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Orientationally ordered phase produced by fully antinematic interactions: A simulation study
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We consider here a classical model, consisting of D2h symmetric particles, whose centers of mass are associated
with a three-dimensional simple-cubic lattice; the pair potential is isotropic in orientation space, and restricted
to nearest neighbors. Two orthonormal triads define orientations of a pair of interacting particles; the simplest
potential models proposed in the literature can be written as a linear combination involving the squares of the
scalar products between corresponding unit vectors only, thus depending on three parameters, and making the
interaction model rather versatile. A coupling constant with negative sign tends to keep the two interacting unit
vectors parallel to each other, whereas a positive sign tends to keep them mutually orthogonal (antinematic
coupling). We address here a special, extreme case of the above family, involving only antinematic couplings:
more precisely, three antinematic terms whose coefficients are set to a common positive value (hence the name
PPP model). The model under investigation produces a doubly degenerate pair ground state; the nearest-neighbor
range of the interaction and the bipartite character of the lattice can propagate the pair ground state and increase
the overall degeneracy, but without producing frustration. The model was investigated by a simplified molecular
field treatment as well as by Monte Carlo simulation, whose results suggested a second-order transition to a
low-temperature biaxially ordered phase; ground-state configurations producing orientational order have been
selected by thermal fluctuations. The molecular field treatment also predicted a continuous transition, and was
found to overestimate the transition temperature by a factor 2.
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I. INTRODUCTION

Over the decades, the prediction of new possible phases
(i.e., new types of structural order) often resulting from
less usual microscopic interaction models, or just proposed
as logical far-fetched possibilities [1,2], has emerged as an
important aspect in liquid crystal research: The theoretical
investigation has usually been worked out at various levels
of approximation, and the search for experimental evidence
of their realizations has often turned out to be a difficult and
challenging task.

To quote one smectic example, let us mention that experi-
mental evidence of triclinic fluid order (SmCPG phase) [1] has
recently been found in a single, isolated fluid smectic liquid
crystal layer, freely suspended in air [2], and resulting from
suitable bent-core molecules [3].1 Moreover, various phases
involving no positional order and only a rotational one have
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1In Ref. [1], pages 275–277, de Gennes proposed the “rather far

fetched possibility” of a tilted apolar smectic C phase, consisting
of biaxial molecules, where the macroscopic second–rank ordering
tensor is biaxial and its eigenframe bears no simple relationship with
the layers (i.e., none of its three eigenvectors is either parallel or
orthogonal to the layers); its layers would only possess inversion
symmetry, and thus belong to the point symmetry class Ci ; this was
labelled SmCG phase (G for generic) [1,2]; notice also the footnote
on page 275, explicitly excluding from the discussion both ferro–
and antiferro–electric smectics, not known at that time. Actually,
experimental realizations were later obtained (see Ref. [2] and others
quoted therein), and it was also found that they can consist of suitable

been predicted so far: A detailed symmetry classification of
these “unconventional” nematic phases, associated with the
onset of either one tensor of rank different from two or of
several combined tensors, has recently been carried out by
Mettout [4–6], also in connection with bent-core mesogens
[3,7].

Another case involves the possible existence of cubatic
orientational order (i.e., along three mutually orthogonal axes):
It had been investigated theoretically [8], and explicitly pre-
dicted in some specific cases, involving both hard-core [9–16]
and continuous interaction models [17]; no experimental
realizations of a cubatic phase are known for the time being.

Nematic phases are usually apolar and uniaxial, although
the constituent molecules possess a lower symmetry; on
the one hand, based on this observation, both theoretical
treatments and interpretations of experimental results have
often been simplified from the start by assuming that ne-
matogenic molecules possess uniaxial (D∞h) symmetry. On
the other hand, starting in the 1970s [18], a by now quite
substantial amount of theoretical work had investigated the
possible effects of molecular deviation from uniaxial symme-
try [molecular biaxiality (MB)] on the resulting nematic order.
Already by the end of the past century, approximate analytical
theories such as molecular field (MF) or Landau treatments,
and later simulation studies had shown that single-component
models consisting of molecules possessing D2h symmetry, and
interacting by various appropriate continuous or hard-core

polar bent–core molecules, so that, in orientational terms, the phase
symmetry may be even lower (C1); these were called SmCGP phases
(P for polar).

011703-11539-3755/2011/84(1)/011703(14) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.011703


SILVANO ROMANO AND GIOVANNI DE MATTEIS PHYSICAL REVIEW E 84, 011703 (2011)

potentials, can produce a biaxial phase; a more extensive
treatment and a more detailed bibliography can be found, for
example, in Refs. [19,20]; a review on computer simulation
studies of (thermotropic) biaxial nematic liquid crystals has
recently been published [21].

As for experimental realizations, a biaxial phase had been
discovered in a lyotropic system in 1980 [22]; since 1986, and
until approximately 2003, there had been numerous reports of
thermotropic biaxiality in low-molecular weight compounds,
many of which were later called into question (see, e.g.,
Ref. [23]). Better experimental evidence was claimed since
2004, and by now for a few classes of compounds, such
as polar bent-core molecules (see, e.g., Ref. [24], and also
Ref. [25] about alternative interpretations), and organosiloxane
tetrapodes or their counterparts with a germanium core (see,
e.g., Refs. [26,27]); they have been investigated by various
techniques, and biaxial order parameters have been measured
in a few cases [28] (see also Refs. [21,25,29–31] for a thorough
discussion and a more detailed bibliography). Here we limit
ourselves to mention a few aspects which have been recently
addressed. On the one hand, an alternative picture of biaxial
nematic order [21,32–34] has been proposed, based on the idea
of biaxial domains reoriented by surface anchoring or external
fields; on the other hand, it has been pointed out that biaxial
nematics need not possess the usually assumed D2h symmetry,
but a lower C2h one is also appropriate [33,35–38].

Interest in biaxial nematics is also connected with their
possible applications, for example, in displays [21,39–43]:
Orientation of the secondary director in response to external
perturbations is expected to be significantly faster than for the
primary one.

Another theoretical possibility whose experimental real-
izations have actively been looked for involves polar ne-
matic behavior in low molecular mass thermotropic meso-
gens [4–6,21,37,44,45]. Such materials are also expected
to exhibit fast and easy response to external electric
fields.

Over the decades, a rather simple, continuous, biaxial
mesogenic model had been proposed [Eq. (4) in the following
section] and investigated through contributions by a number of
authors; we propose to label it generalized Straley (gS) model.
On the other hand, various aspects of it, such as possible
simplifications, additional symmetry, and versatility, have
emerged over the last 5–10 years. Starting a few years ago (i.e.,
simultaneously with and independently of new experimental
findings), a renewed theoretical study of the model and of
its possible variants was started by Durand, Sonnet, and
Virga (DSV) [46], and continued by them as well as other
authors (see Refs. [47–51] and also the following section).
The new proposed models, or, more precisely, the effect of
new parameter choices in the gS model, were studied by MF
(refined by a rigorous generalization of the minimax procedure
where appropriate [48,51]), as well as by Monte Carlo
simulation (MC) in the simple-cubic lattice-model version
[19,52,53], and, in some cases, by two-site cluster (TSC)
theory [54]. Moreover, very recently and motivated by the
new experimental facts, the single-tensor Landau-deGennes
theory of biaxial nematics has been carefully re-examined in
Refs. [55,56] and a double-tensor Landau theory has been put
forward and studied in Refs. [5,57].

The named potential models involve three independent
parameters, and the above analysis showed that they are
rather versatile (i.e., capable of producing both biaxial and
purely uniaxial order in their ground states, and hence
low-temperature phases). For example, last year, some other
mesogenic lattice models, involving suitable antinematic terms
in a pair potential of this type, had been proposed and analyzed
in Ref. [58]; they were found to produce only uniaxial order
in the low-temperature phase, and, in some cases, showed
evidence of a continuous ordering transition.

