that as idealized as the structure in Fig. 1. However,
to achieve this the only quantity to our knowledge that might
be related to the intermolecular supertensor is the excluded
volume [4]. In this approach the excluded volume is expanded
in a basis of Wigner functions and the expansion coefficients
aLmn are taken to be related to the supertensor uLmn. The use
of the excluded volume is especially relevant because it is
associated with the repulsive forces thought to be important
in determining liquid structure. For block-shaped molecules
with D2h point group symmetry Straley has obtained analytic
expressions for the three independent supertensor components
u200, u220, and u222 based on a particular and limited choice
of the relative molecular orientations. For molecules with
C2h point group symmetry it is not possible to obtain analytic
expressions even in this approximate way. Numerical values
for the components of the interaction supertensor can be
determined but this tends to obscure the physics of the
problem [35]. However, general symmetry based arguments
show that the expansion coefficient a100 is not zero [36].
Although this coefficient does not vanish we require a specific
model for the molecular shape, with C2h point group symmetry,
to determine how large it might be in comparison with the
second rank coefficients a2mn. Preliminary calculations for
some trial structures having C2h point group symmetry indicate
that a100/a200 is negligibly small [37]. This suggests that
the contribution of the pseudovector order parameters to the
molecular field theory may be ignored. However, more detailed
calculations of the excluded volume expansion coefficients for
different C2h models need to be undertaken to confirm this.

In view of this difficulty we were guided in our choice
of the scaled coefficient λs by results which Sonnet, Virga,
and Durand obtained [38] in their calculations for what is,
in essence, the two order parameter model. Thus for λs = 0.2
they find the phase sequence ND2h–NU –I . We have used
this value together with a range of values for λa and from
the temperature dependence of the order parameters we have
determined the variation of the transition temperatures as
a function of the relative biaxiality λa . The results for the
phase maps are shown in Fig. 2(a). For λa of zero we find
the transitions NU –I and ND2h–NU in agreement with those
reported by Sonnet et al. [38]. We see that the NU –I and
ND2h–NU transition temperatures do not change with λa , as
required, because it does not contribute to the orientational
order of the phases involved. However, as soon as λa does
deviate from zero we find that the biaxial nematic phase with
C2h symmetry and identified by the nonzero value of 〈Ra

22〉 as
well as the order parameters 〈R00〉 and 〈Rs

22〉 appears in the
phase map. For small values of λa the transition NC2h–ND2h

is observed to be second order. The stability of the NC2h

phase grows with increasing λa , as is to be expected. What
was not anticipated was the appearance of another biaxial
nematic phase at the point at which the ND2h–NU transition
line meets the NC2h–ND2h phase boundary. This new phase
was identified by the fact that the biaxial order parameter
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FIG. 2. (Color online) The phase map predicted by the truncated model potential [see Eq. (31)] for a nematogen composed of biaxial
molecules with C2h symmetry; the phase behavior is shown as a function of the relative biaxiality coefficient λa , with λs of (a) 0.2, (b) 0.3,
and (c) 0.4. The phase previously labeled as NB− is here indicated by ND2h(⊥) given its subsequent identification. The dashed line indicates
second order phase transitions and solid lines denotes first order phase transitions; a circle shows a tricritical point. The vertical crosses indicate
the temperature range over which the order parameters shown in Fig. 3 were calculated.

〈Rs
22〉 is zero, while 〈R00〉 and 〈Ra

22〉 are not; since one order
parameter is absent we denote this phase, for the moment,
as NB−. This phase separates the biaxial nematic NC2h first
from the uniaxial nematic and then from the isotropic phase.
Its existence had not been expected because in the biaxial
nematic phase NC2h it was thought that all three major order
parameters would occur together and that the order parameter
〈Ra

22〉 would vanish before 〈Rs
22〉. The fact that the reverse can

occur may be attributed to the absence of coupling between
the order parameters and the angular function associated with
a different order parameter in Eq. (31). The transition between
the new biaxial nematic NB− and the NC2h phase is found to
be second order while that to the isotropic phase is first order.
We shall return to the identification of this biaxial nematic
phase at the end of the section.

