
PHYSICAL REVIEW E 84, 011701 (2011)
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We study the equilibrium textures of molecular orientation inside cylindrical fibers made of coaxial
layers of bent-core smectics. We propose a free-energy model taking into account surface-like and bulk
contributions—including layer-compression and electrostatic terms among others— with constant values of
the material parameters. We follow the usual variational procedure of minimization of the free energy with
respect to the tilt-angle profile θ (r) and obtain an Euler-Lagrange equation and its boundary condition. We
solve the variational equations for the equilibrium configurations using a boundary-layer approximation and find
multiple solutions. Since the equilibrium tilt profiles are found to be radially inhomogeneous, we select those with
minimum distortions in order to find the lowest free-energy state. We minimize further the free energy of the system
with respect to the fiber radius and find wider intervals of stability than those previously reported, depending on
the balance of the material’s spontaneous polarization, elastic and electric divergence-of-polarization constants,
and surface-tension coefficients. The bulk and surface-layer structures thus found could be used to calculate the
allowed modes of propagation of electromagnetic waves inside the fiber.
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I. INTRODUCTION

Low-molecular weight liquid crystals may form fibers
depending on the type of mesogen and phase: their columnar
phases can produce slender fibers, but the smectic and nematic
phases of the calamitic type cannot [1,2]. Bent-core smectics
have been used to produce bundles of fibers drawn from phases
B2 and B7 [3,4]. Their internal structure was determined to be
constituted by multilayered, helical fibers [5]. Characterization
of the helical filaments shows that they are composed of
cylindrical coaxial smectic layers [6,7]. More recently, Bailey
and coworkers have analyzed the elastic properties, internal
structure, and stability of fiber bundles for five bent-core
systems, using a variety of experimental techniques [8]. They
found that the individual fibers fuse together in filaments with
enlarged radii, compared to those of the isolated ones.

Bent-core liquid crystals are interesting for applications in
optoelectronics because they can spontaneously form fibers
with internal nanostructure. In addition, the presence of well-
aligned molecular dipoles in each smectic layer introduces the
possibility of differential propagation of circularly polarized
light, that is, biased conduction of electromagnetic waves [9].
In fact, Jákli et al. have carried out experiments to show that
these fibers perform like optical waveguides [10].

It would be useful to have mathematical models of the
structure of bent-core liquid crystal fibers that could be
applied, in turn, to model the electromagnetic properties of
such systems. Bailey and coworkers presented a model for
the free energy of individual fibers that accounts for director
and molecular-dipole distortions, layer strain, electrostatic
interactions, and surface tension [11]. They analyzed the
stability of fibers by minimizing this free-energy model with
respect to the radius of the fiber, assuming that the tilt angle that
defines the molecular orientation is constant through all layers.

Bauman and Philips have presented a generalization of the
model of Bailey et al. for B7 fibers that includes general
(noncircular) cross-sections [12]. Their model includes an

energy density for the layers in terms of the complex order
parameter for smectics, ψ . They were able to deduce a limiting
model by assuming a layer width much smaller than the fiber
radius, and then freezing both molecular tilt angles (leaving
the director and polarization fields n and p with one degree of
freedom). Using this limiting energy, they showed that circular
fibers are stable if the layer bending constant a⊥ � K , the
Frank elastic modulus. Conversely, If K is much smaller than
a⊥, they show that circular fibers are unstable with respect to
variations having surface undulations and modulations of the
component of the polarization along the layer plane.

The requirement of homogeneous orientation in the liquid
crystal is a very restrictive hypothesis when compared with
other treatments of mesophases, where the director field is
the quantity to vary in order to minimize the free energy.
Hence, we reconsider this problem by lifting the restriction
of constant director tilt and minimize the free energy using
standard calculus-of-variation techniques.

We propose revised expressions for the bulk and surface
free-energy terms, appropriate for inhomogeneous tilt, and
use a boundary-layer method in order to solve analytically the
associated Euler-Lagrange and boundary-condition equations.
We find multiple radially dependent solutions, which never-
theless become uniform away from a boundary layer near
the cylinder border. We pick those solutions with minimum
distortions in order to find the lowest-free-energy structures
and then minimize again their free energy with respect to the
fiber outer radius in order to identify the stable size of the
fibers. We discuss the conditions on the elastic, electrostatic,
and surface-tension terms that result in stable fibers. We
compare our results with those obtained previously using the
constant-tilt model of Bailey et al. [11] and observe wider
intervals of stability.

