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Relaxation of surface steps after thermal quenches:
A numerical study within the terrace-step-kink model
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We study the out-of-equilibrium relaxation of surface steps after thermal quenches using numerical simulations
of the terrace-step-kink model for a vicinal surface. We analyze both single and interacting steps in a situation
where the temperature is suddenly changed at a given quench time. We focus on a physically relevant range
of temperatures and show that the relaxation of the roughness is compatible with a power-law behavior with
an effective relaxation exponent close to γ = 1/2 in all cases. This value is consistent with a one-dimensional
Edwards-Wilkinson equation. In particular, this means that, although the case of interacting steps is effectively
a two-dimensional system, its relaxation is dominated by short length-scale fluctuations, where steps are not
interacting.
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I. INTRODUCTION

The understanding of the dynamics of solid-state surfaces
is fundamental for a range of physical and chemical processes
such as surface growth, chemical reactions, melting, and
surface stability, among others. Beyond the idealized crys-
tallographic surface, one should consider nonideal situations
containing surface steps, impurities, or adatoms in order to gain
a deep understanding of the problem. In particular, surface-step
fluctuations and adatom diffusion in vicinal surfaces are key
features that need to be tackled.

The equilibrium dynamics of vicinal surfaces has long
been studied in different contexts [1,2]. It is well established
now that this problem belongs to the universality class of the
Edwards-Wilkinson (EW) equation, originally proposed for
surface growth phenomena [3,4]. On the one hand, small-angle
vicinal surfaces, where each step is independent of each other,
correspond to a situation where two-point spatial correlations
along the step diverge with the distance with the characteristic
power-law behavior of the one-dimensional EW equation. On
the other hand, when interactions among consecutive surface
steps come into play, the system of steps becomes two-
dimensional with large distance correlations logarithmically
growing in both the direction along and perpendicular to the
surface step. This is the behavior found in the two-dimensional
EW equation, which is indeed in its critical dimension,
and thus giving place to logarithmic correlations at large
distances.

In contrast to the equilibrium situation, the out-of-
equilibrium dynamics of vicinal surfaces has recently at-
tracted renewed attention [5–9]. In particular, the experimental
study of thermal quenches on oxide surfaces has shown
the relevance of properly considering initial conditions and
how it modifies the expected power-law behavior with time
[9]. In addition, careful studies of the out-of-equilibrium
properties of the EW equation has also been conducted
[10–13]. One can notice in these works that the out-of-
equilibrium dynamics can be investigated through the defini-
tion of different observables, each leading to complementary
information.

It is interesting to notice the different power-law relaxation
behaviors found after a sudden change of the growth conditions
of the EW equation. This can be performed by changing
the temperature or the stiffness of the system, and we will
in general refer to this sudden change as a quench. The
resulting relaxation depends on the time at which the quench is
performed. By monitoring the response of the global roughness
of the system, four different relaxation regimes separated by
crossovers have been identified by Chou, Pleimling, and Zia
[12]. If the quench is performed at extremely long times, where
the saturation regime is dominant, exponential relaxation is
expected. If the time of the quench is too short, it just adapts
to the final condition too quickly and the relaxation of the
system is too fast to be observable. For intermediate regimes,
i.e., if the quench is performed in the growing regime where
the correlation length is smaller than the size of the system,
the relaxation of the roughness of the systems is expected
to decay as a power law t−γ , with two different effective
relaxation exponents γ = 1/2 and 3/2 depending on the
quench conditions.

In the present work we test, using numerical simulations of
the terrace-step-kink (TSK) model, whether these exponents
can be observed in a vicinal surface problem, which belongs to
the EW universality class. We perform simulations using a two-
times protocol where the temperature is suddenly changed at a
given quench time. We study both the single-step fluctuations
and the case where interacting steps are considered. We have
found that for parameters relevant to experimental situations
the effective relaxation exponent is close to the value γ = 1/2,
and we argue that the value γ = 3/2 would be difficult to
be observed in the relaxation of vicinal surfaces since the
necessary temperature difference at the quench is too large.
The rest of the manuscript is organized as follows. In Sec. II we
define the TSK model used here and give the main parameters
of our simulation study. In Sec. III we give the definition of
the quench protocol and the relevant observables used in this
work, and in Sec. IV we present the main results concerning the
relaxation exponent. Finally, Sec. V is devoted to concluding
remarks.
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II. TERRACE-STEP-KINK MODEL