The occurrence in a nematic phase of the biaxial orienta-
tional order reflected by 〈Rs

22〉 is controlled in the truncated
molecular field model by the scaled biaxiality coefficient λs .
We have, therefore, repeated our calculations with the larger
value for λs of 0.3 to explore its influence on the appearance

of the new phase NB− in the phase map. When λa is zero
the system exhibits the phase sequence ND2h–NU –I but now
the extent of the uniaxial nematic is considerably reduced as
is apparent from the results in Fig. 2(b). What will not be
clear is that the ND2h–NU transition is first order showing
that this transition exhibits tricritical behavior [38]. As soon
as λa departs from zero the NC2h phase appears and the
NC2h–ND2h transition temperature grows with λa as we had
observed for the smaller value of λs . At the triple point we do
not detect a transition to the NB− phase and nor did this phase
appear at the boundary between the NC2h and I phases as we
had found when λs was 0.2, in keeping with our expectations.

We have also explored another region of the phase map
by setting λs equal to the higher value of 0.4. According to
the calculation of Sonnet et al. [38] with λa equal to zero
the system exhibits a first order transition directly from the
isotropic phase to the ND2h phase. Then as λa increases
from zero the ND2h–I transition temperature does not change,
as expected and shown in Fig. 2(c). More interestingly, first
the NC2h–ND2h transition temperature and then that for the
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FIG. 3. (Color online) The dependence of the three order parameters 〈R00〉, 〈Rs
22〉, and 〈Ra

22〉 calculated with λs = 0.2 and (a) λa = 0.15
and (b) λa = 0.31 on the scaled temperature T ∗. In addition, the temperature variation of the pseudovector based order parameter 〈D̃1

00〉 is
shown in comparison with (a) 〈Ra

22〉 and (b) 〈Rs
22〉.

NC2h–I transition grow with λa . As for the calculations with
λs of 0.3, the system exhibits only the NC2h and ND2h biaxial
nematic phase but not the NB− phase. This is in keeping with
the larger value for λs driving the appearance of the order
parameter 〈Rs

22〉 and so inhibiting the formation of the NB−
phase.

The phase maps shown in Fig. 2 were constructed from the
temperature dependence of the three order parameters 〈R00〉,
〈Rs

22〉, and 〈Ra
22〉. However, this dependence is of interest in

its own right and so we have shown in Fig. 3 the variation of
these dominant order parameters with the scaled temperature
calculated with λs of 0.20 and λa of 0.15 and 0.31. The
results for λa of 0.15 are shown in Fig 3(a); here we see that
〈R00〉 is the first order parameter to appear on lowering
the scaled temperature T ∗, corresponding to the formation
of the uniaxial nematic phase from the isotropic at T ∗ of
0.2202. The order parameter changes discontinuously in
keeping with the expected first order nature of the transition
[23]. To obtain the order of the phase transition from the
calculations we have determined the order parameters and
the scaled temperature both to four decimal places. The phase
transition is taken as second order if the order parameters

corresponding to the lower symmetry phase changes contin-
uously at the phase transition. In other words, the minimum
of the free energy corresponding to the lower symmetry phase
is always the global minimum. On the other hand, the order
parameters corresponding to the lower symmetry phase change
discontinuously at the first order phase transition. In our
methodology it means that just slightly above the transition
temperature we would find a region where there are two
minima of the free energy. One minimum corresponding to
the lower symmetry phase is the local minimum, whereas
the other free energy minimum corresponding to the higher
symmetry phase is the global minimum. As the temperature
is lowered further the next order parameter to appear is 〈Rs

22〉
at T ∗ of 0.1674 corresponding to the formation of the biaxial
nematic with D2h symmetry. The order parameter 〈Rs