Finally, we comment on extensions of this approach to the
case where the molecular-dipole orientation α is not constant
as well as possible applications of our results.
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FIG. 1. (Color online) Structure of the smectic layers in the fiber,
showing the coordinate system (R,φ,z). The external radius of the
fiber is Rf and the radius of its inner defect core is Rc. The width L

of each layer depends on the dimensions L1,L2, and L3 of a single
mesogen as well as the molecular orientation: θ is the angle between
the director n and the radial direction; α is the angle between p and
the z axis.

II. FREE-ENERGY MODEL

Our model follows that presented by Bailey and coworkers
for the case of homogeneous orientation [11]; in order to
facilitate comparisons with that case, we adopt most of the
notation introduced in that model. We consider the simple
fiber structure shown in Fig. 1: a cylindrical fiber with external
radius Rf is composed by coaxial smectic layers. Near the
center of the fiber, we assume that there is a defect core of
size Rc � Rf ; the results of the analysis are independent of
Rc and the energy associated with this core [11].

We take into account five contributions to the Helmholtz
free-energy density of a bent-core smectic fiber: elastic
distortions of the director, layer compression, divergence
of polarization, electrostatic dipole interaction, and surface
tension. To describe these contributions, we use a molecular
basis formed by the director n, the molecular-dipole vector
p, and m = n × p, and introduce cylindrical coordinates
(R,φ,z).

We assume that n is confined to planes normal to the fiber
axis, with a radially dependent tilt θ (R); we also assume
a constant molecular-dipole orientation α (see Fig. 1). The
molecular basis is parametrized as:

n = cos θR̂ + sin θ ϕ̂, (1)

p = sin θ sin αR̂ − cos θ sin αϕ̂ + cos αẑ, (2)

m = sin θ cos αR̂ − cos θ cos αϕ̂ − sin αẑ. (3)

In this parametrization, the director is always perpendicular
to the fiber’s axis but with the possibility of tilting away
from the radial direction. The tilt angle θ = 0 corresponds to
a director that is along the radial direction (that is, normal
to the smectic layers and the surface of the fiber), while
θ = π/2 corresponds to the director perpendicular to the
radial direction. On the other hand, angle α = 0 corresponds
to molecular dipoles pointing along the fiber’s longitudinal
axis, while α = ±π/2 corresponds to molecular dipoles
perpendicular to said axis.

We restrict θ and α to the interval [−π/2,π/2] because
these values cover all posible orientations of the director and
molecular-dipole vector (relative to the fiber’s axis and its
external-surface tangent and normal vectors).

A. Director distortions

Macroscopic distortions of the director contribute to the
bulk free-energy density with a term [13,14]

FN = K

2
[(∇ · n)2 + (∇ × n)2] = K

2

[
1

R2
+

(
dθ

dR

)2
]

,

(4)

where K is the elastic modulus in the one-constant approxi-
mation. Saddle-splay and splay-bend terms are not included
in the model: the former vanishes identically; the latter is
neglected because little is known experimentally about the
effective value of K13 [15–18] and also because even if it were
as large as K , we estimate that the splay-bend contribution to
the total free energy would be negligible compared to other
surface contributions that we discuss below.

B. Layer compression

Changes in angle θ imply changes in layer spacing. We
account for this with a harmonic layer-compression term in
the bulk free-energy density [13,14],

FC = Bγ 2

2
= B

2

(
L − L0

L0

)2

, (5)

where B is the compression modulus and γ is the layer strain
due to variations of the layer thickness L from that of its
equilibrium value L0.

We approximate L in the following way: we take a
parallelepiped that encloses a single mesogen; the edges
of the parallelepiped are given by vectors L1, L2, and L3.
The magnitudes L1, L2, and L3 of these vectors are given,
respectively, by the molecular dimensions along the medium,
short, and long axes of the mesogen, and their orientations
change with the orientation of the mesogen. Then the layer
width, as a function of θ and α, is given by the distance
between two parallel planes that touch the highest and lowest
corners of the parallelepiped. Since one can go from the
lowest corner to the highest one along three edges of the
parallelogram, the distance between those planes can be
calculated from three projections of the edges onto the radial
direction, Li · R̂:

L(θ,α) = L3| cos θ | + L2| cos α sin θ | + L1| sin α sin θ |.
(6)

The absolute values are necessary to pick the correct high and
low corners as the angles θ and α change sign.

Other approximations are possible for the layer width, such
as using ellipsoids instead of parallelepipeds or introducing
diagonal shape tensors [11]. We must point out, however, that
all these approximations, including Eq. (6), neglect that d is
not an even function of α nor θ due to the bent-core character of
the mesogens. Nevertheless, since the mesogens are relatively
slender (see Table I for typical mesogen parameters), we do
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TABLE I. Constant values of the material parameters for the
examples discussed in this work. The values are taken from the
intervals given in Ref. [11].