Thus, we are considering here an extreme case where only
antinematic couplings survive, tending to produce mutual
perpendicular orientations of the interacting moieties, and
defining a D2h–symmetric extension of the Kohring-Shrock
model [see Eq. (2) below].

In its simplest version, the well-known Lebwohl-Lasher
(LL) lattice model [59,60] involves uniaxial (D∞h-symmetric)
particles associated with the nodes of a simple-cubic latticeZ3,
interacting via a pair potential restricted to nearest neighbors,
and of the form,

� = −εP2(sλ · sμ). (1)

Here, λ labels a lattice node, with coordinate vector xλ, and the
unit vector sλ defines orientation of the particle associated with
the named node; P2(. . .) denotes the second-order Legendre
polynomial, and ε is a positive constant setting temperature
and energy scales (i.e., T ∗ = kBT /ε).

Some years after the original papers by LL, Kohring
and Shrock (KS) [61] proposed and studied the antinematic
counterpart of the model, on the same lattice, and defined by

� = +εP2(sλ · sμ), (2)

where the interaction favors mutual orthogonal (rather than
parallel) orientation of pairs of nearest-neighboring particles;
its ground state corresponds to a highly degenerate but
nonfrustrated state (see also the following section). The
intention of the named authors was not to provide an alternative
model for uniaxial nematic liquid crystals, but rather to
conceive a valuable model serving as a tool to address the
fundamental statistical mechanical question of the effect of
ground-state disorder without frustration [61]. KS carried out
Monte Carlo calculations, and found evidence of a continuous
ordering transition at finite temperature; the model was further
investigated in Ref. [62] and a more detailed study took place
in Ref. [63].

The present paper is organized as follows. In Sec. II the
gS potential model is presented and the special case under
investigation here is analyzed in greater detail, especially in
its connection with the KS model. In Sec. III a simplified MF
approximation is proposed and worked out. MC simulation
aspects are addressed in Sec. IV, and the obtained results
are presented in Sec. V. Finally, Sec. VI reports a summary
and an outline of future research directions, and further
mathematical details of the MF treatment are presented in
Appendix A.

II. PAIR POTENTIALS AND GROUND STATES

It will prove convenient to start this section by recalling the
possible ground-state configurations for the KS model [61,62];
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let the three orthogonal unit vectors {ek,k = 1,2,3} define an
arbitrary Cartesian frame (which can, in this case, be taken as
defined by the lattice axes, without any loss of generality). The
lattice Z3 is bipartite: In other words, for each lattice site λ,
let tλ denote the sum of its three coordinates, so that site parity
can be defined via the parity of the corresponding tλ; then all
nearest neighbors of a given lattice site have opposite parity,
all next-nearest-neighbors have the same parity, and so on.
The lattice thus results from two interpenetrating sublattices,
composed of all even- or all odd-parity sites, respectively
(even and odd sublattices, for short); moreover the interaction
is restricted to nearest neighbors, thus between pairs of
lattice sites possessing opposite parities. This combination of
bipartite lattice and nearest-neighbor interaction entails that
two different particles (or lattice sites) interacting with a third
one never interact with each other (the uncoupling condition,
for short).

Let us first remark that the pair ground state for the KS
model possesses continuous degeneracy. One can, therefore,
define a continuously degenerate overall ground state, by
requesting that all particles associated with lattice sites of
one parity point along a common direction, whereas particles
on the other sublattice are randomly oriented perpendicular
to the same direction, say sλ = ±e3 for even-parity sites,
and sλ = cos φλe1 + sin φλe2 for odd-parity sites, where the
continuous random variables φλ associated with lattice sites
λ are mutually independent; this set of configurations will be
referred to as CC.

Upon averaging over CC (i.e., over the angles φλ),
one would find uniaxial nematic order, the value 1/4 for
the overall second-rank order parameter 〈P2〉, and the value
11/16 for the overall fourth-rank order parameter 〈P4〉 (see
Refs. [60,64–66]), respectively. On the other hand, one can also
consider discretized orientations of the individual particles,
and define the set DA (D for discrete) of all overall ground-state
configurations where each unit vector sλ points along one of
the three ±ek [the ± sign, allowing for particle symmetry,
will be omitted in the following Eqs. (11), (15), and (16) for
simplicity of notation], of course, while being orthogonal to
its nearest neighbors; a subset of DA, to be called DB, is
obtained by requesting that all particles associated with lattice
sites of one parity point along a common direction (one of the
three ±ek), whereas particles associated with lattice sites of the
opposite parity point along the two other available directions.
In turn, DB contains a subset (to be called DC) where the other
sublattice is occupied by particles in the two other possible
orientations, and with equal populations. Notice that [61] DA
also contains a subset of periodic configurations with period 3
(to be called D3), where the orientation of the particle sitting
at the lattice site λ is defined in terms of the value mod (tλ,3),
for example, by eI ,I = 1 + mod (tλ,3).

Upon averaging over all configurations in DA, second-
rank orientational order would vanish, whereas fourth-rank
order would survive, with the value 〈P4〉DA = 7/12 for the
corresponding order parameter.

Simulation studies had shown [61,62] that, at sufficiently
low but finite temperatures, only the above continuous de-
generacy matters (i.e., only configurations belonging to or
close to CC are selected by thermal fluctuations) as to be
expected; ordering by entropic effect (or “by disorder”; see,

e.g., Refs. [67–69]) will play a major role in the following as
well.

As for the interaction model under study here, we are
considering classical, identical particles, possessing D2h sym-
metry, whose centers of mass are associated with a three-
dimensional simple-cubic lattice. The interaction potential
is isotropic in orientation space, and restricted to nearest
neighbors, involving particles or sites labelled by λ and μ,
respectively; the orientation of each particle can be specified
via an orthonormal triplet of three-component vectors (defined
by intersections of its symmetry planes, and usually coinciding
with eigenvectors of its inertia or polarizability tensors), say
{nλ,j ,j = 1,2,3}; in turn, these are defined by an ordered
triplet of Euler angles ωλ = {φλ,θλ,ψλ}. Orientations are
defined with respect to the above common, but otherwise
arbitrary, Cartesian frame. It also proves convenient to use
a simpler notation for the unit vectors defining orientations
of two interacting molecules [70], that is, uj for nλ,j , and
vk for nμ,k , respectively; here, for each j , uj and vj have
the same functional dependencies on ωλ and ωμ, respectively
(pairs of corresponding unit vectors in the two interacting
molecules). Let 	̃ = 	λμ denote the set of Euler angles
defining the rotation transforming uj into vj ; Euler angles will
be defined here according to the convention used by Brink and
Satchler [71–73]. We also define

fjk = (vj · uk), Gjk = P2(fjk). (3)

The simplest continuous interaction potentials proposed and
studied in this context (see, e.g., Refs. [46,47,74,75]) are
quadratic with respect to the scalar products fjk; owing
to available geometric identities and without any loss of
generality (see, e.g., the discussion in Ref. [19]), they can
be reduced to a linear combination involving the three terms
Gkk only, that is,

� = ε

3∑
k=1

rkGkk, (4a)

or

� = ε{ξG33 + η(G11 − G22) + ζ [2(G11 + G22) − G33]}.
(4b)

Linear transformations between the two sets of coupling
constants can be found in Ref. [19]; in the present,
D2h-symmetric case, at most one of the three coefficients
rk can equal zero. The three coefficients in each set can be
taken to be smaller than 1 in magnitude, possibly at the cost
of rescaling ε, and hence the temperature, as will be done
here (so that the available volume in parameter space is 8).
Moreover, inequivalent regions of the parameter space can be
further reduced, allowing for duality, that is, invariance of the
pair potential upon applying the same permutation to both sets
of interacting axes (see Refs. [19,46,47]). Notice also that,
in Eq. (4), equality between two of the three coefficients,
say r1 = r2 or equivalently the condition η = 0, entail an
additional D4h symmetry of the interaction [20]; in other
words, two simultaneous rotations by ±π

2 around the two
unit vectors associated with the third coefficient, u3 and v3,
respectively (i.e., taking place in the individual molecular
frames), conserve the potential.
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As in Refs. [20,58], we shall be considering here cases
where the potential parameters, in the notation of Eq. (4a),
assume the specialized values +1, 0, or −1; hence, in the
corresponding names, the symbols P,0,M will be assigned
accordingly; for example, the P0M model [58] is defined by
r1 = +1, r2 = 0, r3 = −1 (see other examples below).