The TSK model has long been used to study vicinal
surfaces properties [5,14–18]. We briefly describe its main
characteristics here. We consider a discrete model for the
vicinal surface that for simplicity is defined on a square lattice
with unit lattice constant and periodic boundary conditions in
both directions. The longitudinal step size, in the ŷ direction,
is L, and the system contains N steps separated by an average
distance �, with the transverse size, in the x̂ direction, given
by M = N�. The position of the nth step is given by xn(y),
and its deviation from its average position is given by

un(y) = xn(y) − 1

L

L−1∑
y=0

xn(y). (1)

In the TSK model the only allowed thermal excitations are
kinks of energy ε, therefore neglecting adatoms and vacancies
in the surface. It is also considered that steps are described by
a single valued function xn(y), not allowing the formation of
overhangs. In this model, the stiffness of an isolated step is

β̃ = 2kBT sinh2

(
ε

2kBT

)
. (2)

For large temperatures such that 2kBT � ε the stiffness of
isolated steps becomes β̃ ∼ ε2/(2kBT ). This is reminiscent of
the behavior recently encountered in a model system closely
related to the EW equation where the temperature dependence
of the effective elasticity has been fitted to ν = (a + bT )−1

with a and b fitting parameters of order unity [13]. The large
temperature behavior of the elasticity of this model is therefore
ν ∼ 1/T as in the TSK model, Eq. (2). This relation between
elasticity and temperature has also recently been used to model
fluctuations in vicinal surfaces using the EW equation [9], as
suggested by earlier work [15–17,19]. Therefore, the generic
property that ν ∼ 1/T in all these models gives us a link
between the temperature quenches we are studying and the
results where the elasticity has suddenly changed in the EW
equation [12,13].

Entropic repulsion is introduced in the TSK model through
the nontouching (fermionic) constraint, requiring xn(y) <

xn+1(y) for all y. In addition to this entropic repulsion
term, there is a term due to elastic repulsion, proportional
to A[xn+1(y) − xn(y)]−2, which for simplification is limited
to neighboring steps. The Hamiltonian of the system is then
given by

H = ε

N−1∑
n=0

L−1∑
y=0

|un(y + 1) − un(y)|

+A

N−1∑
n=0

L−1∑
y=0

1

[un+1(y) − un(y) + �]2
, (3)

with the additional nontouching constraint to be considered.
With this model, we perform standard Monte Carlo numerical
simulations with the Metropolis algorithm. Although kinetic
Monte Carlo would be more reliable than the Metropolis
algorithm when comparing time scales, for the present model
these two numerical protocols give qualitatively the same
information [6–8]. When one wants to directly compare among

different time scales, kinetic Monte Carlo simulations would
be preferable, as acknowledged in Refs. [7,8] when comparing
relaxation times of surface steps with a Fokker-Planck time
scale. Since we are not directly measuring time scales but
presenting a general picture for the relaxation of surface steps
we prefer to use the simple Metropolis algorithm.

As a reference temperature we consider the value kBT /ε =
0.2, which is a typical temperature scale encountered in
copper vicinal surfaces [20,21]. For the quench protocols we
will therefore use temperature changes between the values
kBT /ε = 0.2, 0.5, and 1.0, which correspond to physically
meaningful values. In experimental conditions, while smaller
temperatures prevent step fluctuations, much larger tempera-
tures would induce new mechanisms for particle motion, like
the formation of vacancies and adatom diffusion on terraces.

A fundamental parameter of the model is the longitudinal
collision length defined as [15]

ycoll = �2

2
sinh2

(
ε

2kBT

)
, (4)

which gives the characteristic distance between close ap-
proaches among consecutive steps at a given temperature.
For length scales smaller than ycoll surface steps fluctuate
independently of each other. Here ycoll is the typical length at
which collisions between consecutive steps can be observed.
Therefore, for length scales larger than ycoll the fluctuations of
the different steps are correlated.

