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Single crystal growth and anisotropic crystal-fluid interfacial free energy in soft colloidal systems
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We measure the anisotropy of the crystal-fluid interfacial free energy in soft colloidal systems. A temperature
gradient is used to direct crystal nucleation and control the growth of large single crystals in order to achieve
well-equilibrated crystal-fluid interfaces. Confocal microscopy is used to follow both the growth process and the
equilibrium crystal-fluid interface at the particle scale: heterogeneous crystal nucleation, the advancing interface,
and the stationary equilibrium interface. We use the measured growth velocity to determine the chemical potential
difference between crystal and fluid phases. Well-equilibrated, large crystal-fluid interfaces are then used to
determine the interfacial free energy and its anisotropy directly from thermally excited interface fluctuations. We
find that while the measured average interfacial free energy is in good agreement with values found in simulations,
the anisotropy is significantly larger than simulation values. Finally, we investigate the effect of impurities on
the advancing interface. We determine the critical force needed to overcome impurity particles from the local
interface curvature.
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I. INTRODUCTION

The anisotropy of the crystal-melt interfacial free energy
can be of critical importance to the morphological stability of
crystal growth [1]. For most atomic crystals, this anisotropy
is small, of the order of 2%, and is difficult to measure.
The best results of the interfacial anisotropy come from
simulations that take advantage of the change of thermally
induced interface fluctuations to determine the anisotropy of
the interfacial free energy [2–4]. While this technique provides
a very sensitive measure of the anisotropy of the interfacial
free energy, these fluctuations are too small to be measured
in atomic systems. Recently, crystal-melt interfaces have been
directly studied in colloidal suspensions by using confocal
microscopy [5]. Because colloidal particles are several orders
of magnitude larger than atoms, they can be studied in real
time, and their positions in three dimensions can be tracked
accurately by confocal microscopy. Nevertheless, in these
previous experiments, the anisotropy of the interfacial free
energy has not been resolved. Therefore, there still exists no
direct experimental measurement of this anisotropy.

Here we resolve the anisotropy of the crystal-fluid inter-
facial free energy by using temperature-sensitive colloidal
particles and a temperature field to grow large, equilibrated
colloidal crystals. The temperature changes the effective
size of the particles, thereby allowing precise control over
crystal growth. We apply a temperature gradient to guide
the nucleation of a few crystals, and slow cooling to direct
the growth of these crystals. We use confocal microscopy to
image the entire crystal growth process: heterogeneous crystal
nucleation, the advancing crystal-fluid interface, and the
stationary equilibrium crystal-fluid interface. We determine
the amount of supersaturation that drives the growth of the
crystals directly from the measured crystal growth velocity
and the diffusion coefficient of particles in the liquid. We
find that crystals grow perfectly at moderate supersaturations
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with a chemical potential difference �μ ∼ 0.4kBT between
the crystal and fluid. Flat crystal-fluid interfaces of large,
equilibrated crystals are then investigated to determine the
orientation dependence of the interfacial free energy. By ana-
lyzing height fluctuations of interfaces in different orientations,
we determine an interfacial free energy per area of γ =
0.70kBT/d2, with an anisotropy of 1.6% for interfaces oriented
perpendicular to the hexagonal close-packed plane. We use the
measured value of the interfacial free energy to estimate the
pressure and force acting on impurities at the interface. We
determine a restoring force of 160 fN from the local interface
curvature; this force is of the same order as forces determined
for dislocation motion in colloidal crystals [6].

II. SYSTEM AND EXPERIMENTAL METHOD

We used poly-N-isopropylacrylamide (PNIPAM) colloidal
particles which are cross-linked microgel spheres that are
swollen in water at room temperature but shrink and undergo
a reversible volume transition above the critical solution
temperature [7]. The particle diameter changes reversibly from
d ∼ 1.0 μm at room temperature to d ∼ 0.6 μm at 36.0 ◦C with
a polydispersity of <3%. The particle density closely matches
that of the solvent preventing settling of the particles for several
weeks, while the close refractive-index match between the
particles and the water makes the suspension transparent for
observation with confocal microscopy. We prepared a dilute
suspension of PNIPAM particles in a 5-mM NaCl solution that
screened the particle charges, and subsequently concentrated
the suspension by centrifugation at a high speed of 9000 rpm
for 10 h. The close-packed suspension is then diluted slightly
such that the resulting suspension is fully crystallized at
room temperature, but the crystals melt entirely when the
suspension is heated to 36 ◦C. We placed the suspension into
1 × 2 × 10 mm3 glass cells, which we sealed to avoid
water evaporation. Two Peltier elements are used to create
a temperature gradient across the cell. These Peltier elements,
turned upside down with respect to each other, are connected
to a thermal bath to independently set the average temperature
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FIG. 1. Experimental setup and imaging. (a) Schematic of the temperature-gradient setup used to grow large colloidal crystals. The
temperature stage controls the average temperature T, and the Peltier elements and copper plate create a linear temperature gradient around T
across the sample. Inset: protocol of T as a function of time used for the single crystal growth. (b) Schematic showing the imaged 67 μm ×
67 μm section (dashed) with respect to the sample cell. The dark gray color represents the crystals growing from left to right, while the light
gray color represents the fluid. The x axis aligns with the temperature gradient direction.