Symbol Value Description

Rc 5.0 nm Core radius
K 10−11 N Elastic constant
B 105 Pa Layer compression modulus
L3 5.0 nm Long axis of mesogens
L2 0.5 nm Short axis of mesogens
L1 1.5 nm Medium axis of mesogens
α0 0 Orientation of p in strain-free layers
P0 10−4 C m−2 Norm of spontaneous polarization
ε1 7 Dielectric constant along n
ε2 10 Dielectric constant along m
ε3 12 Dielectric constant along p
c′′ 11.2 V Electric div.-of-polarization const.
σ1 0.026 N m−1 Surface tension along n
σ2 0.024 N m−1 Surface tension along m
σ3 0.025 N m−1 Surface tension along p

not expect qualitative changes in the results as one changes
from one of these approximations to another.

With the approximation given in Eq. (6), the layer-
compression term becomes

fc = B

2

[
d(θ,α)

d0
− 1

]2

, (7)

with the dimensionless thickness

d(θ,α) = L(θ,α)

L3
, (8)

and the strain-free thickness d0 = d(θ0,α0) parametrized by
the angles θ0 and α0.

C. Electrostatic energy of anisotropic dielectric

In bent-core smectics, the electric displacement field

D = Ps + ε0
←→ε · E (9)

depends both on the spontaneous polarization Ps and the di-
electric tensor ←→ε = ε1nn + ε2mm + ε3pp. Constants ε1,ε2,
and ε3 are the eigenvalues of the dielectric tensor correspond-
ing to the molecular-frame eigenvectors n,m, and p.

The free-energy density of dielectrics obeying the consti-
tutive relation (9) has been discussed by Landau, Lifshitz, and
Pitaevskii; it is given by [19]

FE = 1
2ε0E · ←→ε E, (10)

for processes that take place at fixed charges, temperature, and
density.

Using ∇ × E = 0 over a circular path of radius R inside the
fiber, we conclude that E is radial. Next, following Bailey and
coworkers [11], we assume that Ps = P0p; in other words, that
the spontaneous polarization is aligned with the molecular-
dipole vector p and has constant magnitude P0. Then, from
∇ · D = 0 and the constitutive relation we find that

E = −P0 sin α

ε0εrr (θ )

(
sin θ − Rc

R
sin θc

)
R̂, (11)

where θc is the tilt angle at the fiber’s core and

εrr (θ ) = ε1 cos2 θ + (ε2 cos2 α + ε3 sin2 α) sin2 θ.

Substitution of the electric field just found into Eq. (10) gives
the free-energy density as:

FE = 1

2

P 2
0 sin2 α

ε0εrr (θ )

(
sin θ − Rc

R
sin θc

)2

. (12)

D. Inhomogeneities of the molecular-dipole vector
and polarization

Distortions of the molecular-dipole vector contribute to
the bulk free-energy density as c′ ∇ · p and those of the
spontaneous polarization contribute with c′′ ∇ · Ps . Using
again the assumption Ps = P0p, both terms can be combined
and integrated to obtain a single contribution to the surface
free-energy density:

FD = (c′ + c′′P0)p · R̂ = (c′ + c′′P0) sin α sin θ. (13)

E. Interfacial energy

Assuming a biaxial form of the interfacial-energy tensor,

←→σ = σ1nn + σ2mm + σ3pp, (14)

the free-energy density for the cylindrical surface of the fiber
is

FS = R̂ · ←→σ · R̂ = σ1 cos2 θ + (σ2 cos2 α + σ3 sin2 α) sin2 θ.

(15)

F. Dimensionless total free energy

Integrating all contributions discussed above, the total free
energy of the fiber is

Ftot =
∫ Lz

0

∫ 2π

0

[
(FD + FS)Rf

+
∫ Rf

Rc

(FN + FE + FC)RdR

]
dϕ dz. (16)

We introduce a scaled radial coordinate r = R/Rf , the scaled
radius of the core rc = Rc/Rf , and the notation θ̇ = dθ

dr
. Then

we define a dimensionless total free energy as

ftot = Ftot

2πLzK
= fsurf +

∫ 1

rc

fbulkdr, (17)

where Lz is the length of the fiber. In Eq. (17), the dimension-
less surface free-energy density is

fsurf(θ ) = RF

K
(FD + FS) = ADfD(θ ) + ASfS(θ ), (18)

and the corresponding bulk density is

fbulk(θ,θ̇ ) = R Rf

K
(FN + FC + FE)