We present results in this work with the longitudinal size
L = 512. First, we will present data corresponding to inde-
pendent single steps, which were obtained with N = 64 steps
an average distance � = 128 apart (since steps are indepen-
dent, the use of N = 64 improves statistical averages). For
kBT /ε = 1 this amounts to ycoll ≈ 2200 > L, thus effectively
corresponding to independent steps for this and smaller tem-
peratures. We also use a system with N = 256 steps and � = 4
that for kBT /ε = 0.2 corresponds to ycoll ≈ 300 < L, giving
an interacting-steps array for this and larger temperatures. In
addition, in this last case we consider the elastic interaction
term with intensity A = 2. Finally, we will also consider a
case with N = 128, � = 32, and two temperature values,
kBT /ε = 0.2 and kBT /ε = 2. For these values the corre-
sponding collision lengths are ycoll ≈ 18 000 and ycoll ≈ 30,

respectively. This interesting case will therefore correspond
to the case of thermal quenches between interacting and
independent steps conditions. Finally, Monte Carlo numerical
simulation data were averaged between 102 and 103 Monte
Carlo runs, and time is given in units of Monte Carlo steps.

It can be shown that a coarse grain of the TSK model
can be recast as an effective two-dimensional anisotropic EW
equation with an additional term related to the discreteness of
the model [19,22]. Since this is essentially a two-dimensional
model, the EW equation is at its critical dimension (d = 2),
and correlations grow logarithmically at large distances.
However, if the average step separation � is large enough
so that the collision length is large compared with the
relevant longitudinal size, the two-dimensional EW equation
can be decoupled in N independent one-dimensional EW
equations. In this case correlations grow as a power law with
a characteristic exponent. Furthermore, since one expects the

011613-2



RELAXATION OF SURFACE STEPS AFTER THERMAL . . . PHYSICAL REVIEW E 84, 011613 (2011)

effective elasticity term of the longitudinal EW equation to
be approximately inversely proportional to the temperature, as
mentioned before, thermal quenches will be directly reflected
in a change of the parameter μ = νi/νf ∼ Tf /Ti that controls
the different relaxation regimes of the EW equation [12].

III. PROTOCOL AND OBSERVABLES

In the following we use the standard two-times protocol.
The starting point is always the same “flat” initial condition,
which means that the system of steps is in a perfect staircase
configuration where all steps are straight and separated a
distance �. First, the system is let to evolve under a fixed initial
temperature Ti . Then the temperature is suddenly changed
to the final value Tf at the quench time s, and the system
continues evolving. In order to monitor how the system relaxes
to achieve equilibrium at the final temperature Tf , the global
average roughness is computed as a function of t and s. This
is given by

W 2(t,s) = 1

LN

L−1∑
y=0

N−1∑
n=0

⎡⎣xn(y) − 1

L

L−1∑
y ′=0

xn(y ′)

⎤⎦2

, (5)

where xn(y) is a time-dependent quantity and s stands for
the moment at which the system is perturbed. This roughness
is compared with the one obtained with s = 0, which corre-
sponds to the evolution from the initial flat configuration to
equilibrium at given Tf and is considered the reference curve
for a given quench protocol. With these computed quantities
the desired relaxation roughness is obtained as

�W 2(�t,s) = |W 2(t,s) − W 2(t,0)|, (6)

with �t = t − s the elapsed time since the quench was per-
formed and assuming t > s. Since we are trying to test power-
law-type relaxation in the two-time quantity �W 2(�t,s), we
will evaluate the effective relaxation exponent defined through

γ (�t) = −∂ log �W 2(�t,s)

∂ log �t
. (7)

One can analyze both longitudinal, along the step edge,
and transverse fluctuations of steps. The latter give important
information when the surface steps are close and interact with
each other. Analogously to the longitudinal case, Eq. (5), the
transverse global roughness is defined as

W 2
t (t,s) = 1

LN

L−1∑
y=0

N−1∑
n=0

[
xn(y) − 1

N

N−1∑
n′=0

xn′ (y)

]2

. (8)

One can then define the transverse relaxation roughness analo-
gously in order to obtain �W 2

t and then the effective relaxation
exponent in the transverse direction, γt(�t). In spite of the fact
that transverse fluctuations in vicinal surfaces [15–17,19,23]
had attracted much less attention than the longitudinal ones,
we think it is important to show similarities and differences
among them. For example, although the TSK model can be
shown to be described by the anisotropic two-dimensional
EW equation, we found that the relaxation properties in the
longitudinal and transverse directions are qualitatively similar
and described by the same relaxation properties.