Particle interactions, correlations, and orientational or-
der are usually expressed in terms of symmetry-adapted
combinations of Wigner rotation functions DJ

m,n(ω), that is,
for D2h symmetry (see, e.g., Refs. [70,76,77], as well as
detailed comparisons and discussion of notational issues in
Ref. [78]):

RJ
pq(ω) = (1/4)

∑
s=±1

∑
t=±1

DJ
sp,tq(ω); (5)

here J,p,q denote even and non-negative integers, 0 � p � J ,
0 � q � J , and ω = {φ,θ,ψ} denotes the ordered triplet of
Euler angles. Thus,

s1(ω) = R2
00(ω) = P2(cos θ ),

s2(ω) = R2
20(ω) = (1/4)

√
6 sin2 θ cos(2φ),

s3(ω) = R2
02(ω) = (1/4)

√
6 sin2 θ cos(2ψ), (6)

s4(ω) = R2
22(ω) = (1/4)(1 + cos2 θ )[cos(2φ) cos(2ψ)]

− (1/2) cos θ [sin(2φ) sin(2ψ)].

In Eq. (6), the simpler symbols sk(ω), involving just one
subscript, have been defined as well, for notational conve-
nience, especially in connection with the MF treatment of
the following section. Each term Gjk can be expressed as a
linear combination of the four above functions R2

pq(	̃) (see,
e.g., Refs. [19,77]). The rather general potential model to be
considered here [Eq. (4)] can also be written in terms of the
above symmetry-adapted basis functions [Eq. (6)] (see also
remarks on notation in Ref. [20]), that is,

� = ε

{
ξs1(	̃) −

√
6

2
η[s2(	̃) + s3(	̃)] + 6ζ s4(	̃)

}
. (7)

Over the years, various specific, biaxial mesogenic,
parametrizations had been proposed and studied for
Eq. (4); the first one of them, due to Straley [74] is based on
an approximate mapping from a hard-parallelepiped model.
Another, more often studied one [70,75,76,79,80], is ξ =
−1,4ζ = −η2; this can also be obtained by starting from a
dispersion model at the London-de Boer-Heller approxima-
tion and isotropically averaging over the orientation of the
intermolecular vector (see, e.g., Refs. [75,80]).

Both the Straley [74] and the “dispersive” parametrizations
mostly predict a biaxial-to-uniaxial transition of second order,
followed by a uniaxial-to-isotropic transition of first order; a
direct biaxial-to-isotropic transition of second order only exists
for special values of the potential parameters (isolated Landau
points). As mentioned above, a new approach was started over
the last few years in Refs. [46,47], along two different lines
of development. On the one hand, the authors of Refs. [46,47]
had examined, for general values of the parameters, the
mathematical conditions under which the pair potential
[Eq. (4)] produces a fully aligned biaxial pair ground state, as

well as its mechanical stability; the named stability condition
[46,47] reads

ζ < 0, and |η| < −(ξ + ζ ), (8a)
or
r1 + r2 < 0, and |r1 − r2| < (−1/2)(r1 + r2) − r3. (8b)

The measure of the corresponding set of points in parameter
space can be more easily calculated via the notation of Eq. (8a),
and is found to be 2 (i.e. one-fourth of the available volume).
Notice also that the two above named sets of parameters
were found to be consistent with the conditions in Eq. (8).
On the other hand, the authors of [46,47] had proposed the
simplified model defined by ξ = −1,η = 0,ζ < 0, that is,
r1 = r2, and studied it by MF, carrying out a bifurcation
analysis of the resulting consistency equations. The existence
of direct transitions between biaxial and isotropic phases, was
proven, together with criteria for the existence of tricritical
points. In addition to the Straley parametrization and to the
“dispersive” one, models defined by other parameter values
falling in the above stability region [Eq. (4)] have been studied
as well [20,48,50,53,81–84]. Yet, in experimental terms, the
thermotropic biaxial phase is an exception rather than the rule,
and, on the other hand, the presence of three coupling constants
in Eq. (4) makes the pair potential model under consideration
rather versatile [i.e., capable of producing different types
of orientational order in the pair ground state and hence
(presumably) in low-temperature phases]. Thus, there is some
interest in addressing regions of the parameter space where
suitable antinematic terms prevent the existence of a biaxially
ordered pair ground state; this range is defined in general
by [20,46–48,50]

ζ � 0, or |η| � − (ξ + ζ ) , (9a)
or

r1 + r2 � 0, or |r1 − r2| � (−1/2)(r1 + r2) − r3. (9b)

Actually, it is by now known that already the presence of one
antinematic term among the three coefficients rk may suffice
to spoil the biaxial ground state. An example is the entropic
destabilization of the fully ordered biaxial state taking place
when ξ < 0,η �= 0,ζ = 0 in Eq. (4b) or r1 �= 0,r2 = −r1,r3 <

0,|r1| � |r3| in Eq. (4a); it was observed in Ref. [79], and
later discussed in greater detail in Ref. [20]. On the other
hand, the broader conditions r3 > 0,r1 + r3 < 0,r2 + r3 < 0
may or may not satisfy Eq. (8b) (consider, e.g., the two cases
r1 = −1,r2 = −0.8,r3 = +0.1, and r1 = −1, r2 = −0.2,

r3 = +0.1).
Let us also recall that, in some cases, excluded volume

between identical convex bodies (spherocuboids) have been
obtained in closed form [49], and it was found that their
quadrupolar projections give rise to partly repulsive inter-
actions, still belonging to the biaxial stability region (8);
on the other hand, models containing stronger antinematic
contributions, such as P0M and PPM in [58], as well as
PPP discussed here, might be linked with excluded volumes
between hard nonconvex bodies [85].

Another class of partly antinematic potential models has
been investigated in Ref. [58]. These models are defined by

r1 � 0, r2 � 0, r3 < 0, r1 + r2 > 0. (10)
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The parameter values chosen in Eq. (10) entail a nematic
coupling between the long molecular axes (the ′′3′′ axes u3,v3),
and an antinematic one between other corresponding axes.
The nondegenerate pair ground state can be worked out by
inspection, and reads

v1 = u2, v2 = u1, v3 = u3; (11)

owing to the bipartite character of the lattice and to the
nearest-neighbor interaction, it is propagated over the whole
lattice without frustration. Notice that here biaxial order
is precluded on energy grounds, in contrast to the above
entropic mechanism [20,79]. The two specific cases P0M
(r1 = +1, r2 = 0, r3 = −1) and PPM (r1 = r2 = +1, r3 =
−1) were investigated in Ref. [58]; P0M was found to produce
a first-order transition between uniaxial nematic and isotropic
phases. On the other hand, both PPM and its opposite MMP
(Ref. [20]) showed evidence of a second-order transition.