and the temperature difference across the cell. A schematic
of the setup is shown in Fig. 1(a). At room temperature,
our sample was polycrystalline. We increased the average
temperature to 36.0 ◦C, at which the crystals melted entirely,
and we waited for 1 h to obtain a homogeneous colloidal
melt. A temperature gradient of 2 ◦C/cm was then applied
across the cell, and we lowered the average temperature of the
sample slowly at a rate of 0.5 ◦C/h with a temperature stability
of 0.02 ◦C to introduce nucleation and direct the growth
of macroscopic single crystals. The temperature protocol is
shown in the inset of Fig. 1(a). We used confocal microscopy to
image individual particles in horizontal slices of 65 × 65 μm
at the interface [see Fig. 1(b)]; these slices contain roughly
12 000 particles. The x axis aligns with the temperature-
gradient direction. To avoid boundary effects, we focus on
sections roughly 10 μm above the cover slip.

III. OBSERVATION OF NUCLEATION AND GROWTH

After 2 h of cooling, we observed that particles order in a
few corners of the sample. Figure 2(a) shows that within the
area indicated by the dotted line, the particles order on a lattice,
while they are still disordered outside. We interpret these
areas as heterogeneous crystal nuclei forming at the corners
of the sample cell. Such heterogeneous nucleation reduces the
interfacial area between the crystal and its melt, and is therefore
energetically preferred over homogeneous nucleation in the
bulk. We followed the development of these nuclei, and saw
that they grew to large crystals while the effective particle
volume fraction increased with decreasing temperature. Close
inspection reveals that these crystals exhibit a random hexag-
onal close-packed (rhcp) structure. They consist of a random
stacking of hexagonal close-packed (hcp) planes, similar to
crystals formed in hard-sphere colloidal systems. The hcp
planes align with the cover slip; their lateral orientation is
random.

We focus on the early stage of crystal growth, and image
the interface after t1 = 2.5 h when the crystals have grown
to 180 μm in length. Selected snapshots of the crystal-fluid
interface during growth are shown in Figs. 2(b)–2(d). The

interface advances in the positive x direction, while at the
same time significant fluctuations of the interface occur. We
determine the growth velocity by following the mean interface
position as a function of time in Fig. 2(e). The data indicates
linear growth with a constant velocity of v= 0.1 μm/s.

We follow the motion of the individual particles in the
fluid and crystal to determine the diffusion coefficient. We
acquire 200 images with a frame rate of 30 images/s and
the positions of the individual particles in the horizontal
sections are tracked with an accuracy of 0.03μm [8]. Particle
trajectories are plotted in Fig. 3(a). While for particles in the
fluid, these trajectories indicate diffusive motion; for particles
in the crystal, they indicate confinement of the particles
to their crystal lattice positions. For more clarity, we plot
enlarged trajectories of a single particle in the crystal and
fluid phase in the left- and right-hand insets of Fig. 3(a).
We determine the mean square displacement 〈r2〉 separately
for particles in the crystal and fluid, and plot 〈r2〉 as a
function of time in Fig. 3(b). For crystal particles, the mean
square displacement saturates at 〈r2〉∞ = 0.0086 μm2 due
to confinement by their neighbors, while for fluid particles
〈r2〉 increases linearly with time, confirming that the particles
exhibit diffusive motion. The asymptotic value of the crystal
mean square displacement corresponds to twice the variance of
the particles’ displacement from their equilibrium position. We
used this value to determine the three-dimensional Lindemann
parameter of melting using [9] L = 1