= r

{
1

2

[
θ̇2+ 1

r2

]
+ ACfC(θ ) + AEfE(θ )

}
, (19)
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with contributions given by

fD(θ ) = sin α sin θ (20)

fS(θ ) = cos2 θ +
(

σ2

σ1
cos2 α + σ3

σ1
sin2 α

)
sin2 θ, (21)

fC(θ ) = 1

2

(
d(θ,α)

d0
− 1

)2

, (22)

fE(θ ) = 1

2

sin2 α

εrr (θ )

(
sin θ − rc

r
sin θc

)2
, (23)

and the dimensionless parameters

AD = (c′ + c′′P0)Rf /K, (24)

AS = σ1Rf /K, (25)

AC = BR2
f /K, (26)

AE = P 2
0 R2

f /(ε0K). (27)

III. VARIATIONAL CONDITIONS FOR FREE-ENERGY
MINIMIZATION

Thermodynamic equilibrium requires that the tilt configu-
ration θ (r) minimizes the total free energy ftot. Bailey et al.
assumed a constant tilt profile over the whole bulk of the fiber
in order to perform this minimization [11].

Instead, we assume that θ (r) is subject to variations, with
a fixed value θ (rc) = θc at the core of the fiber and a free
value θ (1) = θ1 at the cylinder surface. This corresponds in
variational calculus to the problem of finding an extremal of
ftot(θ,θ̇ ) with one endpoint fixed and a second one free [20].
Hence, the variational conditions to be met are the Euler-
Lagrange equation in the bulk,

∂fbulk

∂θ
− d

dr

{
∂fbulk

∂θ̇

}
= 0, (28)

and the boundary condition[
dfsurf

dθ
+ ∂fbulk

∂θ̇

]
r=1

= 0 (29)

at the cylinder surface. Satisfying these conditions corresponds
to solving the ordinary differential equation

d

dr

(
r

dθ

dr

)
− r

(
AC

∂fC

∂θ
+ AE

∂fE

∂θ

)
= 0, (30)

subject to the boundary condition

θ̇ (1) +
[
AD

∂fD

∂θ
+ AS

∂fS

∂θ

]
r=1

= 0. (31)

Notice that, in general, a uniform tilt profile θ (r) = θ1

that satisfies the boundary condition will not satisfy the
Euler-Lagrange equation and vice versa. For instance, take
the case where the direction of the molecular dipole α = π/2:
the boundary condition of Eq. (31) reduces to

sin θ1 = AE

2AS(σ3/σ1 − 1)
= c′ + c′′P0

σ3 − σ1
.

Solutions to this equation exists only for particular combi-
nations of the spontaneous polarization P0, the interfacial
energies σi , and divergence-of-polarization constants c′ and

c′′. Most likely, the uniform profiles corresponding to these
solutions will not solve the Euler-Lagrange equation because
that condition involves other parameters: the elastic constant
K and the layer-compression modulus B.

Therefore, in the next section we look for nonuniform tilt
profiles as solutions to the variational equations, aware that
such solutions may exist only for particular sets of material
parameters.

IV. ANALYTICAL SOLUTIONS TO THE VARIATIONAL
CONDITIONS

A. Relative magnitude of the bulk free-energy densities

The relative size of the coefficients in the Euler-Lagrange
equation gives insight on the solutions: the layer-compression
energy will dominate over the electrostatic contribution if their
coefficients satisfy that AC > AE , that is, when

√
ε0B > P0. (32)

In order to illustrate our calculations with a concrete
example, let us consider the case of a system with material
parameters given in Table I; these constant parameter values
are within the intervals of reasonable values for real systems—
set out by Bailey and coworkers [11]. We will keep as variables
the remaining parameters of the model (namely α, θ0, c′, and
Rf ).

In our example, P0 <
√

ε0B ≈ 10−3C m−2, and the layer-
compression energy dominates over the electrostatic term.
On the contrary, the electrostatic energy fE would be the
governing interaction if we had P0 much larger than

√
ε0B.

As in most materials, the spontaneous polarization is expected
to be rather small [19], this would not occur often. We will
examine the former limit first and discuss the latter one at the
end of this section.

For the values specified in Table I, the ratio AE/AC =
0.0113 is rather small; therefore, we can consider the electro-
static contribution given by fE as a small perturbation. This
will simplify greatly our problem.

