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Robustness of avalanche dynamics in sheared amorphous solids as probed by transverse diffusion
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Using numerical simulations, we perform an extensive finite-size analysis of the transverse diffusion coefficient
in a sheared 2D amorphous solid over a broad range of strain rates at temperatures up to the supercooled liquid
regime. We thus obtain direct qualitative evidence for the persistence of correlations between elementary plastic
events up to the vicinity of the glass transition temperature Tg . A quantitative analysis of the data, combined with a
previous study of the T and γ̇ dependence of the macroscopic stress [Phys. Rev. Lett. 105, 266001 (2010)], leads
us to conclude that the average avalanche size remains essentially unaffected by temperature up to T ∼ 0.75Tg .
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I. INTRODUCTION

It is now agreed that, as initially proposed by Argon [1],
the macroscopic plastic deformation of amorphous solids is
the net result of an accumulation of elementary events which
are local rearrangements (“shear transformations” or “flips”)
of small clusters (“zones”) of atoms, molecules, or particles.
Such a flip should be viewed as an Eshelby transformation:
since the core cluster is embedded in an elastic medium,
its transformation produces a long-ranged elastic field with
quadrupolar symmetry. This has been directly observed in
numerical simulations [2] and experiments [3].

A flip occurs when a zone (of size a) reaches instability at
some (local) strain threshold [4,5]. It then starts rearranging
into a new stable configuration of lower energy; as described
in [6] the released energy is evacuated by acoustic radiation
into the embedding medium, so that (i) the duration of the
event is of order τ = a/cs , with cs the shear wave speed; (ii) at a
distant point r away from a source at the origin, the long-ranged
elastic Eshelby field [7] is established after the acoustic delay
r/cs . This perturbation of the strain field may trigger secondary
events, hence may lead to flip-flip correlations and avalanche
behavior. As plastic flow progresses, the strain in a given
region (zone) in the system is therefore (i) advected by external
loading at the imposed strain rate γ̇ and (ii) subjected to a set
of shifts due to elastic signals sent by ongoing flips occurring
at random locations in the rest of the system. These elastic
signals constitute a self-generated dynamical noise, which
carries information about flips and controls the nature of the
dynamics.

Avalanches were initially evidenced in athermal quasistatic
(AQS) simulations. In this limit, thermal fluctuations vanish
and the drive is infinitely slow compared to the duration of
plastic events, which hence show up as discontinuous drops
on the stress-strain curve. On average, each flip releases a
macroscopic stress μad�ε0/L

d , with d the space dimension,
L the linear size of the system, μ the shear modulus, and
�ε0 a typical strain scale. The amplitude of stress drops in
AQS simulations is thus a measure of the avalanche size
and was found to be strongly system size dependent [8–10].
This permits us to conclude that under AQS conditions flips
correlate into avalanches.

But the question then is: to which extent do these correla-
tions survive at finite strain rates (γ̇ ) and temperatures (T )?
Indeed, as soon as γ̇ is finite, the unfolding of an irreversible

event of duration τ pl spreads over a finite strain interval
γ̇ τ pl. Hence, plastic events can no longer be identified as
discontinuities on the stress-strain curve and, more generally,
cannot be isolated. Information about flip correlations and
avalanches can no longer be accessed directly.

Numerical simulations performed in the AQS regime,
where avalanches have been identified, have also revealed
[11,12] a strong (quasilinear) system-size dependence of the
transverse diffusion coefficient. This motivated a further study
[6], where two of us showed that this observable could be
used to characterize the correlations between relaxation events.
Namely, we measured the transverse diffusion coefficient D in
a 2D system driven at finite strain rate in athermal conditions.
We then proposed a tentative model leading to a prediction
of the γ̇ dependence of the average avalanche size and to
a scaling expression for D(γ̇ ,L). Comparing this prediction
with extensive simulation data obtained over a broad range of
strain rates and systems sizes, we concluded to the validity
of the model’s predictions, namely to the existence, at finite
strain rates, of avalanches of average size �(γ̇ ) ∼ γ̇ −1/2.