Here we go on to investigate models from the general inter-
action potential (4) where the calamitic terms are completely
removed and all the couplings are antinematic, that is,

r1 > 0, r2 > 0, r3 > 0, (12)

in Eq. (4a), and, more explicitly, the very simple case r1 =
r2 = r3 = +1 (PPP) in the notation of Eq. (4a), thus taking the
form,

� = ε [G11 + G22 + G33] , (13)

corresponding to ξ = 3
2 , η = 0,ζ = 1/2 in Eqs. (4b) and (7),

� = ε

{
3

2
s1
(
	̃
)+ 3s4

(
	̃
)}

. (14)

Here the condition r1 = r2 = r3 entails Oh invariance of the
interaction: two simultaneous rotations by ±π

2 around the two
unit vectors ui and vi for each couple (i = 1,2,3), respectively
(i.e., taking place in the individual molecular frames), conserve
the potential. Its pair ground-state configuration is degenerate,
and the combination of bipartite lattice and nearest-neighbor
character of the interaction propagates it over the lattice and
increases degeneracy without frustration.

The pair ground-state configuration for the PPP potential
model [Eq. (13)] is doubly degenerate and can be written down
by inspection; it reads

v1 = u2, v2 = u3, v3 = u1, or
(15)

v1 = u3, v2 = u1, v3 = u2;

other critical points can be worked out and invariably lead to
a higher energy. For each of the above pair configurations, the
Hessian matrix was found to be positive definite.

Actually, since we are interested in overall ground-state
configurations as well, it proves convenient to describe them in
a more general setting (i.e., by expressing particle orientations
in the common Cartesian frame); let thus single-particle
orientations E1, E2, E3 be defined as follows:

nλ,1 = e1,nλ,2 = e2,nλ,3 = e3, for E1; (16a)

nλ,1 = e2,nλ,2 = e3,nλ,3 = e1, for E2; (16b)

nλ,1 = e3,nλ,2 = e1,nλ,3 = e2, for E3. (16c)

At this stage, one recognizes that the set of configurations DA
(and hence its subsets DB and DC) can be defined for PPP by
the appropriate transcription of the above stipulations for KS:
In other words, orientation of particle sλ along a certain ±ek for
the KS model corresponds to orientation of the triplet

{
nλ,j

}
along Ek for the PPP model. Comparison with KS shows an
important difference: Since the continuous degeneracy (hence
the CC set of configurations) has disappeared here, DA now
exhausts all ground-state configurations. Notice also that the
ground state of PPP possesses no second-rank orientational
order, but a fourth-rank cubatic one, by the above Oh symmetry
of the interaction.

Calculation of the orientational order parameters for a
configuration of type DC yields

〈s ′
1〉DC = 1, 〈s ′

4〉DC = (1/2), 〈s ′
2〉DC = 〈s ′

3〉DC = 0,

〈s ′′
1 〉DC = −(1/2), 〈s ′′

4 〉DC = −(1/4),

〈s ′′
2 〉DC = 〈s ′′

3 〉DC = 0;

here prime and double prime label quantities associated with
the two named even and odd sublattices, and overall quantities
are given by the corresponding arithmetic averages, that is,

〈s1〉DC = (1/4), 〈s4〉DC = (1/8), 〈s2〉DC = 〈s3〉DC = 0,

and

〈P4〉DC = 11/16.

At this stage, it is appropriate to recall the definition of q-state
Potts models [86]: Let q denote a positive integer, q > 1, and
for each lattice site let there be associated a variable κλ ∈
{1,2, . . . ,q}; interactions (restricted to nearest neighbors in
the simplest cases) are defined by

� = ∓εδκλ,κμ
, (17)

where the sign defines the ferro—or antiferro—magnetic
character of the interaction.

A similar line of reasoning as above now shows that
the set DA of ground-state configurations for PPP can be
reinterpreted as the set of ground-state configurations for
the antiferromagnetic three-state Potts model [86] (in other
words, the triplet {nλ,j } in orientation Ek for the PPP model
corresponds to the local Potts variable κλ having the value
k). At finite temperatures, the difference between continuous
site variables for PPP and discrete ones for the corresponding
three-state Potts models will set in; on the other hand, one can
at least think of a low-temperature régime where the above
mapping may still offer some guidance.

Actually, the three-state antiferromagnetic Potts model on
a simple-cubic lattice has been rather extensively studied (see,
e.g., Refs. [87–90] and others quoted therein); a recent estimate
for its ground-state entropy (in units kB per particle) is S(0) =
0.3670 ± 0.0001 [90]. Moreover, simulation results yield
evidence of a low-temperature broken-symmetry phase, where
configurations of the DB type remain dominant; at higher
temperature, the model predicts a second-order transition to the
orientationally disordered phase, and a recent estimate of the
transition temperature is �Potts,MC = 1.222 ± 0.004 [90]. This
result can be translated back to our PPP context, suggesting
the possible existence of a low-temperature phase possessing
overall biaxial order (i.e., where thermal fluctuations select
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configurations of the DC type or close to it), as will be shown
in the following.

III. MOLECULAR FIELD ASPECTS

It seems appropriate to start this section with a couple
of remarks, addressing comparison and contrast with other
relevant references, especially Ref. [51].

On the one hand, in keeping with the MC framework
and with usual MF calculations for bulk systems, we are
considering a periodically repeated cubic sample, consisting
of N sites, where N is the cube of an even number, and
involving 3N distinct nearest-neighboring interacting pairs.
The coordination parameter z defined in [51], Eq. (4.12), would
accordingly correspond to the value ρ = 6 used here; notice
however that the value quoted in Ref. [51] (Table 1, page 155)
does not allow for periodicity, and that the difference becomes
negligible in the thermodynamic limit.

On the other hand, some different comparisons with
Ref. [51] are in order as well; as pointed out above, Eq. (8)
defines a region in the parameter space for the gS model
[Eq. (4)] producing a stable biaxial pair ground state. The
corresponding MF treatment (possibly using a general mini-
max strategy [48,51]) is based on a single set of variational
parameters. In other words, the MF treatment can be adapted
to and tested on a lattice model, which is also studied by
simulation, and the MF order parameters are to be interpreted
as describing uniform biaxial order; however, this does not
exhaust the potentialities of the gS model. Actually, the choices
P0M and PPM in Ref. [58] produce a different pair ground
state, and hence a different overall (staggered) ground state,
for which the uniform-lattice MF approach turned out to be
inadequate, especially for PPM, basically because it does not
even reproduce the pair ground state; similarly, for the KS
model, a uniform-lattice MF treatment was proven to yield
only orientational disorder at all positive temperatures [50].
Such an approach was also attempted here for PPP, and
numerically found to yield only the isotropic (orientationally
disordered) phase as the stable one at all positive temperatures.

Notice also that an MF treatment properly allowing for
the above DC-type configurations would require a cubic
sample consisting of 23 particles in three different orientations;
therefore, following also the line of thought of our previous
paper [58], we have chosen the approach outlined below,
based on a further simplification of a two-sublattice procedure
from Refs. [58,62] (i.e., the simplest treatment qualitatively
consistent with available ground-state information, cubatic
symmetry of the interaction, and overall results of MC
simulation).