What characteristic distance, δ, is required for the change
of θ , such that the elastic term becomes comparable to the
layer-compression term in Eq. (30)? The answer is found
by approximating the derivative d

dr
as 1

δ/Rf
. Then we find

that δ corresponds to characteristic distance for smectics
δ = √

K/B; in our example δ = 10nm. The experimentally
observed radius of the fibers is on the order of one to
several microns [4] and so we will have that δ � Rf . This
means that we will find generally that the layer-compression
coefficient AC = BR2

f /K = (Rf /δ)2 is large compared with
unity, besides being large compared with AE .

Such a small characteristic distance for the variation of
θ suggests looking for solutions that are constant almost
everywhere over the bulk of the fiber, except for a thin
layer near its surface [21]. Then, in order to satisfy the
Euler-Lagrange equation away from the boundary layer, the
value of θ in the bulk of the fiber must be any of the roots of
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FIG. 2. Roots of the function g(θ ) that determine the possible
values of the tilt angle in the bulk, θbulk, as a function of the tilt
angle in strain-free layers, θ0. Solid lines correspond to the molecular-
dipole orientation α = π/2; dashed ones to α = −π/2. These two
sets are symmetrical under the reflection θbulk ↔ −θbulk.

the function g(θ ), defined by

g(θ ) = ∂fC

∂θ
+ λ

∂fE

∂θ
= 0, (33)

where the perturbation parameter λ = AE/AC is much smaller
than unity.

Multiple roots θbulk solving Eq. (33) can be found numer-
ically or estimated analytically (as perturbations of the roots
of the dominant layer-compression term). The roots for our
example are shown in Fig. 2 for the cases with α = ±π/2, as
functions of the parameter θ0 that defines the strain-free layer
configuration. In that figure, there are eight different branches
of solutions of Eq. (33). Four of these solutions correspond to
the value α = π/2 and the other four to the case α = −π/2.
For each of these two groups of solutions, we find two
branches that are independent of θ0 and two more that do vary
with it.

Each of the branches shown in Fig. 2 may give rise to
different solutions to the entire variational problem. Therefore,
we investigate next how to find boundary-layer solutions to
the Euler-Lagrange and boundary condition equations [21],
assuming that far from the fiber surface the solution becomes
practically constant, that is,

lim
r→rc

θ (r) = θbulk. (34)

B. Boundary-layer solutions

As we expect the tilt angle to vary rapidly with r in a
boundary layer, we change to a new coordinate t defined by

r = exp(t/
√

AC). (35)

Multiplying both sides of Eq. (30) by r , and noticing that
r d

dr
= √

AC
d
dt

, the Euler-Lagrange equation becomes

d2θ

dt2
− e2t/

√
AC

(
∂fC

∂θ
+ λ

∂fE

∂θ

)
= 0. (36)

Nevertheless, the exponential factor in the latter equation can
be approximated as unity, because we have assumed that AC

is very large. Recalling Eq. (33), the Euler-Lagrange equation
simplifies to

d2θ

dt2
− g(θ ) = 0. (37)

The solution of this differential equation can be sought in
terms of special functions or by numerical methods; however,
we can gain significant insight if we approximate the equation
and find solutions in terms of elementary functions. Even if
we may lose some precision, the situation is analogous to
representing a simple pendulum by a harmonic oscillator,
because the general behavior will be illuminated by the
analytically soluble model.

For that reason, we expand g(θ ) in a Taylor series around
one of its roots θbulk and truncate to the first order in �θ =
θ − θbulk:

d2�θ

dt2
− k�θ = 0, (38)

where k = g′(θbulk). Solving Eq. (38), we find

θ (r) = θbulk + C1r
√

kAC + C2
1

r
√

kAC

. (39)

The sign of k governs the behavior of the solution at the
fiber’s core and external boundary. Negative k leads to rapid
and undamped oscillatory behavior near the fiber’s core, which
lacks the required uniform limit, limr→rc

θ (r) = θbulk. Cases
with k = 0 amount to constant tilt angle; we have shown
already that this type of profile does not satisfy generally the
external-boundary condition. Only for positive k = g′(θbulk)
we can guarantee that θ (r) goes to its bulk value as r → rc, by
choosing C2 = 0. This reduces the number of suitable roots of
g(θ ) that can serve as values of θbulk.

An analysis of the sign of k reveals that in the example
of Fig. 2, the constant branches have negative slope, while
the nonconstant branches have positive slopes and therefore
positive k. Thus, we need only to consider further the
nonconstant branches to develop our boundary-layer solutions.