rnn

√
3
4 〈r2〉∞, where the

crystal nearest-neighbor distance rnn = 0.7 μm, assuming
that particle fluctuations are isotropic. We find L ∼ 0.115,
in good agreement with values for close-packed crystals
close to melting [10,11]. We also determined the diffusion
coefficient Dlq of fluid particles from their mean square
displacement using 〈r2〉 ∼ 4Dt. A value of Dlq = 0.052 μm2/s
is obtained from the best linear fit [Fig. 3(b)]. The velocity
of diffusion-limited growth can be estimated according to
vdl = 4Dlq/d [12]. Using the measured diffusion coefficient,
we obtain vdl = 0.3 μm/s. This value is a factor of 3 larger
than the observed growth velocity v = 0.1 μm/s indicating that
the growth is not limited by diffusion. The difference between
both values allows estimation of the amount of supersaturation
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FIG. 2. Observation of crystal nucleation and growth. (a) Con-
focal microscope image of a crystal nucleus forming at the sample
boundary. (b)–(d) Sequence of confocal microscope images taken
during the early stage of crystal growth, starting after t1 = 2.5 h of
cooling. Dotted lines indicate the advancing interface, and the dashed
line indicates the initial position of the interface at time t1. (e) Mean
interface position as a function of time, experimental measurements
(dots), and best linear fit (solid line).

of the crystallizing suspension. We determine the chemical
potential difference �μ between fluid and crystal according to
�μ = − ln( vdl−v

vdl
)kBT , assuming Wilson-Frenkel growth [13].

Using the experimentally measured values for vdl and v,
we find �μ = 0.41kBT , a small amount of supersaturation
that indicates that the growth occurs close to the equilibrium
freezing transition [12,14]. This value is in good agreement
with simulation values between 0.2kBT and 0.5kBT for
crystallizing soft spheres [15], and is of the same magnitude

as hard-sphere simulation values predicted for φ ∼ 0.52 [16],
well in the crystal-fluid coexistence regime.

IV. EQUILIBRIUM CRYSTAL-FLUID INTERFACE

The temperature-gradient technique allows us to prepare
millimeter-size crystals with well-oriented flat interfaces; these
are ideal to study intrinsic properties of the equilibrium
crystal-fluid interface. After 4 h of cooling, when the crystals
have reached several millimeters in length, we stopped the
cooling and switched off the gradient to achieve equilibrium
of macroscopic crystal and fluid phases. We focused on the
stationary crystal-fluid interface and followed thermally in-
duced fluctuations around its stable position. We acquired 200
images, and followed the fluctuations of the one-dimensional
trace of the interface in the imaged section. A 67 μm × 67 μm
confocal microscope image is shown in Fig. 4. To pinpoint the
interface position x = f(y) (dotted line), we distinguish crystal
and fluid particles from their nearest-neighbor environment.
For each particle, we find the nearest neighbors as those
separated by a distance less than the first minimum of the
pair correlation function, and we compare the nearest-neighbor
vectors di with those of the reference crystal lattice vectors
Di [see top left inset of Fig. 4(a)]. Deviations from the
reference vectors are determined using the order parameter [2]
δ2 = 1

6

∑
i (di − Di)2, the mean square difference between

the actual and the reference nearest-neighbor vectors. To
find the interface position x = f(y), we define a grid in the
x-y plane with a mesh size �x = �y = d = 0.7μm and
calculate the order parameter for each grid point as the average
order parameter of particles with centers within 2.5d in the
x direction and 1.5d in the y direction from the center of
the grid point [see bottom left of Fig. 4(a)]. We plot the
average order parameter as a function of x in the upper
right inset of Fig. 4(a). This order parameter increases from
δ2 ∼ 0.02 d2 in the crystal to δ2 ∼ 0.12 d2 in the fluid,
indicating the loss of crystalline order. We define the interface
position xI from the requirement δ2(xI) = 0.07d2 (dashed
lines in the inset) which is halfway between the values of the
bulk crystal and fluid phases [3], and plot a reconstruction
of the crystal-fluid interface in Fig. 4(b). Gray dots show
particles with order parameter values δ2 < 0.07d2, while open
circles indicate particles with δ2 > 0.07d2. The black line is
obtained by connecting all points with order parameter δ2 ∼
0.07d2, and indicates the trace of the crystal-fluid interface in
the plotted section. A few traces of reconstructed interfaces
are shown in Fig. 4(c); these show the thermally induced
fluctuations of the interface around a stable position. Gray
lines indicate instantaneous interface positions, and the solid
black line indicates the time-averaged interface. In thermal
equilibrium, interface waves with wave vector q are excited
with mean square amplitude 〈|Aq |2〉 = kBT /[bl(γ+γ ′′)q2],
where (γ+γ ′′) is the interface stiffness, and b and l are
the thickness and width of the imaged section [2,17]. We
determine the average spectrum Aq of interfacial fluctuations
by Fourier transformation of the individual interface profiles.
This analysis is then repeated for several different interface
orientations to determine the orientation-dependent interface
stiffness. Average interface spectra 〈|Aq |2〉 as a function of q2