Thus, following the named two-sublattice framework
[58,62], we shall be using two sets of symmetry-adapted
basis functions s ′

j = s ′
j (ω), s ′′

k = s ′′
k (ω), one for each (even

or odd) sublattice, where j and k range between 1 and 4,
s ′
j (ω) has the same functional dependence on ω as s ′′

j (ω)
[see Eqs. (5) and (6)], and the superscript accounts for the
sublattice. The symbols 〈s ′

j 〉 and 〈s ′′
k 〉 will similarly represent

the corresponding sublattice order parameters; overall lattice
order parameters will in turn be computed as arithmetic
mean of the corresponding pair of sublattice quantities, 〈sk〉 =
(1/2)(〈s ′

k〉 + 〈s ′′
k 〉). In the framework of Refs. [58,62], 〈s ′

j 〉

and 〈s ′′
k 〉 correspond to each sublattice being homogeneously

ordered, whereas, in the simplified treatment implemented
here, some of them are rather to be interpreted as effective
averages over a sublattice (recall DC configurations in the
previous section); notice also that s ′

j and s ′′
k correspond to pj

and qk in Ref. [58].
In the named two-sublattice treatment, the free energy in

units ε per site would read

A∗
MF = σ

4∑
j=1

4∑
k=1

djk〈s ′
j 〉〈s ′′

k 〉− T ∗

2

[
ln

(
Z1

8π2

)
+ ln

(
Z2

8π2

)]
,

(18)

W2 =
4∑

j=1

4∑
m=1

djm〈s ′′
j 〉s ′

m(ω1), E2 = exp (ρβW2) , (19)

Z2 =
∫

Eul1
E2dω1, (20)

W1 =
4∑

j=1

4∑
m=1

djm〈s ′
j 〉s ′′

m(ω2), E1 = exp (ρβW1) , (21)

Z1 =
∫

Eul2
E1dω2; (22)

here β = 1
T ∗ , T ∗ > 0, σ = ρ/2 = 3, where ρ denotes the

lattice coordination number, and the symmetric coupling
matrix d, with entries djk , is defined by

[d] =

⎡
⎢⎢⎢⎣

−ξ 0 +
√

6
2 η 0

0 −2ξ 0 +√
6η

+
√

6
2 η 0 −6ζ 0

0 +√
6η 0 −12ζ

⎤
⎥⎥⎥⎦ . (23)

The corresponding resulting consistency equations are

〈s ′
j 〉 =

∫
Eul1 s ′

j (ω1) E2dω1

Z2
, j = 1,2,3,4; (24)

〈s ′′
k 〉 =

∫
Eul2 s ′′

k (ω2) E1dω2

Z1
, k = 1,2,3,4. (25)

After solving the above consistency equations, the stable
phases would eventually be identified with the solutions
corresponding to the least free energy. Such a stability criterion
is further elaborated in Appendix A for the very simplified case
to be discussed here: The local stability criterion provided there
is closely related to the one employed in the above-mentioned
minimax treatment.

Actually, bearing also in mind the approach followed in
Ref. [58], the above outlined general procedure can be further
simplified from the start, taking into account other information
available for the problem at hand, that is, by requesting

〈s ′
2〉 = 〈s ′

3〉 = 0, 〈s ′′
2 〉 = 〈s ′′

3 〉 = 0,
(26)〈s ′

1〉 = 2〈s ′
4〉, 〈s ′′

1 〉 = 2〈s ′′
4 〉,

and thus reducing to a numerically more tractable two-
parameter problem, where 〈s ′

4〉 and 〈s ′′
4 〉 are expected to have

opposite signs (see Appendix A for details). Such a reduction
is a consequence of the Oh invariance of the pair potential
(see Refs. [50,53]), entailing the possible ordered phase to be
biaxial.
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Accordingly, we get the effective free energy,

A∗
MF = −36〈s ′

4〉〈s ′′
4 〉 − T ∗

2

[
ln

(
Z1

8π2

)
+ ln

(
Z2

8π2

)]
,

(27)

with the sublattice partition functions,

Z2 =
∫

Eul1
exp[−18β〈s ′′

4 〉s ′
5(ω1)]dω1,

(28)
Z1 =

∫
Eul2

exp[−18β〈s ′
4〉s ′′

5 (ω2)]dω2,

where the symbols,

s ′
5 = s ′

5 (ω) = s ′
1 (ω) + 2s ′

4 (ω) ,
(29)

s ′′
5 = s ′′

5 (ω) = s ′′
1 (ω) + 2s ′′

4 (ω)

have been introduced for notational convenience. Notice also
that A∗

MF is invariant under the interchange between 〈s ′
4〉 and

〈s ′′
4 〉, corresponding to the interchange of the two sublattices.
Thus the MF consistency equations read

∂A∗
MF

∂〈s ′′
4 〉 = −36〈s ′

4〉

+ 9

∫
Eul1 s ′

5(ω1) exp[−18β〈s ′′
4 〉s ′

5(ω1)]dω1

Z2
= 0,

(30)
∂A∗

MF

∂〈s ′
4〉

= −36〈s ′′
4 〉

+ 9

∫
Eul2 s ′′

5 (ω2) exp[−18β〈s ′
4〉s ′′

5 (ω2)]dω2

Z1
= 0.

(31)

By the above Oh symmetry [Eq. (26)], Eqs. (30) and (31) are
equivalent to

〈s ′
4〉 =

∫
Eul1 s ′

4(ω1) exp[−18β〈s ′′
4 〉s ′

5(ω1)]dω1

Z2
, (32)

〈s ′′
4 〉 =

∫
Eul2 s ′′

4 (ω2) exp[−18β〈s ′
4〉s ′′

5 (ω2)]dω2

Z1
, (33)

that is, they correspond to the appropriate specializations
of Eqs. (24) and (25). A bifurcation analysis of the above
equations has been carried out [91] and a bifurcation temper-
ature has been found at β = 5/9 (�PPP,MF = 9/5), where a
second-order transition takes place from the isotropic phase.
The bifurcation equations also show that the bifurcating order
parameter branches are such that 〈s ′

4〉 = −〈s ′′
4 〉 at their onset

(see also Appendix A for details), with

〈s ′
4〉 = 147

275

√
5

33 �PPP,MF

√
�PPP,MF − T ∗

+O((�PPP,MF − T ∗)). (34)

Accordingly, calculation of the free energy along these
branches (i.e., of the least-free-energy values) delivers

A∗
MF = − 147

55 �2
PPP,MF

(�PPP,MF − T ∗)2

+O((�PPP,MF − T ∗)3). (35)

The consistency equations were also solved numerically
starting at a much lower temperature and for increasing
values of it, and the above result was confirmed; in the
low-temperature regime the two-order parameters were found
to saturate to 1

2 and − 1
4 , respectively, thus giving for the overall

order parameters,

〈s1〉 = 2〈s4〉 = 1
4 , (36)

in agreement with MC simulation results and with results for
the above DC ground-state configurations. The MF expression
for the potential energy becomes in this case [58],

U ∗
MF = 36〈s ′

4〉〈s ′′
4 〉, (37)

from which the configurational specific heat was calculated by
numerical differentiation.

Let us recall that both MF and TSC treatments have
been worked out for the KS model; their estimates for the
transition temperatures are �KS,MF = 6/5 and �KS,TSC = 4/5,
respectively [62], and the latest simulation estimate for the
transition temperature is �KS,MC = 0.6227 ± 0.0001 [63].

IV. SIMULATION ASPECTS

The simulation methodology used here closely followed
our previous papers on the subject [20,52,58]. We used
a periodically repeated cubic sample, consisting of N =
l3 particles, l = 10,20,30, and ran calculations in cascade,
in order of increasing temperature; each cycle (or sweep)
consisted of 2N MC steps, including a sublattice sweep [92].
Equilibration runs took between 25 000 and 200 000 cycles,
and production runs took between 250 000 and 1 250 000;
macrostep averages for evaluating statistical errors were
taken over 1000 cycles. Calculated thermodynamic quantities
include mean potential energy U ∗ (in units ε per site) and
configurational specific heat per particle CV . Simulation
estimates of the overall second-rank order parameters 〈R2

pq〉 =
〈sk〉,k = 1,2,3,4 [64,66,78,93] were calculated by analyzing
a configuration every cycle, using methodologies discussed in
detail by other authors [66,76,94,95]; the nematic fourth-rank
order parameter 〈P4〉 was calculated as well ( [60,64–66]).