22〉 is seen
to grow continuously at the ND2h–NU transition in keeping
with its second order character [28]. The final order parameter
to appear is 〈Ra

22〉, on the formation of the C2h biaxial nematic
phase at T ∗ of 0.1497. The order parameter seems to grow
continuously but steeply at the phase transition suggesting
that it is second order. It is also of interest that the rate of
change of the other two order parameters 〈R00〉 and 〈Rs

22〉 with
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temperature also increases when the NC2h phase is formed.
The behavior of the system for the larger value of λa of
0.31 is, as we have seen, more surprising. The first phase
to appear is the uniaxial nematic which necessarily has the
same transitional properties as when λa is 0.15. However,
unlike the system with the lower value of λa the next order
parameter to appear is 〈Ra

22〉 and not 〈Rs
22〉 expected for the

biaxial nematic with D2h symmetry. The symmetry of the
phase with nonzero order parameters 〈R00〉 and 〈Ra

22〉 is not
known so it was designated as NB−. The discontinuity in
〈R00〉 and in 〈Ra

22〉 at the NB−–NU transition for T ∗ of 0.2148
suggests that this is first order. At T ∗ of 0.1976 the third
order parameter 〈Rs

22〉 appears growing relatively rapidly but
continuously with decreasing temperature indicating that the
NC2h–NB− transition is second order. This transition can also
be discerned from the change in the variation of 〈Ra

22〉 and
〈R00〉 with the scaled temperature.

The other order parameter 〈D̃1
00〉, constructed from two

pseudovectors, does not appear in the molecular field theory
and so cannot be determined from the free energy. It can,
however, be obtained from the singlet orientational distribution
function f (Ω) calculated from the truncated potential of mean
torque. Thus

〈
D̃1

00

〉 =
∫

D̃1
00(Ω)f (Ω)dΩ, (35)

where

f (Ω) = Q−1 exp [−U ∗
trun(Ω)/T ∗]; (36)

here U ∗
trun(Ω) is given by Eq. (31) and the orientational

partition function Q is given by Eq. (33). The integration in
Eq. (35) is taken over O(3) to allow for the mirror plane
in both the molecule and the phase with C2h point group
symmetry. However, because D̃1

00(Ω) is a pseudovector this
is not necessary because the average 〈D̃1

00〉 can be written as

〈
D̃1

00

〉 =
∫

SO(3)
D1

00(Ω)f (Ω)dΩ. (37)

The temperature dependence of 〈D̃1
00〉 is shown in Fig. 3(a)

calculated for λs = 0.2 and λa of 0.15; this system exhibits
the phase sequence NC2h–ND2h–NU –I . The order parameter
is zero in the ND2h and NU phases but then starts to grow
when the NC2h phase is entered. This behavior is as we had
anticipated. What we had not expected was that the behavior
of the two order parameters 〈Ra

22〉 and 〈D̃1
00〉 would parallel

each other quite so closely. That is 〈D̃1
00〉 also grows rapidly

from zero and at the lowest temperature studied has reached
a high value of 0.9853 which is close to the limiting value
found for 〈Ra

22〉 but higher than this. The implication of this
near equality can be seen immediately from the Cartesian
versions of these two order parameters given in Eqs. (21)
and (23). The difference 〈Ra

22〉 − 〈D̃1
00〉 is just 4SYX

xy /3 and
so our results show that the order parameter SYX

xy must
be small; this is certainly the case in the high order limit
where it vanishes. We also show the variation of 〈D̃1

00〉 with
temperature now calculated for λs of 0.2 and λa equal to 0.31 in
Fig. 3(b). This parametrization is especially interesting
because it yields the intermediate biaxial nematic phase NB−
of, as yet, unknown symmetry. The variation of 〈D̃1