for three selected interface orientations are shown in Fig. 5(a).
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FIG. 3. Particle trajectories and mean square displacement. (a) Trajectories of particles in the crystal (left) and fluid (right). Inset: enlargement
of a single particle trajectory for a particle in the crystal (top left) and fluid (top right). (b) Mean square displacement as function of time for
particles in the crystal (filled dots) and fluid (open dots). The mean square displacement of crystal particles saturates at a value of 0.0086 μm2

(solid line, bottom), while that of fluid particles increases linearly with time (solid line, center) indicating diffusion. The slope equals four times
the diffusion coefficient.

The data confirm the decay A2
q ∝ q−2 for all orientations. We

notice a systematic shift of the data in the double-logarithmic
representation; this shift indicates the change of the interface
stiffness with orientation. To determine the corresponding
stiffness values, we plot (〈|Aq |2〉lb)−1 as a function of q2

in a linear representation in Fig. 5(b). A clear distinction
of three slopes indicates the clear difference of interfacial
stiffness for the three orientations. Values of the interface
stiffness are obtained from the best linear fit to the data [solid
lines in Fig. 5(b). We analyzed interfacial spectra of many
more interface orientations and list the corresponding stiffness
values and error margins, obtained from a linear regression
analysis of the data in Table I. Here, the error bars indicate one
standard deviation of uncertainty. We note that an additional
source of systematic error can come from the choice of the
threshold value δ. Thresholds of δ2 = 0.05d2 and 0.09d2

instead of the chosen value 0.07d2 lower the stiffness values
by ∼5%.

These stiffness values vary systematically with crystal
orientation. For the orientation-dependent stiffness follows
γ + γ ′′ = γ0[1 + ε cos(α)], reflecting the average sixfold
symmetry of the rhcp crystal. Here, γ0 and ε are the
average interfacial free energy per area and its anisotropy,
respectively. For the orientation-dependent stiffness follows
γ + γ ′′ = γ0[1 − 35ε cos(6α)]. Our measured values are in
excellent agreement with this prediction as shown by plotting
the interface stiffness as a function of cos(6α) in Fig. 5(c).
We determine values of γ 0 = (0.70 ± 0.10)kBT /d2 and
ε = (0.016 ± 0.004) from the best linear fit to the data
(solid line). The value of γ0 can be compared with the
orientational average of interfacial free energies obtained in
simulations for interfaces perpendicular to the hcp plane.
For soft-sphere crystal-fluid interfaces, these simulations
find values between 0.55kBT /d2 and 0.8kBT /d2 depending
on the particle softness [18], in good agreement with our
measurement. The magnitude of the anisotropy, however, is
much larger than simulation values of anisotropies within
the hexagonal close-packed plane. We estimate the anisotropy
within the hcp plane for simulated fcc crystal-liquid interfaces

by using the full cubic harmonic expansion of the interfacial
free energy determined in the simulations [3]. Using the
orthogonal directions [1̄10] and [112̄] along the hcp plane,
we determine that these simulations predict an anisotropy
of (0.25 ± 0.21)% within the hcp plane for hard-sphere fcc
crystals [3]. We also compare our value to simulation values
of magnesium [4], which has hexagonal crystal structure.
These simulations find an anisotropy of (0.18 ± 0.08)% for
interfaces perpendicular to the hcp plane [4]. Our measured
value of (1.6 ± 0.4)% is significantly larger than both these
predictions.
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FIG. 4. Equilibrium interface and interface fluctuations. (a) Con-
focal microscope image of the stationary crystal-fluid interface. The
upper left inset illustrates the determination of the order parameter
from the nearest-neighbor vectors d i, and the reference vectors
Di. The lower left inset illustrates the coarse graining procedure
of the order parameter. Upper right inset: Order parameter as a
function of x across the interface. The dotted lines, at x = 33 μm
and x = 38 μm, indicate the interfacial width w ∼ 6d, while the
dashed lines indicate the interface position. (b) Reconstruction of the
crystal-fluid equilibrium and interface. Gray dots represent particles
with a crystalline environment, while circles represent particles with
a fluidlike environment. The black solid line indicates the interface.
(c) Snapshots of the interface (gray) demonstrating fluctuations
around the average position (black).
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FIG. 5. Spectrum of interfacial fluctuations. (a) Log-log plot of
the fluctuation spectra for the crystal orientations α = 2◦ (squares),
10.5◦ (circles), and 14.9◦ (stars). The solid lines indicate a slope of
–1. (b) 1/bl〈|A(q)|2〉 vs q2 for the three crystal orientations. The solid
lines indicate best linear fits to the data. (c) Interface stiffness as a
function of cos(6α). The slope of the best linear fit (solid line) equals
35 times the anisotropy.