Notice also that, by the underlying Oh symmetry, one
expects for PPP that 〈s2〉 = 〈s3〉 = 0, and 〈s1〉 = 2〈s4〉, as
discussed in detail elsewhere [50,53] and as recalled in Sec. III.
The so-called short-range order parameters were evaluated as
well, defined by [64,66]

σL,j = 〈PL(fjj )〉, L = 2,4, j = 1,2,3, (38)

and measuring correlations between corresponding pairs of
unit vectors associated with nearest-neighbor molecules.
Equation (4) implies that the potential energy U ∗ is a linear
combination of the quantities σ2,j . Actually, in the present
case, the underlying Oh symmetry entails σL,1 = σL,2 = σL,3,
and this common value will be denoted by σL,c; the potential
energy is proportional to the appropriate common value (i.e.,
U ∗ = +9σ2,c). The above Eq. (37) can be used to define the
MF estimate σ2,c,MF = 4〈s ′

4〉〈s ′′
4 〉. In the calculations, at the end

of each macrostep, we carried out a rotation of each particle
by π

2 around its u3 axis [20]; simulation results obtained in
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FIG. 1. MF predictions (continuous curve) and simulation results
(discrete symbols) for the short-range order parameter σ2,c, obtained
with different sample size. The meaning of symbols is as follows:
circles, l = 10; squares, l = 20; triangles, l = 30. Unless explicitly
stated or shown, here and in the following figures, the associated
statistical errors fall within the relative symbol sizes.

this way for σL,j were found to satisfy the above symmetry
condition within associated statistical errors.

We also calculated the cubatic order parameter τ4, as well
as its associated susceptibility χ4, defined as follows [17,96].
Let

M4 =

√√√√√(
4

21

) N∑
λ=1

N∑
μ=1

⎡
⎣ 3∑

j=1

3∑
k=1

P4(nλ,j · nμ,k)

⎤
⎦; (39)

then the simulation estimate for the cubatic order parameter is

τ4 = 1

N
〈M4〉, (40)

and its associated susceptibility reads

χ4 = 1

N
β
(〈
M2

4

〉− 〈M4〉2). (41)

Computational aspects of Eq. (39) are discussed in
Refs. [17,96]. The cubatic counterpart of Eq. (38), defined
by [17,96]

σ4,4 = 4

21

〈
3∑

j=1

3∑
k=1

P4(fjk)

〉
, (42)

was calculated as well.

FIG. 2. MF predictions (continuous curve) and simulation results
(discrete symbols) for the configurational specific heat, obtained
with different sample size. Same meaning of symbols as in
Fig. 1; the associated statistical errors, not shown, range between
1% and 5%.

The simulation results reported in the following were
obtained starting at low temperature from a ground-state
configuration of the above DC type; as a check, additional
simulations were carried out for l = 10 and starting from a
D3 configuration. The obtained results exhibited a far weaker
orientational order, and, at T ∗ ≈ 0.7, they appeared to jump
irreversibly to the above DC branch: The change involved a
mild but recognizable decrease in σ2,c (hence the potential
energy), from −0.33 to −0.34 and a pronounced increase in
orientational order, with 〈s1〉 changing from 0.02 to 0.14;
moreover, upon decreasing the temperature, the obtained
simulation results continued to follow the DC branch.

V. RESULTS AND COMPARISONS

Simulation results, and available MF predictions, are
plotted in the following Figs. 1–8.

Results for σ2,c (i.e., essentially the potential energy),
reported in Fig. 1, were found to be hardly dependent on sample
size: Actually, in the temperature range between T ∗ = 0.85
and T ∗ = 0.95, sample-size dependency appeared to saturate
for l � 20; outside this range, simulation results for the three
named sizes were found to coincide to within symbol sizes.
Moreover, the results were found to evolve with temperature
in a gradual and continuous way, and suggested a change of
slope taking place around T ∗ ≈ 0.875.
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FIG. 3. MF predictions (continuous curve) and simulation results
(discrete symbols) for the long-range order parameter 〈P2〉 = 〈s1〉,
obtained with different sample sizes; same meaning of symbols as in
Fig. 1.

Simulation results for the configurational specific heat
(Fig. 2) were also found to be independent of sample size
for T ∗ � 0.85 and then again for T ∗ � 0.95, and exhibited a
recognizable sample-size dependency in between, where the
height of the peak at T ∗ ≈ 0.875 appeared to increase with
increasing sample size.

On the whole, Figs. 1 and 2 show a good agreement between
MF predictions and simulation results in a low-temperature
range, say T ∗ � 0.4 at least.

Simulation results for 〈P2〉 = 〈s1〉 (Fig. 3) exhibited a
gradual and monotonic decrease with temperature, and a
recognizable decrease with increasing sample size for T ∗ �
0.85. Simulation results for 〈P2〉 = 〈s1〉 are plotted versus
their counterparts for 〈R2

22〉 = 〈s4〉 in Fig. 4; the graph was
consistent with the Oh symmetry relation 〈s1〉 = 2〈s4〉 [50,53],
and the agreement was found to improve with increasing
sample size. Notice also in Fig. 3 that the plot of simulation
results, but not of the MF prediction, seems to show an
inflection point at low temperature, possibly pointing to an
effect of thermal fluctuations which MF cannot reproduce
well. Simulation results for the orientational order parameters
〈R2

20〉 = 〈s2〉 and 〈R2
02〉 = 〈s3〉 (figures not shown) were found

to be smaller than ≈0.006; their temperature evolution showed
a peak around T ∗ ≈ 0.875. Moreover, at all investigated
temperatures, they exhibited a pronounced decrease with
increasing sample size, suggesting their vanishing in the
thermodynamic limit.

FIG. 4. Plots of simulation results for the long-range order
parameter 〈s1〉, obtained with different sample sizes, versus the
corresponding results for 〈s4〉, for the same sample sizes; same
meaning of symbols as in Fig. 1; the continuous segment corresponds
to the Oh symmetry relation 〈s1〉 = 2〈s4〉.

Structural quantities measuring short-range correlations of
rank 4 (i.e., σ4,c and σ4,4), respectively, exhibited a monotonic
and gradual decay with temperature, a change of slope around
T ∗ ≈ 0.875, and no recognizable sample-size dependency.
Simulation results obtained for both observables with the
largest investigated sample size l = 30, are plotted together
and compared in Fig. 5.

The long-range order parameter 〈P4〉 (Fig. 6) exhibited a
continuous decay with temperature, and sample-size depen-
dency only becoming recognizable at T ∗ � 0.85; the cubatic
order parameter τ4 (Fig. 7) also exhibited a continuous decay
with temperature, and showed a sample-size dependency
saturating for l � 20. Notice also that MC and MF plots for
〈P4〉 suggest different curvatures.

The cubatic susceptibility χ4 (Fig. 8) showed a pronounced
sample-size dependency as well as a peak at a temperature
corresponding to the abscissa of the peak of the configura-
tional specific heat, growing higher with increasing sample
size.

Notice also that plots for various simulated quantities
exhibit a linear evolution with temperature in some low-
temperature range, up to T ∗ = 0.25 at least; this trend
is especially pronounced for fourth-rank short-range order
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FIG. 5. Simulation results for the cubatic short-range order
parameters σ4,c (diamonds) and σ4,4 (crosses), obtained with the
largest investigated sample size l = 30.