Obviously the next question to be addressed is that of the
effect on avalanche dynamics of a finite temperature [13]. It
has been shown that each flip corresponds to the crossing
of a saddle-node bifurcation [4,5], which occurs after a zone
has gradually softened under increasing external loading [11].
Thus, near instability, the potential energy landscape (PEL)
presents, along one direction corresponding to the shear
transformation pathway, a small, gradually decreasing barrier,
which vanishes at threshold. When thermal activation is at
work, a flip can thus occur “prematurely,” that is, before the
zone reaches mechanical instability. In Ref, [14] a detailed
analysis of the competition between loading and thermal
activation led us to propose that, at low temperature, the
effect of thermal noise amounts to a rigid downward shift of
instability thresholds, while the avalanche dynamics remains
unchanged. This yields a prediction for the macroscopic
stress σ (γ̇ ,T ) which fits quite nicely numerical results over
a broad parameter range, thus bringing indirect evidence for
the robustness of avalanche dynamics up to a sizable fraction
of the glass transition temperature Tg .

In the present paper we bring further evidence for this
conclusion on the basis of a finite-size analysis of transverse
diffusion in a two-dimensional system sheared at finite
temperatures and strain rates.
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We first expound, in the following section, the method
already used in [6] to relate the transverse diffusion coefficient
to correlations between plastic events. Our numerical results,
reported in Sec. III, are discussed and interpreted in Sec. IV.

II. SELF-DIFFUSION AS A PROBE OF FLIP-FLIP
CORRELATIONS

In the following we specialize to the case of two-
dimensional systems, and assume for simplicity that: (i) all
flips are identical and characterized by a unique zone size a

and a typical scale of strain release �ε0 and (ii) the elastic
field associated with any rearrangement can be estimated as
the solution of the Eshelby problem [7] in a homogeneous,
isotropic, and incompressible elastic continuum (our Lennard-
Jones system has a bulk modulus K ∼ 80 much larger than its
shear modulus μ ∼ 20).

We consider the case of a L × L periodic (Lees-Edwards)
system submitted to simple shear at an imposed strain rate γ̇ .
The flow is aligned with the x direction. In view of computing
a diffusion coefficient resulting from the plastic activity, we
focus on steady state. The condition of stationarity imposes
that the total plastic strain release compensates on average
the elastic strain increase due to external loading: when the
system is strained by �γ = γ̇ �t , since each flip releases a
macroscopic strain ad�ε0/L

d , the average number of flips
occurring in a volume of size L2 is

N (�γ ) = L2 �γ

a2 �ε0
. (1)

This relation translates into an average flip rate

R = γ̇ L2

a2 �ε0
. (2)

In order to qualify self-diffusion, we must characterize the
long-time behavior of the displacement fluctuations due to the
accumulation of Eshelby flips. The transverse displacement of
a particle i between times t and t + �t reads

�yi(t,t + �t) =
∑

f ∈F(t,t+�t)

uE
y (ri − rf ), (3)

where uE
y is the displacement field generated by an Eshelby

source. The sum runs over the set of all flips, occurring at points
rf , whose signals are received at point ri between times t and
t + �t . We introduce the source density

φt+�t
t (r) =

∑
f ∈F(t,t+�t)

δ(r − rf ). (4)

With the above definitions we write

〈
�y2

i

〉 =
∫

drf dr′
f

〈
φt+�t

t (rf )φt+�t
t (r′

f )
〉

×uE
y (ri − rf ) uE

y (ri − r′
f ).

Thanks to the Lees-Edwards boundary conditions, the system
is translationally invariant. In steady flow the spatial correla-
tion function of the accumulated sources reduces to a function

of rf − r′
f = R, and �t only 〈φt+�t

t (rf )φt+�t
t (r′

f )〉 ≡
C(R; �t). Therefore,〈

�y2
i

〉 =
∫

dR C(R; �t)
(R), (5)

where


(R) =
∫

dr uE
y (r) uE

y (r − R) (6)

is the autocorrelation function of the y component of the
Eshelby displacement field.