00〉 in the

FIG. 4. A sketch of the idealized organization of molecules with
C2h point group symmetry in the biaxial nematic phase ND2h(⊥) in
which the minor axes of half the molecules tend to be perpendicular
to those of the other half. The axis systems (x ′y ′z) and (X′Y ′Z) show
the symmetry axes for this idealized ND2h phase and the molecules
forming it. The cross section of the average structure obtained by
merging molecules in which the x axes are orthogonal is also shown.

various phases helps us to identify NB−. We find that 〈D̃1
00〉

is zero in all but the low-temperature phase where the three
second rank order parameters are also nonzero. This confirms
our earlier assignment of this as an NC2h phase. In the NB−
phase although the order parameter 〈Ra

22〉 expected for a phase
with C2h point group symmetry is nonzero 〈D̃1

00〉 vanishes
thus suggesting that this phase does not have C2h symmetry.
The nonvanishing order parameter 〈Ra

22〉 shows, however, that
the phase is biaxial and that possibly it has D2h point group
symmetry for which 〈Rs

22〉 vanishes but 〈Ra
22〉 and 〈R00〉 are

nonzero. A sketch of the molecular organization satisfying
these constraints, at least in the high order limit, is given in
Fig. 4.

We also show in Fig. 4 the average molecular structure
obtained by internal rotation of the molecule by 180◦ about x
and 90◦ about z and merging this with the original molecule. As
expected this average structure has D2h point group symmetry
but with different rotation axes to that found for the molecules
in the D2h(||) biaxial nematic [see Fig. 1(c)]. In principle an
average structure with D2h symmetry could also be constructed
from two molecules in which one is rotated about z with respect
to the other by an arbitrary angle. However, the form of the
truncated potential of mean torque for the system studied and
its parametrization requires that this angle is 90◦. The fact that
the order parameter 〈Ra

22〉 is not zero but 〈Rs
22〉 is suggests

that the choice of the laboratory and molecular axis systems
is not appropriate for this particular molecular organization.
Inspection of the sketch in Fig. 4 suggests that the only choice
which would fit would involve a rotation of both molecular
and laboratory frames about z and Z, respectively by 45◦. The
new axis systems are shown in Fig. 4 and now it is clear that
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the molecular x ′ axes tend to be parallel to the new laboratory
X′ axis. In general, this transformation also appears to solve
the problem of identifying the phase symmetry. Thus they
correspond to the change of α to α ± π/4 for the laboratory
frame and γ to γ ∓ π/4 for the molecular frame. These
transformations lead to a remarkable change in the functions
defining the two order parameters. Thus

Ra
22(α,β,γ )

π/4−−−−→
rotations

Rs
22(α′,β,γ ′), (38)

Rs
22(α,β,γ )

π/4−−−−→
rotations

Ra
22(α′,β,γ ′), (39)

where the two rotations take place about the z and Z axes.
The results of the transformation to the new molecular and
laboratory frames interchanges the order parameters 〈Rs

22〉 and
〈Ra

22〉 so that in the new frames 〈Rs
22〉 is nonzero and now it is

〈Ra
22〉 that vanishes. This is just what is expected for a biaxial

nematic phase with D2h point group symmetry. To distinguish
between the two ND2h phases we have added the symbols
(‖) and (⊥) to indicate whether the molecular minor axes are
parallel or perpendicular in the biaxial nematic phase.

V. SUMMARY AND CONCLUSION

It is usually assumed either explicitly or implicitly that
biaxial nematic phases possess D2h point group symmetry.
However, for many years it has been appreciated that biaxial
phases of lower symmetry could also be formed. To aid in
gaining an understanding of this behavior we have developed
a molecular field theory for a biaxial nematic with C2h