In Refs. [12,13] the evolution of the relaxation roughness
�W 2(�t,s) has been recently studied for the EW equation,

∂x(y,t)

∂t
= ν∇2x(y,t) + η(y,t), (9)

where x(y,t) can be thought of a time-dependent height field in
a d-dimensional substrate with coordinate y, the noise η(y,t)
has zero average and correlations 〈η(y,t)η(y′,t ′)〉 = Dδd (y −
y′)δ(t − t ′), and the parameter ν stands for the elasticity of
the model, which drives the height field to a flat configuration.
For this model, the evolution of the relaxation roughness can
be generically described with a power law of the elapsed time
�t = t − s since the quench was performed:

�W 2(�t,s) ∼ �t−γ . (10)

The value of the relaxation exponent depends only on three
scaling variables, namely, μ = νi/νf , σ = νf s, and ρ = t/s,
where νf (νi) are the elasticity after (before) the quench.
Depending on these parameters and considering also the
dimension d of the EW equation, the relaxation exponent can
take different values. The value γ = 0 is typically expected at
very short time scales, either νf s 	 1 or νf (t − s) 	 1. On
the contrary, at very long time scales, νf s � 1 or νf (t − s) �
1, exponential relaxation is observed instead of the power-law
behavior, Eq. (10). At intermediate time scales the parameter
μ typically separates two regimes according to

γ =
{

1 + d
2 for μ 	 1,

d
2 for μ � 1.

(11)

Since in the vicinal surface problem one expects that ν ∼ 1/T ,
the value of μ ∼ Tf /Ti controls the relaxation of the roughness
at intermediate time scales, typically encountered in experi-
ments. In the following we test the values of the relaxation
exponent in the TSK model.

IV. RESULTS

A. Independent steps

We present in this section the numerical results obtained
using the TSK model with the quench protocol. We start with
the analysis of the data corresponding to single independent
steps. Figure 1 shows the evolution of the roughness for
constant temperatures T = 1ε/kB and T = 0.2ε/kB , circles
and squares, respectively. It is clear that the data corresponding
to the roughness for T = 1ε/kB show the three typical regimes
of the EW growth equation: (1) a random deposition regime
for very short time t 	 t1, i.e., W 2 ∼ t , (2) correlated growth
regime W 2 ∼ t2β for t1 	 t 	 t2 with the characteristic
growing exponent β = 1/4, and (3) system size-dependent
saturation W 2 ∼ L2α for t � t2 with the roughness exponent
α = 1/2. These three regimes are highlighted with dashed
lines in Fig. 1 for T = 1ε/kB . In the case corresponding to
T = 0.2ε/kB (squares), the two crossover times are too close,
t1 ≈ t2, and therefore the intermediate correlated grow regime
becomes a wide crossover between random deposition and
saturation. It is also shown in Fig. 1 the results for a quench
protocol from Ti = 1ε/kB to Tf = 0.2ε/kB at the quench
time s = 102 (blue diamonds). After the sudden quench the
roughness relax trying to reach equilibrium at Tf .
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FIG. 1. (Color online) Time evolution of the global roughness for
the TSK model. Full circles (squares) correspond to the evolution
from an initial flat configuration at a temperature T = 1ε/kB

(T = 0.2ε/kB ). Full diamonds correspond to the evolution from
an initial flat condition at Ti = 1ε/kB but with a sudden quench to
Tf = 0.2ε/kB at the quench time s = 102. Dashed lines highlight the
three expected regimes in the one-dimensional EW equation: random
deposition (RD), correlated growth (CG), and saturation (S).
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FIG. 2. (Color online) (a) Evolution of the global roughness
with the elapsed time since the quench, �t = t − s. Full squares
correspond to the evolution since the quench at the reference final
temperature T = 0.2ε/kB , and full diamonds correspond to the
quench protocol from Ti = 1ε/kB to Tf = 0.2ε/kB . (b) Evolution of
�W 2(�t), corresponding to the difference between the quenched and
the reference data in (a). (c) The effective relaxation exponent defined
through the logarithmic derivative of �W 2 Eq. (7). As a reference,
we also plot the values γ = 1/2 (dashed line) and γ = 3/2 (dotted
line) expected for the one-dimensional EW case.