FIG. 6. MF predictions (continuous curve) and simulation results
(discrete symbols) for the long-range order parameters 〈P4〉, obtained
with different sample sizes; same meaning of symbols as in Fig. 1.

FIG. 7. Simulation results for the long-range cubatic order pa-
rameters τ4, obtained with different sample sizes; same meaning of
symbols as in Fig. 1.

FIG. 8. Simulation results for the cubatic susceptibilty χ4, ob-
tained with different sample sizes; same meaning of symbols as in
Fig. 1.
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parameters (σ4 in Fig. 5), but is also recognizable for their
long-range counterparts (Figs. 6 and 7). On the other hand,
Figs. 6, 7, and 12 in Ref. [58] also show a similar behavior
for some σL,j of models P0M and PPM; on the whole,
comparisons suggest that this behavior is more pronounced
for pairs interacting via a positive (repulsive) coupling
constant.

To summarize, the present simulation results suggest a
second-order transition; the transition temperature is conser-
vatively estimated to be �PPP,MC = 0.88 ± 0.01.

Comparison between MF and MC, as well as with the
corresponding results obtained for KS [61–63] (see also
previous section), shows that the simplified MF treatment
used here still yields a reasonable qualitative picture, but
overestimates the transition temperature by a factor 2.

VI. CONCLUSIONS

As already pointed out, the gS potential model in Eq. (4) is
rather versatile, and the presence in it of sizable antinematic
terms may entail important effects of the lattice geometry [58],
as well as the need of a more refined (but still simplified) MF
approach.

We have studied here an extreme, fully antinematic case,
where the three coupling constants are set to a common positive
value; its pair ground state is doubly degenerate, and the com-
bination of bipartite lattice and nearest-neighbor interaction
propagates it over the lattice, increasing the overall degeneracy
but without producing frustration. As explained above, one can
establish meaningful connections and comparisons with both
KS and the three-state antiferromagnetic Potts model (on the
same simple-cubic lattice).

In the KS case, a continuously degenerate ground state
also possesses overall uniaxial second-rank order. Both the
present PPP and the three-state antiferromagnetic Potts model
essentially involve discrete ground-state degeneracies, and an
appropriate type of orientational order appears at sufficiently
low but finite temperature, because the corresponding ground-
state configurations are selected by thermal fluctuations (order
via disorder; [67–69]). At higher temperatures, the three
models appear to support a continuous transition to an orien-
tationally disordered phase. MF treatments had been worked
out for both KS and the present PPP model; they were found
to produce a second-order transition and a broad qualitative
agreement with simulation results, and to overestimate the
transition temperature by a factor 2.

It may be appropriate to recall similarities and differences
between models MMP [20], P0M, PPM [58], and the present
PPP: The presence of one suitable antinematic coupling
destroys biaxiality (already in the pair ground state) via an
entropic mechanism, and a second antinematic term disfavors
biaxiality in energetic terms (and similarly for P0M). The
third antinematic coupling produces the subtle and probably
unexpected effects discussed here, that is, destruction of the
pair biaxial ground state, but restoration of overall biaxial
order through an entropic effect, at low but finite temperature.
Notice also that, in the named cases, the presence of two equal
coupling constants in Eq. (4), and of a third one with the same
magnitude, appear to be linked with the second-order character

of the transition. Estimates for the transition temperatures for
the named models are
�MMP,MF = 9/5, �MMP,MC = 1.075 ± 0.005 for MMP [20];
�P0M,MF1 = 1.0899, �P0M,MF2 = 1.1933, �P0M,MC =
1.018 ± 0.001 for P0M [58];

�PPM,MF2 = 9/5, �PPM,MC = 1.455 ± 0.005 for PPM [58].

(In Ref. [58], MF1 and MF2 label the uniform-lattice and
two-sublattice MF treatments, respectively.)

Comparisons between these numbers point to the
rather well-known fact that an MF treatment yields a
better agreement with simulation for first-order than for
second-order transitions.

One can also envisage other similar models, involving
predominantly antinematic couplings, and where the above
uncoupling condition is removed, so that frustration sets in;
this can be realized by extending the interactions to more
distant neighbors, or by different lattice types (e.g., FCC
or diamond lattice). Alternatively, one can define interaction
models where particle center-of-mass coordinates sweep R3

and the orientational interaction has the above angular form,
modulated by some function of the distance between centers of
mass. To the best of our knowledge, not even their counterparts
involving D∞h-symmetric particles have been addressed.

On the other hand, another extreme case of Eq. (4) can be
envisaged, obtained by setting one coupling constant to zero
and the other two to a common positive value in Eq. (4a)
(PP0 model), thus producing a trebly degenerate pair ground
state [Eqs. (11) and (15)]; a preliminary study suggests overall
uniaxial antinematic order at low temperature. Actually, PP0
can be regarded as a limiting case of models defined by r1 =
r2 = +1, − 1 < r3 < 0; according to available MF calcula-
tions [58], they support a second-order uniaxial-to-isotropic
transition at low temperature. On the other hand, preliminary
simulations also suggest the possibility of antinematic order at
low but finite temperature, when r3 becomes sufficiently small
in magnitude. Work along these lines is in progress and will
be reported in due course.
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APPENDIX: MOLECULAR FIELD: MATHEMATICAL
ASPECTS

Here we present mathematical details about stability as-
sessment for ordered phases in the MF approximation (see

011703-11
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Sec. III), essentially following the same line of reasoning as
in [51].

Let us start from the effective free energy (27), de-
pending on the two variables 〈s ′

4〉,〈s ′′
4 〉 and the temperature

parameter T ∗, and rewrite it for notational convenience as
follows:

E(〈s ′
4〉,〈s ′′

4 〉; T ∗) = A∗
MF = −T ∗

2
ln

[
1

(8π2)2

∫
Eul1

∫
Eul2

× exp{−18β[〈s ′
4〉s ′′

5 (ω2) + 〈s ′′
4 〉s ′

5(ω1)

− 4〈s ′′
4 〉〈s ′

4〉]}dω2dω1

]
. (A1)

The above consistency equations can also be conveniently
rewritten:

〈s ′
4〉 = �(〈s ′′

4 〉; T ∗), 〈s ′′
4 〉 = �(〈s ′

4〉; T ∗), (A2)

where

�(x; T ∗) := 1

4

∫
Eul s5(ω) exp[−18βxs5(ω)]dω∫

Eul exp[−18βxs5(ω)]dω

=
∫

Eul s4(ω) exp[−18βxs5(ω)]dω∫
Eul exp[−18βxs5(ω)]dω

. (A3)

This notation shows even more clearly that each sublattice
order parameter depends explicitly on the other one, and that
the functional dependence is the same in both cases (sublattice
flipping symmetry).

Straightforward calculations lead to the following general
expressions for the second derivatives of E (which hold at any
point, whether stationary or not):

∂2E

∂〈s ′
4〉2

= −162β

{
1

Z1

∫
Eul2

[s ′′
5 (ω2) − 〈s ′′

5 〉]2

× exp[−18β〈s ′
4〉s ′′

5 (ω2)]dω2

}
< 0, (A4a)

∂2E

∂〈s ′′
4 〉2

= −162β

{
1

Z2

∫
Eul1

[s ′
5(ω1) − 〈s ′

5〉]2

× exp[−18β〈s ′′
4 〉s ′

5(ω1)]dω1

}
< 0, (A4b)

∂2E

∂〈s ′
4〉∂〈s ′′

4 〉 = −36. (A4c)

The negative sign of both pure second derivatives (A4a)
and (A4b) is a consequence of the total repulsion (antine-
maticity) of the pair potential.