Athermal simulations on this [6,11] and similar systems
[12,15] have systematically shown convergence toward normal
diffusive behavior 〈�y2

i 〉 ∝ �t . We will see that the same
holds at finite temperature. In view of Eq. (5), it implies
that at long times, that is for �t much larger than some τ pl

characterizing the temporal decorrelation of plastic activity:

C(R; �t) ∼= �t H (R). (7)

Avalanches are by definition series of correlated flips occurring
at distant points. Therefore

(1) the smallest τ pl for which the above relation holds is the
average avalanche duration and

(2) the range of H (R) is the average avalanche size �.
The diffusion coefficient D is finally

D = lim
t→∞

〈
�y2

i

〉
2 �t

= 1

2

∫
dR H (R) 
(R). (8)

The diffusion coefficient is thus determined by flip-flip
correlations, but in some intricate way, which does not grant
direct access to H and τ pl. To make further progress, we
must therefore introduce assumptions about how correlated
sources are organized in space. In the following we consider
two situations: (i) completely independent zone flips; (ii) linear
avalanches of identical spatial extent �, composed of flips of
uniform density.

A. Independent flips

If flips are independent, from (3) we can directly write〈
�y2

i

〉
(�t) = N (γ̇ �t)

(
uE

y

)2
(9)

with the space average (uE
y )2 = 1

L2

∫
dr (uE

y )2. In this case the
sources are δ correlated, whence [with the help of (5), (7), and
(9)]

C(R; �t)

�t
= H (R) = R

L2
δ(R). (10)

As proposed by [16], we compute the Eshelby fields as the
far-field response to four point-like forces such as depicted
in Fig. 1. The derivation of relevant formulas is detailed in
the Appendix. The displacement field in an infinite medium
produced by a source at the origin is

uE = a2�ε0

π

xy

r4
r (r � a). (11)

The transverse displacement fluctuation due to a single flip
can be decomposed as follows.
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a

F

FIG. 1. The perturbation due to a localized plastic event cor-
responds to the elastic response to two force dipoles of strength
aF = 4μ�ε0 (see the Appendix).

(1) A far field contribution determined by the Eshelby field,
which reads at leading order, for L � a:

(
uE

y

)2 = a4�ε2
0

8π L2
ln(L/a). (12)

(2) A contribution from displacements within the zone core
which can be estimated as at most uZ ∼ a�ε0 yielding

(
uZ

y

)2 ∼ a4 �ε2
0

L2
. (13)

Since the core contribution is subdominant the diffusive
behavior is controlled by the Eshelby far field. From (9) and
(12) we then obtain for the diffusion coefficient

D � γ̇
a2�ε0

16π
ln(L/a). (14)

B. Linear avalanches

Numerical observations in 2D systems provide various
pieces of information about avalanche topology, via maps of
either relative displacements [8] or the vorticity field [12] in
AQS conditions, or the shear strain field in systems sheared at
finite strain rate, both at zero [6] and finite [14] temperature.
They concur to indicate that avalanches form quasilinear
patterns, oriented close to the x and y axes in the simple
shear geometry, that is, at π/4 of the principal axes of the
strain tensor. This is consistent with the quadrupolar structure
of the Eshelby strain field, which reads in polar coordinates

εxy = a2�ε0

π

cos(4θ )

r2
. (15)

That is, the strain shift following a flip at the origin is maximum
for target zones located along the x and y axes.

This motivates us to model avalanches as linear structures
of identical extent �, composed of flips of uniform linear
density ν, and aligned with equal probabilities along the x and
y axes. Since each avalanche involves n = ν� flips, the average
number of avalanches occurring over an strain interval �γ is

NA(�γ ) = L2 �γ

ν� a2 �ε0
(16)

while the avalanche rate is

RA(�γ ) = L2 γ̇

ν� a2 �ε0
. (17)

The particle displacement [see Eq. (3)] can now be rewritten
as a sum over independent avalanches, leading to〈

�y2
i

〉
(�t) = NA(γ̇ �t)

1

2

[(
u

A,x
y

)2 + (
u

A,y
y

)2]
, (18)

where, for example, uA,x
y is the sum of the Eshelby fields of

the flips composing an avalanche along Ox:

(
u

A,x
y

)2 = ν2

L2

∫ �/2

−�/2

∫ �/2

−�/2
dxdx ′ 
[(x − x ′) ex] (19)

with ex the unit vector in the x direction. A similar expression
holds for y-avalanches.