When k > 0, the tilt profile is simply

θ (r) = θbulk + (θ1 − θbulk)r
√

kAC , (40)

where we recognize that C1 = θ1 − θbulk corresponds to the
difference between the tilt angle at the external boundary and
at the fiber’s core.

We can determine C1 or, equivalently, θ1 using the external-
boundary condition that reduces to

(θ1 − θbulk)
√

kAC +
[
AS

∂fS

∂θ
+ AD

∂fD

∂θ

]
θ=θ1

= 0.

Explicitly, we need to solve for θ1 the equation

(θ1 − θbulk)
√

kAC = AS sin(2θ1)

(
σ1 − σ2

σ1
+ σ2 − σ3

σ1
sin2 α

)
−AD sin α cos θ1. (41)

If we plot each side of Eq. (41) versus θ1, we find that the
left-hand one is a straight line, while the other is an oscillatory
function. The values of θ1 that solve the boundary condition
are given by the intersections of these two curves; they can
be found graphically or numerically. Figure 3 shows that
multiple intersections may exist, depending on the values of
the parameters of the liquid crystal fiber. Each value of θ1 at
the intersections gives rise to a different solution for the tilt
profile.
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FIG. 3. Determination of the constant C1 = θ (1) − θbulk as the
intersection of the left- and right-hand sides in the boundary condition,
Eq. (41). Solutions with larger values of C1 are expected to have larger
distortions and therefore larger free energies.

Larger values of C1 = θ1 − θbulk imply larger distortions of
the director, so they result in higher values of the elastic free
energy. Since we are interested in the stable configurations of
the fiber, we need to analyze only solutions that correspond to
intersections with small values of C1. For instance, in Fig. 3,
C1 = −2.38 and C1 = 0.76 give the smallest tilt-angle change
between the core and the exterior of the fiber; both values
correspond to the same physical situation because we do not
distinguish between θ and θ ± π . In the rest of the paper we
concentrate only on such low-C1 solutions (that correspond to
the smallest tilt distortions), because we expect solutions with
higher values of C1 to be metastable or unstable with respect
to the former ones.

Examples of solutions θ (r) in the form of Eq. (40), found
with the method just described, are shown in Fig. 4. As
expected, the solutions consist of two regions: one where θ

is practically constant and another of rapid spatial variation
near the border of the fiber. The width of the boundary layer
corresponds to the formerly introduced distance δ = √

K/B.
The presence of this boundary layer, characterized by a

rapid spatial variation, is a consequence of the boundary
condition at the cylindrical border, Eq. (31). This is a hybrid
boundary condition or first-order differential equation, which,
as explained in Section III, cannot be generally satisfied by
a constant solution to the Euler-Lagrange Eq. (30) in the
bulk. Therefore, the boundary layer allows matching of said
boundary condition with a practically homogeneous solution
deep inside the fiber, and we expect this type of behavior
independently of the approximation used for the layer width,

θ0 2

θ0 3 π 8

θ0 4

θ0 8

0 0.5 1
0.

0.25

0.5

r

θ
r

π

FIG. 4. Boundary-layer profiles for the tilt angle θ (r) as functions
of the radial coordinate r , satisfying the Euler-Lagrange equation and
boundary condition, for different values of the tilt angle in strain-free
layers, θ0. The width of the boundary layer is given by δ = √

K/B.

d(θ,α). It should be stressed that, in spite of having constant
tilt inside the fiber’s bulk, these solutions exhibit indeed a lot
of splay distortion around the defect core, which is consistent
with the presence of said defect.

These boundary-layer configurations minimize the total
free energy for a fixed radius Rf , but we would like to find
which radii are the most stable ones by further minimizing the
free energy with respect to Rf . We take up this task in the next
section.

Before going to that, we point out that if the dominant term
in the bulk free-energy density were the electrostatic energy,
we could in principle reverse the roles of AE and AC , and
then repeat the analysis given above: we would define then
g̃(θ ) = fE(θ ) + λ̃fC(θ ), with the perturbation parameter λ̃ =
AC/AE . Next, we would search for boundary-layer solutions
of the form θ (r) = θbulk + C1r

√
kAE , fix the values of θbulk

as roots of g̃(θ ), and find C1 by solving the external-boundary
condition. Of course, one would have to pick only those values
θbulk that lead to positive values of k = g̃′(θ ).

V. STABLE RADIUS OF THE FIBER

The reduced free energy ftot of a fiber can be calculated as
a function of its radius Rf by substituting into Eq. (17) the
boundary-layer profiles θ (r) found in the previous section.