At this stage we can define the deflated free energy by

H (〈s ′
4〉; T ∗)=E(〈s ′

4〉,�(〈s ′
4〉; T ∗); T ∗)

= −T ∗

2
ln

[
1

(8π2)2

∫
Eul1

∫
Eul2

× exp{−18β[〈s ′
4〉s ′′

5 (ω2) + �(〈s ′
4〉; T ∗)

×s ′
5(ω1) − 4�(〈s ′

4〉; T ∗)〈s ′
4〉]}dω2dω1

]
. (A5)

It turns out that the stationary points of E [i.e., the solutions
of the consistency Eqs. (30) and (31)] are in one-to-one
correspondence with the stationary points of H with respect
to 〈s ′

4〉.
Moreover, the stable phases are taken to be the minimizers

of H with respect to 〈s ′
4〉. Therefore, our assessment of stability

of the ordered phases is as follows: for each fixed temperature
T ∗ > 0, find the minimum,

min
〈s ′

4〉
H (〈s ′

4〉; T ∗). (A6)

Some local and global properties of the deflated free-energy
H , especially coerciveness, have to be established in order to
ensure the existence of such a minimum. Coerciveness ensures
that the global minimum is to be found in a finite region
of the domain of definition of H , and it coincides with a
critical point. As a preliminary step we need to get information
about the dependence of H on 〈s ′

4〉 via the function �. Taking
into account that 〈s ′′

4 〉 = �(〈s ′
4〉; T ∗) we arrive at the following

expression for the first derivative of � (by direct calculation
or as a consequence of the implicit function theorem):

d�

d〈s ′
4〉

= −
∂2E

∂〈s ′
4〉2

∂2E
∂〈s ′

4〉∂〈s ′′
4 〉

= 1

36

∂2E

∂〈s ′
4〉2

, (A7)

which holds at all points such that ∂E
∂〈s ′

4〉 = 0 [i.e., 〈s ′′
4 〉 =

�(〈s ′
4〉; T ∗)]. From Eq. (A4a) and from Eq. (A7) we learn that

d�
d〈s ′

4〉 < 0 which means that � is a strictly decreasing function

of 〈s ′
4〉. By also taking into account that �(0; T ∗) = 0 we

conclude that 〈s ′
4〉�(〈s ′

4〉; T ∗) = 〈s ′
4〉〈s ′′

4 〉 < 0 whenever 〈s ′
4〉 �=

0. We can now establish the above-mentioned coerciveness
property of the deflated free-energy H , that is,

H (〈s ′
4〉; T ∗) → +∞, as |〈s ′

4〉| → ∞ ∀T ∗. (A8)

Actually, in Eq. (A5), s ′
5(ω1),s ′′

5 (ω2) are bounded and con-
tinuous functions and the integral is being calculated over
a compact space (Euler angles); moreover the integrand
in (A5) is dominated by the factor exp [72β�(〈s ′

4〉; T ∗)〈s ′
4〉] as

|〈s ′
4〉| → ∞. This stems from the fact that both 〈s ′

4〉 → ±∞
and �(〈s ′

4〉; T ∗) → ∓∞ as 〈s ′
4〉 → ±∞ while the other con-

tributions in the integrand are linear in the order parameters.
The dominant contribution in the integral of (A5) tends to
zero in the same limit since 〈s ′

4〉�(〈s ′
4〉; T ∗) < 0 and, in turn,

the argument of ln in the same equation tends to vanish.
We therefore arrive at (A8). As a consequence, H attains its
global minimum at a critical point, and this point must be a
least-free-energy point.

In fact more can be said about the criterion of stability (A6).
It is possible to find the corresponding local stability criterion.
Actually, the nature of the stationary points of H can be read
off the sign of the second derivative of H . It turns out that

d2H

d〈s ′
4〉2

=
∂2E

∂〈s ′
4〉2(

∂2E
∂〈s ′

4〉∂〈s ′′
4 〉
)2

[
∂2E

∂〈s ′
4〉2

∂2E

∂〈s ′′
4 〉2

−
(

∂2E

∂〈s ′
4〉∂〈s ′′

4 〉
)2
]

=
∂2E

∂〈s ′
4〉2(

∂2E
∂〈s ′

4〉∂〈s ′′
4 〉
)2 det B, (A9)
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where B is the Hessian matrix associated with E at its
stationary points. Clearly the nature of the critical points of
H is strictly connected with the nature of the corresponding
points of E. The deflated free-energy H attains a minimum at
the stationary point if det B < 0 so that d2H

d〈s ′
4〉2 > 0, according

to (A9) and (A4a). We thus conclude that the minimizers of
H correspond actually to saddle points of E. Moreover, the
stability of the phase can be read off the sign of one of the
two eigenvalues of B. Actually, the two eigenvalues turn out
to be

�± = 1

2

[
trB ±

√
(trB)2 − 4 det B

]
, (A10)

from which we conclude that �− < 0. Accordingly, the
stability of the phases is encoded in the sign of �+.

As an example of the above outlined criterion, we consider
the stability of the isotropic phase. To capture the bifurcation
off the isotropic phase we compute the second derivative of H

at 〈s ′
4〉 = 0 and we get

d2H

d〈s ′
4〉2

(0; T ∗) = 36
9

5T ∗

[
1 −

(
9

5T ∗

)2
]

, (A11)

from which we conclude that the isotropic phase is stable
for T ∗ > 9

5 . For T ∗ < 9
5 the minimizer moves continuously

from the isotropic phase and this latter becomes unstable. The
actual migration of the minimizer close to the isotropic phase is
provided by Eq. (34) and the corresponding least-free-energy
value by Eq. (35).

We conclude this section by remarking that the same way
of reasoning also applies to the MF approximation of KS as
already worked out in [62].
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5, 1181 (2004).

[70] C. Chiccoli, P. Pasini, F. Semeria, and C. Zannoni, Int. J. Mod.
Phys. C 10, 469 (1999).

[71] D. M. Brink and G. R. Satchler, Angular Momentum, 2nd ed.
(Oxford University Press, Oxford, 1968).

[72] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii,
Quantum Theory of Angular Momentum (World Scientific,
Singapore, 1988).

[73] G. B. Arfken and H. J. Weber, Mathematical Methods for
Physicists, 4th ed. (Academic Press, San Diego, 1995).

[74] J. P. Straley, Phys. Rev. A 10, 1881 (1974).
[75] G. R. Luckhurst, C. Zannoni, P. L. Nordio, and U. Segre, Mol.

Phys. 30, 1345 (1975).
[76] F. Biscarini, C. Chiccoli, P. Pasini, F. Semeria, and C. Zannoni,

Phys. Rev. Lett. 75, 1803 (1995).
[77] B. Mulder, Phys. Rev. A 39, 360 (1989).
[78] R. Rosso, Liq. Cryst. 34, 737 (2007).
[79] G. R. Luckhurst and S. Romano, Mol. Phys. 40, 129 (1980).
[80] B. Bergersen, P. Palffy-Muhoray, and D. A. Dunmur, Liq. Cryst.

3, 347 (1988).
[81] L. Longa, P. Grzybowski, S. Romano, and E. Virga, Phys. Rev.

E 71, 051714 (2005); 73, 019904E (2006).
[82] L. Longa and G. Pajak, Liq. Cryst. 32, 1409 (2005).
[83] F. Bisi, S. Romano, and E. G. Virga, Phys. Rev. E 75, 041705

(2007).
[84] F. Bisi, G. R. Luckhurst, and E. G. Virga, Phys. Rev. E 78,

021710 (2008).
[85] A. M. Sonnet and E. G. Virga, Phys. Rev. E 77, 031704 (2008).
[86] F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
[87] J.-S. Wang, R. H. Swendsen, and R. Kotecký, Phys. Rev. B 42,
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