We show in the Appendix that


 [R = (R,θ )] = a4�ε2
0

16π

∫ ∞

R/L

dz

z
G(z,θ ), (20)

where

G(z,θ ) = 2 J0(z) − 3 cos(2θ ) J2(z)

+ 2 cos(4θ ) J4(z) − cos(6θ ) J6(z)

with Jn the Bessel functions. To lowest order in �/L this yields

1

2

[(
u

A,x
y

)2 + (
u

A,y
y

)2] = a4�ε2
0

8π

ν2 �2

L2
ln(L/�). (21)

Finally, using (16) and (18) we find

D = γ̇
a2�ε0

16π
ν� ln(L/�). (22)

III. NUMERICAL RESULTS

We report simulation results obtained on a 2D Lennard-
Jones system composed of small (S) and large (L) particles
with equal masses m = 1, radii RL = 0.5, RS = 0.3 (we
work in standard LJ units), and number ratio NL/NS =
(1 + √

5)/4. The packing fraction of our L × L system is
π (NLR2

L + NSR
2
S)/L2 = 0.9.

Finite temperature simulations are performed using velocity
rescaling. To characterize the relaxation behavior of this
system, we have obtained, for system size L = 40, equilibrium
states, by progressively lowering the temperature starting
from the liquid state at T = 1. No crystallization occurs. We
measure a nominal glass transition temperature as that where
the time τα (defined from the relaxation of the incoherent
scattering function of large particles) reaches 104. With this
criterion Tg

∼= 0.28.
The system is submitted to simple shear using Lees-

Edwards boundary conditions at imposed strain rates ranging
from γ̇ = 10−5 to 10−2. We present measurements of the trans-
verse diffusion coefficient for various temperatures ranging
from T = 0.05 up into the supercooled liquid regime. All the
data presented here are obtained after 100% preshearing to
ensure that our systems are in steady state.

Finite size analysis is performed using systems of linear
sizes L = 10,20,40,80,160. Statistical accuracy turns out to
demand large sets and long strain intervals: for example,
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FIG. 2. Transverse displacement fluctuation for L = 40, γ̇ =
10−4, T = 0.05, 0.1, 0.2, and 0.3.

twenty five L = 40 (2837 particles) systems have been strained
up to 1300% and five L = 160 (45395 particles) systems
up to 2400%. This entails a heavy numerical cost: at our
lowest γ̇ = 10−5, and for each value of T , straining our five
L = 160 systems by 2400% using dt = 0.01 requires a total
1.2 × 109 time steps; with 2.5 μs particle−1 time step−1 on
recent clusters, this amounts to ∼40000 h.

We will find it convenient in the following to introduce a
reduced diffusion coefficient:

D̂ = D/γ̇ (23)

which measures the growth of fluctuations with strain (instead
of time).

We present in Fig. 2 transverse diffusion data for system
size L = 40 for a single value of the strain rate γ̇ = 4 × 10−4,
and for temperatures T = 0.05, 0.1, 0.2 and 0.3. Figure 2(a)
shows a log-log plot of 〈�y2〉 vs �γ . These curves exhibit the
three usual regimes: a quadratic behavior at very short times
(strains) corresponding to the initial thermal exploration of
the cage; a caging phase showing up as a quasiplateau; and
finally, normal diffusive behavior as particles start escaping
from their cages. The same data are replotted as 〈�y2〉/(2�γ )
vs �γ in both Figs. 2(b) and 2(c). The log-log plot [Fig. 2(b)]
provides details about the transient behavior, the caging phase
corresponding to the decrease following the initial peak. The
lin-lin plot [Fig. 2(c)] emphasizes the late, normal, diffusive
behavior reached, as in the athermal case [6], after a transient
of extent �γ ∼ 1. The amplitude of the asymptotic plateau
defines the reduced diffusion coefficient D̂.