V. CRYSTAL GROWTH STABILITY

We also investigated the role of the interfacial free energy
in stabilizing the crystal growth. This was achieved by adding
“impurity particles” that act as obstacles and pin the advancing
interface. We added impurity particles of two different sizes,
with radii R1 ∼ 2d and R2 ∼ 3d, and followed the interface
with time starting from the moment where the interface reaches
the edge of the impurities [Fig. 6(a)]. We observe that both
impurities pin the interface; however, while the small impurity
is easily overcome by the interface, the larger impurity holds
the advancing interface back and causes it to bow strongly
[Figs. 6(b) and 6(c)]. The interface curvature leads to a local
force F = PAeff that tries to drive the interface across the
obstacle. Here, Aeff is the effective contact area between the
interface and the obstacle, and P can be estimated from the
Laplace pressure PLP = 2γ /Rc, with Rc the radius of curvature
of the pinned interface. The interface overcomes the impurity

y

x

5 μm

(a) (b)

(c) (d)

FIG. 6. Crystal growth across impurities. (a)–(d) Sequence of
reconstructed images showing the advancing solid-fluid interface
surmounting impurity particles (dark gray spots): Interface touching
the impurities (a), surmounting the small impurity (b), pinned by
the large impurity (c), and final straightening of the interface after
successful transgression (d).

when the driving force F becomes larger than Fobst, the critical
force required to surmount the obstacle. This critical force is
Fobst ∼ 2γAeff/Rc, where we take Rc ∼ R2 and the contact
area Aeff = (4πR2)2/2. Using γ = 0.71kBT /d2 for the crystal
orientation α = 14.9◦, we obtain Fobst = 1.6×10−13 N. This
force is of the same order as that measured for dislocation
motion through a dense colloidal crystal [6]. When F > Fobst,
the interface overcomes the impurity, and it quickly retracts
and flattens, thereby minimizing its energy cost [Fig. 6(d)].

VI. CONCLUSION

The temperature sensitivity of PNIPAM hydrogel particles
allows excellent control to guide macroscopic crystal growth.
We have shown that in analogy to atomic crystal growth, large
macroscopic PNIPAM colloidal crystals grow in a temperature
gradient when the suspension is cooled slowly so that only
a few crystal nuclei form initially. We followed the growth
directly and determined a chemical potential difference of

TABLE I. Orientation-dependent interface stiffness. Measured
interface stiffness (γ+γ q ′′) for several crystal orientations α. α

denotes the angle between the normal of the crystal-fluid interface,
and a nearest-neighbor vector in the hcp plane.

α (degrees) (γ+γ q ′′) (kBT/d2)

2.0 0.19 ± 0.02
10.5 0.49 ± 0.05
14.3 0.74 ± 0.08
14.9 0.73 ± 0.08
24.0 1.13 ± 0.12
34.2 1.02 ± 0.01
42.4 0.81 ± 0.09
48.7 0.47 ± 0.05
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�μ = 0.41kBT between crystal and fluid phases indicating
that the growth occurred close to equilibrium with only
moderate undercooling.

The well-equilibrated interfaces of large crystals allowed
us to experimentally resolve the anisotropy of the solid-fluid
interfacial free energy. From the fluctuations of interfaces
with various orientations, we determined an interfacial free
energy of γ = 0.70kBT /d2 with an anisotropy of 1.6% within
the hexagonal close-packed plane. The average value is in
good agreement with simulation values, contrary to earlier
experimental studies on hard-sphere colloidal crystals grown

under sedimentation in gravity, indicating that gravity might
have affected these earlier measurements. The value of the
anisotropy ε = 1.6% is significantly larger than simulation
values found for the interfacial anisotropy within the hexagonal
close-packed plane.
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