The same data reported in Fig. 1 are shown in Fig. 2(a)
but as a function of the elapsed time �t , which is used to
construct the relaxation roughness defined in Eq. (6), as shown
in Fig. 2(b). In order to obtain the effective relaxation exponent,
Eq. (7), we evaluate numerically the forward difference of
the data in Fig. 2(b). The obtained evolution of the effective
relaxation exponent with the elapsed time, γ (�t), is reported
in Fig. 2(c). The values γ = 1/2 (dashed line) and γ = 3/2
(dotted line), which are the expected steady values for the
relaxation exponent of the one-dimensional EW equation, are
also shown in Fig. 2(c) as reference values. After a transient
time, which is of the order of the quench time s, the relaxation
exponent shows a steady value that is indicated with a bold
continuous line in the figure and is close to γ = 1/2. After that,
the value of the relaxation exponent grows and finally develops
strong fluctuations when �W 2(�t) → 0. The observed final
increase of γt is related to the final exponential relaxation
expected at very long times [12]. The observed steady value
compares well with the EW results γ = 1/2. Although the
results presented here are for L = 512, we have checked that
the value of the steady effective relaxation exponent does not
depend much on the system size for the same quench protocol.

Figure 3 reports the effective relaxation exponent for
different quench protocols: (a) Ti = 1ε/kB to Tf = 0.2ε/kB

[same data as in Fig. 2(c)], (b) Ti = 0.5ε/kB to Tf = 0.2ε/kB ,
and (c) inverse quench protocol from Ti = 0.2ε/kB to Tf =
1ε/kB . The quench time is s = 102 in all cases. One can
observe in Figs. 3(a) and 3(b) that the steady value of the
effective relaxation exponent seems to be slightly changing
with Tf /Ti . In fact, as discussed in Sec. III, a key parameter
controlling the value of the relaxation exponent in the EW
equation is the quotient of the initial and final elasticity,
μ = νi/νf ∼ Tf /Ti . As shown in Ref. [12], in the crossover
regions between the different values of γ , a small change of
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FIG. 3. (Color online) Effective relaxation exponent obtained in
different quench protocols as indicated in the keys, all with a quench
time s = 102. As a reference, we also plot the values γ = 1/2 (dashed
line) and γ = 3/2 (dotted line) expected for the one-dimensional EW
case.
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the relaxation exponent with μ can be observed at a fixed value
of the quench time s. The data reported in Fig. 3(c) correspond
to the case where the quench time s is too short compared with
the crossover time t1, as can be observed in the evolution of the
roughness for Tf = 0.2ε/kB in Fig. 1. Although in this case
one would expect an effective exponent γ = 0 for the EW
equation [12], our numerical results suggest that the steady
value of γ might be around 1/2. This can be also a result
of the final state being at a larger temperature and thus in a
correlated grow regime at the quench time.

We have therefore shown that our results for the relaxation
of single steps are consistent with the analytical results
obtained for the one-dimensional EW equation. However,
in the parameter space used here, we have not observed a
relaxation exponent close to γ = 3/2. This value would be
observable for μ ∼ Tf /Ti 	 1 [12], which corresponds to a
quench to a final temperature much smaller than the initial one.
This could be achieved with a very large initial temperature,
where adatoms and vacancy diffusion would destroy the image
of a parallel step array considered in the TSK model, or with
a very small final temperature where steps do not fluctuate
within observable time scales. Therefore, we do not expect
the value γ = 3/2 to be observed in the physically relevant
temperature range for the TSK model studied here.