Note that the highest temperature investigated in these
graphs, T = 0.3, lies closely above our measured Tg

∼= 0.28,
that is, belongs to the supercooled liquid regime. At this
temperature we can also measure diffusion in the equilibrated
unsheared system. In Fig. 3 we plot 〈�y2〉/(2�t) vs �t

10
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Δt
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<
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2 >
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2Δ
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T = 0.3, γ
.
 = 0.0001
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.
 = 0.0001

T = 0.3 at equilibrium
T = 0.35 at equilibrium

FIG. 3. Comparison between transverse displacement fluctua-
tions in the sheared (γ̇ = 10−4) vs equilibrated, unsheared, system
for size L = 40, T = 0.3 and 0.35.

for both the sheared and unsheared systems at two values
of temperature, T = 0.3 and 0.35. One clearly sees that, up
to the end of the caging regime, transverse motion is only
very weakly affected by shearing. By contrast, at later times
diffusion is enhanced by shear: this effect is already sizable
(∼50%) at T = 0.35, and becomes more conspicuous as
temperature decreases toward Tg . It is also visible in Fig. 3 that,
under shear, the crossover between the caging and diffusive
regimes, as signaled by the minimum of 〈�y2〉/(2�t), is barely
sensitive to the increase of the alpha relaxation time (τα ∼ 120
for T = 0.35 and ∼2000 for T = 0.3).

The complete set of our diffusion data as a function of
system size, temperature, and strain rate is displayed in Fig. 4.
Each panel corresponds to a different, fixed temperature and
shows a plot of D̂ vs system size for γ̇ ranging from 4 × 10−5 to
10−2. As is immediately seen, D̂ is noticeably size dependent
up to the highest temperature T = 0.3, which lies within the
supercooled regime.

At T = 0.05 we recover the features previously observed
in our athermal simulations (see [6] and discussion below),
namely (i) at fixed L, D̂ becomes nearly γ̇ independent for the
lower γ̇ ; (ii) at these low strain rates the size dependence
of D̂ is quasilinear; and (iii) it becomes much weaker,
quasilogarithmic, at the higher γ̇ . Increasing temperature up
to 0.1 does not significantly alter these functional forms, nor
does it induce a noticeable change in the magnitude of D̂.

Thermal effects become clearly visible at T = 0.2, that
is rather close below Tg , where we observe a splay of
the D̂(L) curves at all γ̇ . This is accompanied by a change
in the L dependence of D̂, which becomes sublinear in the
whole γ̇ range that we can access. These effects become even
more conspicuous upon crossing the glass transition as seen in
Fig. 4 (T = 0.3).

A plot of D̂ versus temperature is presented in Fig. 5
(left) for L = 40, and for the different γ̇ used in this study.
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FIG. 4. Reduced diffusion coefficient D̂ vs system size L for
different strain rates and temperatures.

Clearly D̂ increases with temperature, which is expected
as thermal fluctuations increasingly contribute to diffusion.
This increase is hardly visible at the highest strain rates
and becomes prominent at low γ̇ : this is largely due to
the definition of D̂ = D/γ̇ . Indeed, the reduced coefficient
D̂ is the appropriate measure of diffusion in the low-T , low-γ̇
limit, where strain controls particle motion, while D, the
standard diffusion coefficient, better characterizes diffusion
at higher temperatures in the supercooled regime, where the
unsheared system presents normal diffusive behavior. Near
the glass transition D̂ therefore captures the contribution of
thermal fluctuations as accumulated over time intervals ∝ γ̇ −1,
when its enhanced T -sensitivity at the lowest γ̇ .