We evaluated analytically both surface-like terms as well
as the elastic bulk-energy density. Nevertheless, we had to
integrate numerically the layer-compression and electrostatic
bulk-energy densities. Because of the rapid variation of the
tilt-angle in the boundary layer, it was useful to perform the
integration over the variable t , defined in Eq. (35), instead of
the coordinate r . Thus, we can calculate the total free energy
for a fiber with a given set of material parameters.

We concentrate now on the dependence of the reduced free
energy ftot(Rf ,θ0) with respect to the fiber radius, at a given
value of the tilt in strain-free smectic layers (θ0), keeping all
other material parameters constant. The bottom panel in Fig. 5
illustrates this function for the case with θ0 = 1. The location
of a minimum in such function reveals the radius of stable
fibers, the ones that minimize the free energy with respect
to both Rf and the tilt profile θ (r). In the example given in
Fig. 5, the radius of stable fibers is Rmin = 3.08 μm.

When will the total free energy display such minima with
respect to the fiber radius? The answer lies in the competition
among different contributions to the free energy. Inspection
of Eqs. (19)–(23) shows that all of the free-energy densities
are positive-definite, except the surface-like divergence-of-
polarization term. Only when this term is negative and
comparable to the sum of the other terms, we expect the
presence of minima in the total free energy; otherwise the
minimum of the free energy corresponds to null radius, i.e.,
the absence of fibers.

We can estimate values of the material parameters that
lead to minima in ftot. For instance, assume that the electro-
static coefficient AE is indeed smaller than the layer-
compression coefficient AC , that is, P 2

0 /ε0 < B. Then, the
surface-tension coefficient AS will dominate over both AC and
AE if the surface-tension coefficient σ1 > BRf ; for typical
values σ ∼ 10−2 N/m and B ∼ 105 Pa, this will be true when
the radius of the fiber is larger than 0.1 μm. In that case, in
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FIG. 5. The absolute value of the bulk and surface-like contri-
butions to the free energy are of the same order of magnitude (top
panel: solid and dashed lines, respectively, for the case θ0 = 1), but the
former is positive-definite while the latter may be negative. Therefore,
in some cases, their competition gives rise to minima in the total free
energy with respect to the fiber radius Rf . When minima exist (bottom
panel), their location Rmin corresponds to the radius of stable fibers
for the given value of the strain-free angle θ0.

order to have minima and stable fibers, we require that the
divergence-of-polarization coefficient AD is negative and of
the same order of magnitude or larger than the surface-tension
term, AS . This will happen when sin α and sin θ have opposite
signs and

c′ + c′′P0 > σ1. (42)

This can be achieved with a high value of c′ independently
of the spontaneous polarization (when c′ > σ1) or, conversely,
with a sufficiently high value of the spontaneous polarization
P0 (when c′ < σ1). The top panel in Fig. 5 illustrates this
competition: although the two surface-like terms are much
larger than the individual contributions of the bulk terms, their
sum is of the same order as that of the combined bulk terms.
Since the total surface-like energy is still negative, it competes
with the positive bulk energy and produces the minimum
shown in the bottom panel of Fig. 5.

The converse situation, where the divergence-of-
polarization term competes with the layer-compression term,
would introduce the condition

c′ + c′′P0 > BRf . (43)

This condition requires again sufficiently high values of c′ and
P0, because in practice it is not possible to decrease arbitrarily
the value of Rf below a critical limit Rcritical ≈ 0.15μm, set
by a modified Plateau-Rayleigh instability [4] (that fragments
a fluid cylinder into a set of disconnected droplets).

In order to illustrate the effect of changes in the material
parameters, we have calculated the stable radius Rmin(θ0,c

′)
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FIG. 6. Stable radii of fibers as functions of the tilt angle in
strain-free layers, θ0, for different values of the elastic divergence-of-
polarization constant, c′. The main panel, from bottom to top, shows
results for c′ = 0.0245,0.0246,0.0247, and 0.0248 N m−1. The inset
shows a zoom to the curves for the three smallest values of c′. In all
four cases, a gap devoid of stable fibers is observed for values of θ0

close to zero; its width decreases with increasing c′.

as a function of the tilt in strain-free layers, θ0, for the
values c′ = 0.0245,0.0246,0.0247, and 0.0248 N m−1, taking
all other material parameters as in Table I. The results are
shown in Fig. 6.