B. Interacting steps

We present here results corresponding to the case of
interacting steps in a vicinal surface. In this case longitudinal
and transverse fluctuations can be considered. For illustration
purposes we show here only results corresponding to trans-
verse fluctuations, the longitudinal case being qualitatively
similar. The interacting-steps system can be related to a
two-dimensional EW growth equation, which is therefore in
its critical dimension (d = 2). It is expected that in this case
correlations grow logarithmically and not as a power law. In
fact, as can be observed in Fig. 4 for constant T = 1ε/kB
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FIG. 4. (Color online) Time evolution of the global roughness for
the TSK model in the case of interacting steps where the average
distance between consecutive steps is � = 4 and the interaction
strength is A = 2. Full circles (squares) correspond to the evolution
from an initial flat configuration at a temperature T = 1ε/kB (T =
0.2ε/kB ). Full diamonds correspond to the evolution from an initial
flat condition and at Ti = 1ε/kB but with a sudden quench to
Tf = 0.2ε/kB at the quench time s = 103.

and flat initial condition the intermediate correlated grow
regime is not present, as in Fig. 1, but a logarithmic growing
regime seems to be present. In the case with T = 0.2ε/kB and
flat initial condition the intermediate logarithmic grow is not
reached and saturation is rapidly developed. Blue diamonds
in Fig. 4 correspond to the quench from Ti = 1ε/kB to
Tf = 0.2ε/kB at s = 103. The quench is therefore initiated
in the growing regime of the initial temperature but in the
saturation regime of the final temperature. As can be observed,
a key difference with the results reported in Fig. 1 is that in
the interacting-steps case the relaxation has two characteristic
stages. A fast initial decay is followed by a second slower
relaxation, which results in the shoulder observed in the global
relaxation after the quench. The reason for this two-stage
behavior could be that the initial relaxation is modified by the
existence of the transverse analog of the longitudinal collision
length ycoll. This two-stage behavior is also present when
analyzing the longitudinal relaxation of the interacting-steps
system.

In Fig. 5(a) we show numerical results corresponding to
the transverse relaxation roughness �W 2

t as a function of the
elapsed time �t in the TSK model with L = 512, N = 256,
� = 4, and A = 2. We show the quench from Ti = 1ε/kB to
Tf = 0.2ε/kB (squares) and the inverse quench from Ti =
0.2ε/kB to Tf = 1ε/kB (triangles), both at the quench time
s = 103. From these data, we obtained the transverse effective
relaxation exponent shown in Fig. 5(b). Although it is not that
clear that γt has reached the steady value, it seems that a plateau
is developing around γt ≈ 0.3 < 1/2 [bottom straight line in
Fig. 5(b)], for both the direct and inverse quench protocols. We
think this is related to the first stage in the relaxation observed
in Fig. 4. A careful inspection of the data for γt reveals that
it also accounts for the shoulder observed in the evolution of
the global transverse roughness after the quench, as shown in
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FIG. 5. (Color online) Transverse fluctuations of interacting steps
for the TSK model with L = 512, N = 256, � = 4, and A = 2.
(a) Transverse relaxation roughness for the case of interacting
steps. Squares correspond to the direct quench from Ti = 1ε/kB to
Tf = 0.2ε/kB, and triangles correspond to the inverse quench from
Ti = 0.2ε/kB to Tf = 1ε/kB , both at the quench time s = 103. (b)
Transverse effective relaxation exponent for the data in (a).
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FIG. 6. (Color online) Longitudinal fluctuations of interacting
steps for the TSK model with L = 512, N = 128, � = 32, and A = 0.
The two temperatures considered here corresponds to the case of
interacting steps, T = 2ε/kB , and single steps, T = 0.2ε/kB . (a)
Evolution of the relaxation roughness since the quench at s = 102.
Squares correspond to the direct quench from Ti = 2ε/kB to Tf =
0.2ε/kB, and triangles correspond to the inverse quench from Ti =
0.2ε/kB to Tf = 2ε/kB . (b) Effective relaxation exponent for the
data in (a).

Fig. 4. For the inverse quench the data seem to develop a second
steady state at a value slightly larger than 1/2 [upper straight
line in Fig. 5(b)]. However, the data for the direct quench show
a relaxation that is consistent with an exponential behavior
for the second stage. We therefore conclude that although
the origin of the second stage of the relaxation in Fig. 4 is
not clear and might be related to transverse fluctuations, the
two-stage relaxation can be observed in the behavior of the
effective relaxation exponent. Besides, we think that this two-
stage relaxation makes it difficult to reach a steady value for
the effective relaxation exponent.