The crossover between strain-controlled and temperature-
controlled diffusive regimes is illustrated in Fig. 5 (right) by a
plot of the same data set as D(T ) for different γ̇ . On the same
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FIG. 5. Diffusion coefficient vs temperature for different strain
rates. (left) Reduced coefficient D̂. (right) D compared with D0 as
measured in the equilibrated supercooled liquid. Inset: temperature
dependence of γ̇ � (see text) compared with that of τ−1

α .

graph we also plot values of the diffusion coefficient (denoted
D0) measured in the equilibrated, unsheared system down to
T = 0.278. For each γ̇ , D(T ; γ̇ ) increases with T and merges
at high temperatures with the equilibrium curve D0(T ). The
merging points γ̇ �(T ) are plotted in the inset of Fig. 5 (right):
they define a crossover line delimiting a low strain-rate, high-
temperature region where thermal fluctuations effects largely
dominate those of mechanical noise. Onuki and Yamamoto
[17,18] suggested that the dynamics of the sheared system
should merge with that of the equilibrated supercooled liquid at
a crossover defined by γ̇ � ∼ τ−1

α , with τα the α-relaxation time.
We thus also report in the inset of Fig. 5 (right) our measured
values of τ−1

α (T ). Both γ̇ � and τ−1
α strongly increase with T

and are roughly parallel on the log-log plot, though shifted
by more than two decades. Namely the crossover criterion
corresponds to γ̇ �τα ∼ 10−2–10−3. This result is consistent
with the findings of Furukawa et al. [19] who studied the
crossover between Newtonian and non-Newtonian rheological
regimes on a similar 2D LJ system.

IV. DISCUSSION

Our aim here is to use diffusion data in order to probe
the existence of correlations between plastic events at finite
temperatures. We have shown in Sec. II A that the complete
absence of correlations directly translates into the D̂ ∝ log L

behavior. Hence, any departure from this scaling indubitably
signals the presence of flip-flip correlations. We thus present in
Fig. 6 plots of D̂ vs log L. Strikingly, for the four temperatures
considered, the D̂ ∝ log L behavior is only found, as in the
athermal limit, at the highest γ̇ , namely 0.004 and 0.01. Note
that the apparent lack of linearity of some of these curves
is due to a few data points for L = 160: despite our use of
five independent samples for this system size nonnegligible
statistical fluctuations are still visible in the plateau regime of
the 〈y2〉/(2�γ ) vs �γ plots from which we extract D̂.

At lower strain rates, the growth of D̂ is clearly faster than
a logarithm. This direct proof for the persistence of some
degree of correlation, up to T = 0.2 ≈ 0.75Tg and even T =
0.3 (which lies above the nominal glass transition temperature)
is the primary outcome of this work.

In a recent article [14] we analyzed the T and γ̇ dependence
of the macroscopic stress for the same system. We proposed a
model in which, at low temperatures, the effect of thermal
fluctuations reduces to a mere lowering of the strains at
which plastic events occur, while the avalanche size remains
essentially identical to that in the T = 0 limit. We found that
numerical data could be matched with the prediction of this
model for the macroscopic shear stress σ (γ̇ ,T ) over a broad
range of temperatures extending up to T � 0.2. This indirect
argument led us to conclude that the avalanche dynamics is
essentially unchanged up to this temperature.

Here we bring direct, yet qualitative, evidence for the
persistence of correlations between plastic events up to
(and even beyond) the glass transition. The question then
arises whether diffusion measurements permit to draw more
quantitative conclusions about the effect of temperature on the
scale of spatial correlations, that is, on the average avalanche
size. In particular, is it possible to provide a further test of
whether �(γ̇ ) is essentially T -independent up to T = 0.2?
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FIG. 6. Log-lin plots of the same data as in Fig. 4.

Two of us have previously proposed a model for the γ̇

dependence of the avalanche size in the T = 0 limit [6], based
on an analysis of the mechanical noise generated by the flips
themselves. This model considers a given zone, and separates
the noise it receives into: (i) signals originating from nearby
flips (within a region of radius R) and (ii) background noise,
emanating from all other, more distant, flips. The avalanche
length � is defined as the largest R such that nearby signals
are able to bias the occurrence of secondary events, that is,
to give rise to correlations between flips. This demands that
nearby signals (i) do not overlap and (ii) stand out of the
background noise accumulated during a flip duration. Both
conditions yield the common prediction � ∼ γ̇ −1/2 down to
a size-dependent crossover strain rate γ̇c(L) ∼ 1/L2, below
which it saturates to � ∼ L. From Eq. (22) it entails that the
transverse diffusion data for systems of various sizes should
obey the scaling relation D̂/L = f (L

√
γ̇ ), a prediction which

was found in [6] to be very well matched by numerical data.
The corresponding scaling plot, shown in Fig. 7, illustrates the
quality of the data collapse in the athermal limit. Above the
crossover, the master curve f (L

√
γ̇ ) exhibits the f (x) ∼ 1/x

predicted behavior from the above argument. The large plateau
at low x corresponds to the regime where the avalanche length
reaches the system size.