point group symmetry constituted from molecules with the
same symmetry. This theory requires a knowledge of the
independent orientational order parameters for the phase.
There are, in fact, nine second rank order parameters and
a single pseudovector based order parameter of rank one;
although it is not expected to make any significant contribution
to the theory. This large number contrasts with the four
second rank order parameters needed for the D2h biaxial
nematic composed of molecules having the same symmetry.
In the theory for this phase there are just three molecular
interaction parameters but this number grows to six for the
C2h system. The evaluation of these interaction parameters is
a challenging task and the best, if not the only, model now
available for this is based on the excluded volume of the
molecules [4]. We have avoided this problem and reduced the
complexity of the theory by retaining just the three dominant
order parameters. The theory is, therefore, an extension of the
Sonnet-Virga-Durand theory [38] for biaxial nematics with
D2h point group symmetry to those with C2h symmetry. The
resulting simplification reduces the number of intermolecular
coefficients to just three. Two of these, λs and λa , are related
to the molecular biaxiality; for molecules with D2h symmetry
λa vanishes. The appearance of the D2h biaxial nematic is
controlled by λs and that for the C2h phase by λa . In fact,
the choice of these parameters generates a very rich phase
behavior with phase sequences,

NC2h–I,

NC2h–ND2h(||)–I,

NC2h–ND2h(||)–NU –I,

NC2h–ND2h(⊥)–I,

NC2h–ND2h(⊥)–NU –I.

In addition, the model also reveals the existence of two
biaxial nematics with D2h point group symmetry. In one the
minor molecular axes tend to be parallel as might be expected
but in the other they tend to be perpendicular. We have yet to
discover whether one D2h phase can undergo a transition into
the other. As Sonnet et al. [38] have discovered the ND2h–NU

transition exhibits a tricritical behavior passing from second
order to first order with increasing molecular biaxiality λs at
about 0.3 for our definition of the parameter. Similarly, we
find three tricritical points, one for each of the phase maps
with λs of 0.2, 0.3, and 0.4. For λs of 0.2 we find the tricritical
point along the ND2h(⊥)–NU transition line at λa = 0.3. The
tricritical point for λs of 0.3 is found at λa = 0.22 along the
NC2h–ND2h(‖) transition line. Finally, in the phase map for
λs = 0.4 it is located at λa = 0.24 along the NC2h–ND2h(‖)
transition line.

The model which we have developed for the biaxial nematic
phase with C2h point group has been considerably simplified
from the complete theory. However, it still retains much of the
essential physics and shows a rich phase behavior. It seems
clear that there are many facets of this model which merit
further exploration. It is likely that the phase maps together
with orientational order parameters will prove to be a valuable
aid to the interpretation of experimental studies of mesogens
thought to exhibit the biaxial nematic phase with C2h point
group symmetry. They may also lead to a better understanding
of the relationship between the principal axes for macroscopic
tensorial properties and the directors for this low symmetry
biaxial nematic phase.

Finally, we wish to note that in our model of C2h molecules
that constitute the nematic phases we have taken the C2(z)
rotation axis to be parallel to the molecular long axis. This
is apparent from the sketch of the molecules shown in Fig. 1
and the fact that the order parameter 〈R00〉 is large and positive
in all of the nematic phases. However, there is no reason why
for calamitic mesogenic molecules the C2 axis needs to be
parallel to the molecular long axis. Relaxing this implicit
constraint is an interesting problem, in particular to explore
to what extent the nematic phases formed when the C2 axis
is parallel or perpendicular to the molecular long axis differ.
This is a problem that we shall certainly return to.
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APPENDIX A

Here we wish to provide a justification for the assertion
concerning the need to include a pseudovector order parameter
for a biaxial nematic phase with C2h point group symmetry
composed of molecules having the same symmetry. Our
starting point is the Cartesian supermatrix describing the
orientational order of the phase. Each element in this matrix
of matrices is given by [21,23]

SAB
ab = 〈(3laAlbB − δabδAB)〉/2, (A1)

where the lower case letters define the molecular axes and
the upper case letters are the laboratory axes, the laA are
the direction cosines between the molecular axis a and the
laboratory axis A and δab is the Kronecker delta function. If
we define z to be the C2 rotation axis in the molecule and Z that
in the laboratory then the ordering supermatrix has the form