We report the following results: first, no stable fibers
are found unless θ0 exceeds a minimum value, creating a
forbidden region or gap of instability around θ0 = 0. Second,
this minimum value shifts toward zero as c′ is increased, which
reduces the width of the gap. Finally, the stable fibers become
markedly thicker as the constant c′ rises above the value of the
surface-tension eigenvalues, encompassing the experimentally
measured sizes of fibers drawn from B2 and B7 phases [4,11].
As a matter of fact, if c′ becomes a few percent larger than the
surface tension coefficients, we find that the radius of the fiber
grows to tens of microns.

The results shown in Fig. 6 can be compared directly with
those of Bailey et al. for constant profiles θ (r) = θbulk, in
particular with Fig. 7 in Ref. [11]. The calculations for a
constant-tilt profile indicate that the radius of stable fibers
does not change more than one order of magnitude as
the spontaneous polarization changes over three orders of
magnitude. Also, in addition to the gap of instability near
θ0 = 0, for constant-tilt profiles there is a second gap of
instability near θ0 = π/2.

Thus, our results for the boundary-layer solutions coincide
with the previous finding of Bailey and coworkers that there
is a gap of instability at values of θ0 close to zero, where no
stable fibers can be found. By contrast, while the radius of
stable fibers with boundary-layer solutions does decrease near
θ0 = π/2, we do not observe a second instability gap near
that value: we still find stable radii different from zero. Also
differently for the case of constant tilt, we find stable fibers with
radius as large as tens of microns, when a negative divergence
of polarization energy overcomes the positive surface-tension
energy and compete with the bulk energy of the fiber.

We attribute these differences to the very important role
played by the surface-like terms in our model; this role is set
by the rapid variation of the tilt angle required in our model
in order to satisfy the boundary conditions, which couple the
solution in the bulk with the surface-like energy densities.
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VI. CONCLUSIONS

We presented a revised model for the free energy of fibers
made from smectic layers of bent-core mesogens. This model
does not assume that the tilt-angle profile θ (r) is constant
throughout the bulk of the fiber; instead, we use such a model
to identify those profiles θ (r) that minimize the free-energy
functional ftot[θ (r)].

The standard procedures of variational calculus were
applied to obtain the Euler-Lagrange equation for θ (r) and
its associated boundary condition at the external surface of
the fiber. Then we identified the dominant contributions to
the free energy and developed an approximate, analytical
solution to the variational equations. The solutions display
a boundary-layer behavior: the profile θ (r) is nearly constant
but for a thin layer near the external surface of the fiber. The
width of the boundary layer is set by the characteristic length
for perturbations in smectic layers, δ = √

K/B; for typical
values of the material parameters, this length is of the order of
tens of nanometers.

Numerical integration of the bulk free-energy densities
reveals that, for a given value of the strain-free tilt θ0,
the free-energy function ftot can be minimized with respect
to the fiber’s radius Rf ; such minima correspond to the
radius of stable fibers. The existence of said minima depends
sensitively on the competition of the total surface-like energy
and the total bulk energy. The divergence-of-polarization
term is very important because it is the only one that can
be negative and compete with the other terms (which are
positive-definite).

Another feature of our model with variable-tilt profiles is
that the instability gap—or interval of absence of stable fibers
observed for values of θ0 close to zero—becomes smaller as the
elastic divergence-of-polarization constant c′ is increased even
slightly above the values of the surface-tension coefficients σi .
Large values of the radius of stable fibers are found even for

small spontaneous polarizations, on the order of 10−4 C m−2.
At any rate, the model is able to recover radius of stable fibers
that are compatible with those reported experimentally for
fibers drawn from both B2 and B7 phases.

We conjecture that the high values that the surface-like
energy terms can acquire in our model may give a hint to
the aggregation of fibers into compact bundles: although our
present model cannot address currently this issue, it may be
possible that a modified version of the model can take into
account the interaction of several fibers in close proximity,
and to figure out whether they can reduce their combined
surface-like energy by bundling, as found experimentally by
Bailey et al. [8].

Another modification to the model that strikes us as worthy
of consideration is that of allowing variations of the molecular-
dipole angle α, so that the free energy could be minimized
simultaneously with respect to α(r) and θ (r). In addition to
this, we think it would be interesting to incorporate into the
model the smectic layer energy in terms of the complex order
parameter ψ , as presented by Bauman and Phillips [12]. We
expect that the boundary-layer method will be useful for those
cases, too.

Finally, examination of the conditions of propagation of
right- and left-circularly polarized light within fibers with
nonuniform tilt angle profiles would be of interest in the
context of optical applications. Particularly, the effect of the
boundary layer and its associated and rapid variation of the
dielectric tensor near the external surface of the fiber could
imply interesting phenomena of transmission and reflection at
the air-liquid crystal interface.
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