To evaluate the importance of thermal effects on �, we
now attempt the same kind of collapse using our finite T

data. The results presented in Fig. 8 clearly show a crossover
around xc = L

√
γ̇c(L) ∼ 2–3. Above xc the whole set of data

collapse onto a single curve, with slope −1 in the log-log
plot. This is precisely the scaling behavior obeyed by athermal
data: it is the signature of a regime where the avalanche size
scales as 1/

√
γ̇ . The collapse found here shows that, in this

regime, the avalanche size, hence the avalanche dynamics, is
roughly unaffected by temperature. This is consistent with our

0.01 0.1 1 10

L γ
. 1/2

10
-3

10
-2

10
-1

D̂/L

L=10
L=20
L=40
L=80
L=160

FIG. 7. Scaling plot of transverse diffusion data from athermal
simulations on the same system. The dashed line has slope −1.

observation, illustrated in Fig. 5, that for each temperature it
is at the higher γ̇ that mechanical noise dominates thermal
noise.

Below crossover, a very different behavior emerges. For
the three temperatures T = 0.05, 0.1, and 0.2, each set of data
continues to collapse, but now onto a different master curve

0.01 0.1 1 10
L γ

. 1/2
10

-3

10
-2

10
-1

D̂/L
T=0.05
T=0.1
T=0.2
T=0.3

FIG. 8. Scaling plot of transverse diffusion data for temperatures
T = 0.05, 0.1, 0.2, and 0.3. Each curve corresponds to a single system
size (L = 10, 20, 40, 80, 160). Dashed line: slope −1.
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fT (x) for each value of T . In contrast, there is a clear splay of
the T = 0.3 data for different system sizes.

At the lowest temperature T = 0.05, the overall master
curve exhibits exactly the same behavior as found in the
athermal limit: up to this temperature, of order Tg/5, and
down to the lowest γ̇ that we can investigate, temperature
has a negligible effect. In particular, the quasiplateau seen
below the crossover, corresponding to the D̂ ∝ L behavior
[see low-strain-rate data in Fig. 4 (T = 0.05)], indicates that
in this regime the avalanche length saturates at � ∼ L.

As T increases to 0.1, then to 0.2, below crossover,
fT remains quasilinear in the log-log plot, but develops an
increasing negative slope. Indeed, as expected, the effect of
thermal fluctuations on the reduced diffusion coefficient D̂

increases with decreasing γ̇ . Yet diffusion data alone do not
allow us to conclude whether or not these variations of D̂ with
T correspond to alterations of the avalanche size. However,
as mentioned above, another piece of information is available
to us: we have shown that up to T = 0.2 the macroscopic
stress data could be fitted by a model in which the avalanche
dynamics is essentially unaffected by temperature [14]. We
are therefore led to attribute the growth of D̂(γ̇ ) with T

below crossover to thermally activated processes which do
not contribute, on average, to the relaxation of the shear stress.

In our view, each plastic event strongly reshuffles atoms in
its close vicinity, thus bringing the system into a new region of
the PEL, with a finite density of small energy barriers [20]. As
thermal relaxation from these “rejuvenated” configurations is
constantly reinitialized by steady plastic deformation, it yields
a finite contribution to particle diffusion. Our observation that
macroscopic stress is insensitive to the occurrence of such
extra relaxation events entails that these events are enslaved to
the plastic dynamics, that is, do not feed back into it. It also
indicates that the small-amplitude ruggedness of the PEL is
essentially unbiased by the macroscopic stress.

At temperatures such that the diffusion coefficient is
nonvanishing in the absence of stress, that is, when thermal
noise allows the system to fully explore its PEL, thermally
activated events are likely to feed back into the flips’ dynamics
itself. This is when a splay develops on the scaling plot (see
T = 0.3 data in Fig. 8).