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

SXX
xx SXY

xx 0 SXX
xy SXY

xy 0 0 0 0

SYX
xx SYY

xx 0 SYX
xy SYY

xy 0 0 0 0

0 0 SZZ
xx 0 0 SZZ

xy 0 0 0

SXX
yx SXY

yx 0 SXX
yy SXY

yy 0 0 0 0

SYX
yx SYY

yx 0 SYX
yy SYY

yy 0 0 0 0

0 0 SZZ
yx 0 0 SZZ

yy 0 0 0

0 0 0 0 0 0 SXX
zz SXY

zz 0

0 0 0 0 0 0 SYX
zz SYY

zz 0

0 0 0 0 0 0 0 0 SZZ
zz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

In determining the number of independent order parameters
of this supermatrix we note that from their definition in
Eq. (A1) the diagonal submatrices are symmetric about
their diagonals. In marked contrast, the two off-diagonal
submatrices are not symmetric about their diagonals [39] since,
for example,

SXY
xy (≡ 〈3lxXlyY /2〉) (A3)

clearly differs from

SYX
xy (≡ 〈3lxY lyX/2〉). (A4)

The nonsymmetric matrix can be written as the sum of an
antisymmetric matrix and a symmetric matrix

⎛
⎜⎜⎝

SXX
xy SXY

xy 0

SYX
xy SYY

xy 0

0 0 SZZ
xy

⎞
⎟⎟⎠

≡

⎛
⎜⎜⎝

0 (SXY
xy − SYX

xy )/2 0

−(SXY
xy − SYX

xy )/2 0 0

0 0 0

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

SXX
xy (SXY

xy + SYX
xy )/2 0

(SXY
xy + SYX

xy )/2 SYY
xy 0

0 0 SZZ
xy

⎞
⎟⎟⎠ . (A5)

Including this separation of the off-diagonal matrices into the
supermatrix SAB

ab results in a symmetric ordering supermatrix
and an antisymmetric ordering supermatrix. The symmetric
supermatrix contains 25 nonzero elements. However, allowing
for the symmetry about the diagonals and the fact that the traces∑

A SAA
ab and

∑
a SAB

aa vanish leaves a total of nine independent
component order parameters. These Cartesian components
are linearly related to the nine order parameters defined in
terms of the Wigner functions [see Eqs (4)–(12) and (14)–
(22)]. The antisymmetric ordering supermatrix contains just a
single independent element since SXY

xy = SYX
yx and SXY

yx = SYX
xy .

We take this independent component to be SXY
xy − SYX

xy [see
Eq. (A5)]. The direction cosines occurring in this element can
be written as the scalar products of the unit vectors defining
the molecular and laboratory frames. That is

SXY
xy − SYX

xy = (3/2)〈(x · X)(y · Y) − (x · Y)(y · X)〉, (A6)

and use of the Binet-Cauchy identity [40] allows this to be
written as

SXY
xy − SYX

xy = (3/2)〈(x ∧ y) · (X ∧ Y)〉. (A7)

The two cross products define, in a sense, the axes z and Z
in the molecular and laboratory frames, respectively. There is,
however, a fundamental difference between the conventional
axes z and Z which are polar vectors, that is they change
sign under inversion through the center of symmetry of the
respective coordinate system. In contrast the vectors defined
by the cross products are axial or pseudovectors, that is they do
not change sign under inversion. To distinguish between these
two classes of vector we add a tilde to the pseudovectors so
that the independent element of the antisymmetric supermatrix
is given by

SXY
xy − SYX

xy = (3/2)〈z̃ · Z̃〉. (A8)

Since neither z̃ nor Z̃ changes sign when inverted through the
center of symmetry of their respective frames this means that
the order parameter (SXY

xy − SYX
xy ) is invariant under inversion

and does not vanish for a molecule with C2h point group
symmetry in a phase having the same symmetry. This contrasts
with the behavior of the analogous order parameter 〈z · Z〉
defined in terms of the axes in the molecular and laboratory
frames. These are conventional vectors and so change sign
when the respective system, molecule or laboratory, is inverted
through the center of symmetry. In consequence the polar order
parameter 〈z · Z〉 will change sign and so must vanish in the
C2h phase, unlike the pseudovector order parameter 〈z̃ · Z̃〉.