Since the parameter ycoll, indicating whether the system is
in the interacting regime or not, depends on temperature, we
finally report in Fig. 6 results for the especial case where the
quench is made between two temperatures corresponding to
the system in the single-steps regime and in the interacting-
steps regime, respectively. In this case we use the TSK
model with L = 512, N = 128, � = 32, and A = 0. The
two temperatures studied were T = 2ε/kB and T = 0.2ε/kB,

which yieldsycoll ≈ 18 000 and 30, respectively. In Fig. 6(a)
the longitudinal relaxation roughness �W 2 is shown with
the corresponding effective relaxation exponent in Fig. 6(b).
Again, the steady value of γ seems to be close to γ = 1/2 for
both quench protocols.

Although the value of the effective relaxation exponent of
the EW equation depends on the considered dimension [13],
Eq. (11), we have always quoted the values corresponding
to the one-dimensional case, even in the interacting-steps
case which corresponds to two dimensions. The reason for
this is that the two-dimensional character is expected to be
effectively observable at very large distances, much larger
than the longitudinal collision length. Notice that the expected
values for the relaxation exponents in d dimensions, Eq. (11),
are larger than the value γ = d/2, which is close to our
numerical results. This means that we never observe γ close
to the smaller value expected in two dimensions, and therefore
that fluctuations on scales of the order of ycoll dominate the
relaxation in the cases studied here.

V. CONCLUDING REMARKS

We have performed here numerical simulations of the
TSK model for vicinal surfaces focusing on the response
of the system to a quench protocol. We have analyzed a
particular physically relevant temperature range. The study
of the relaxation roughness, which measures the difference
between the quenched roughness and the final reference state,
gives information on the relaxation of the system, contained in
the effective relaxation exponent γ . In the range of parameters
we have used, the steady value of γ is always close to the value
γ = 1/2. A first important conclusion of our results is that the
value γ = 3/2 would be hardly observable in experiments.
It would be necessary to perform a quench with the final
temperature at least two orders of magnitude smaller than
the initial temperature in order to observe γ = 3/2. Finally,
we should also remark that for the parameters studied here,
the fact that the effective relaxation exponent is close to
γ = 1/2 for the case of interacting steps is indicating that
the relevant fluctuations for the relaxation of the system are
those at scales smaller that the longitudinal collision length.
In addition, our results are showing that the expected behavior
in the simple one-dimensional EW case can be extrapolated
to more involved situations, the TSK model being a non-
trivial EW type of system, with the elasticity depending on
temperature.
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[4] A.-L. Barábasi and H. E. Stanley, Fractal Concepts in Surface
Growth (Cambridge University Press, Cambridge, UK,
1995).

[5] E. Le Goff, L. Barbier, and B. Salanon, Surf. Sci. 531, 337
(2003).

011613-6

http://dx.doi.org/10.1016/S0079-6816(00)00021-6
http://dx.doi.org/10.1103/RevModPhys.82.981
http://dx.doi.org/10.1103/RevModPhys.82.981
http://dx.doi.org/10.1098/rspa.1982.0056
http://dx.doi.org/10.1098/rspa.1982.0056
http://dx.doi.org/10.1016/S0039-6028(03)00518-1
http://dx.doi.org/10.1016/S0039-6028(03)00518-1


RELAXATION OF SURFACE STEPS AFTER THERMAL . . . PHYSICAL REVIEW E 84, 011613 (2011)

[6] A. Pimpinelli, H. Gebremariam, and T. L. Einstein, Phys. Rev.
Lett. 95, 246101 (2005).

[7] A. B. Hamouda, A. Pimpinelli, and T. L. Einstein, J. Phys.
Condens. Matter 20, 355001 (2008).

[8] A. B. Hamouda, A. Pimpinelli, and T. L. Einstein, Surf. Sci. 602,
3569 (2008).

[9] T. T. T. Nguyen, D. Bonamy, L. Phan Van, J. Cousty, and
L. Barbier, Europhys. Lett. 89, 60005 (2010).
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