We have introduced these order parameters using the
Cartesian language since this leads logically to the definition
of the pseudovector order parameter. However, this and the
polar order parameter can also be written in terms of Wigner
functions. Thus

〈z · Z〉 = 〈
D1

00

〉
(A9)
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and
〈z̃ · Z̃〉 = 〈

D̃1
00

〉
, (A10)

where the tilde again indicates the definition in terms of
pseudovectors for the molecule and for the phase. The
consequence of this is that 〈D1

00〉 will change sign on inverting
through the center of symmetry in the C2h phase and so this
polar order parameter will vanish. This contrasts with the
behavior of the pseudovector order parameter which does not
change sign on inversion and so does not vanish in a C2h phase
composed of molecules with the same symmetry. We note that
Mettout [17] has also considered the pseudovector and polar
order parameters based on rank one Wigner functions.

APPENDIX B

Here we show in a little detail that, based on the C2h point
group symmetry of the molecules, there are just six nonzero
components of the interaction supertensors u2mn [20].

(a) The molecules comprising the system are identical and
so

u2mn = u2nm, (B1)

where the subscript m refers to molecule 1 and n refers to
molecule 2.

(b) The internal energy 〈U 〉 constructed from the invariants
in Eq. (24) is real so that [20]

u∗
2mn = (−)m+nu2−m−n. (B2)

(c) The C2(z) element of C2h requires that for u2mn the
subscripts m and n can only take values 0 and ±2.

These three constraints lead to the following six indepen-
dent nonzero components of the interaction supertensor u2mn,

(1) u200,

(2) u202 = u220,

(3) u20−2 = u2−20,

} These components are related
by u∗

202 = u20−2 and
u∗

220 = u2−20.

(4) u222,

(5) u2−2−2,

}
These components are related
by u∗

222 = u2−2−2.

(6) u22−2 = u2−22.

The two components given against (6) are real since u∗
22−2 =

u2−22.
Although these six independent components were obtained

by symmetry based arguments it is possible that transformation
to a new molecular frame by rotation about the C2(z) axis could
reduce the number further. We have explored this possibility
and it seems to be feasible. Rotation of the axis system about z
through an angle γ causes the components of the supertensor
to change according to

u′
2mn = u2mn exp [i(m + n)γ ]. (B3)

Here the prime denotes the value following the rotation. In
order for, say, λ0 [see Eq. (30)] to vanish we require

u222 exp (i4γ ) − u2−2−2 exp (−i4γ ) = 0. (B4)

To solve this equation for γ we write

u222 = a222 + ib222, (B5)

and since u2−2−2 is u∗
222 then

u2−2−2 = a222 − ib222. (B6)

Substitution of these two results into Eq. (B4) then gives the
rotation angle making λ0 vanish as

tan 4γ = −b222/a222. (B7)

Similar arguments show that for γa to be zero the rotation
angle is

tan 2γ = −b220/a220, (B8)

and for γs to be zero requires

tan 2γ = a220/b220. (B9)

Thus the three coefficients can be made to vanish but not
simultaneously, each requires a different angle of rotation.
This could simplify the complete molecular field theory to
some extent. In addition, it would provide an unambiguous
way in which to define the x and y molecular axes. In contrast,
the more important relative coefficient λa cannot, in general,
be made to vanish. We shall return to this possibility as well
as other ways of simplifying the problem in a subsequent
paper [41].
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