In summary, the primary outcome of this study is that in
a two-dimensional LJ sheared system at finite temperatures
and strain rates correlations between elementary plastic events
do persist up to the vicinity of the glass transition: they show
up as a stronger-than-log size dependence of the diffusion
coefficient. Moreover, the collapse of rescaled diffusion data
above the crossover γ̇c ∼ 1/L2 (see Fig. 8), valid up to the glass
transition, leads us to conclude that avalanches are unaffected
by temperature in the shear-controlled regime γ̇ > γ̇ �(T ) [see
inset of Fig. 5 (right)]. This brings further support to our
previous conclusion, based on the analysis of macroscopic
rheology, that up to T ∼ 0.75Tg the average avalanche size
remains essentially unaffected by temperature. Indeed, for all
the strain rates which have been studied, and for T � 0.75Tg ,
the system is in the shear-controlled diffusive regime. It is
only upon approaching Tg , and for γ̇ τα � 10−2–10−3, that
the effects of mechanical and thermal noise can no longer be
unraveled. It is then likely that in this regime thermal noise
gradually destroys correlations.

Finally, the thermal enhancement of diffusion found at the
lower strain rates (below crossover in Fig. 8) can reasonably
be assigned to rejuvenation of local configurations due to the
plastic activity, which permanently feeds additional thermal
relaxation.

Of course, strictly speaking, our conclusions are restricted
to two-dimensional systems. However, we believe that some of
them should carry over to 3D. Indeed, the similarity is striking
between the crossover γ̇ �(T ) ∼ τ−1

α between the strain-
controlled and temperature-controlled regimes found here in
2D and the γ̇c(T ) curve that delimits the inhomogeneous
and homogeneous flow regimes of metallic glasses [21]. The
inhomogeneous deformation regime of metallic glasses, akin
to our strain-controlled regime, extends continuously to the
AQS (T → 0,γ̇ → 0) limit where, in 3D, plastic deformation
has been shown to occur via system size dependent avalanches
[9]. We think that this strongly suggests that in 3D as well
as in 2D it is the long-range elastic couplings responsible
for these avalanches which remain prevalent over the whole
range of the strain-controlled regime. Of course, it would be
highly desirable, yet remains currently out-of-reach, to check
numerically these speculations on 3D systems.
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APPENDIX

The Eshelby field corresponding to a flip can be viewed,
following Picard et al. [16], as the far-field response to a
set of four forces applied near the origin in an infinite,
incompressible, elastic medium, as depicted in Fig. 1:

uE(r) =
4∑

i=1

Q(r − ri) · Fi, (A1)

where Q is the Green’s tensor corresponding to the response
to a point force located at the origin [22]

Q = 1

4πμ

(
− ln r I + 1

r2
r r

)
(A2)

where μ is the shear modulus and I is the unit tensor. An
expansion in a/r yields at lowest order

U = aF

2 πμ

xy

r4
r. (A3)

To relate the dipolar strength aF to a strain release scale, we
compare the stress generated by the point forces F/2a with
that 2μ�ε0 corresponding to the local strain release within the
zone. This yields the relation

U = a2�ε0

π

xy

r4
r. (A4)
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The function 
 is next evaluated as


(R) = L2 uE
y (r)uE

y (r − R)

= 1

(2 π )2

∫
dq

∣∣ûE
y (q)

∣∣2
e−iq·R.

Using

ûE
y (q) = −ia2�ε0

qx

(
q2

x − q2
y

)
q4

(A5)

we find


(R) = a4 �ε2
0

4π2

∫ ∞

qmin

dq

q

∫ 2 π

0
dθ ′ γ (θ ′) e−iqR cos(θ ′−θ), (A6)

where R = (R,θ ) in polar coordinates, with the lower cutoff
qmin ∼ 1/L and

γ (θ ′) = cos2 θ ′( cos2 θ ′ − sin2 θ ′)2
. (A7)

We finally obtain


(R) = a4�ε2
0

16π

∫ ∞

R/L

dz

z
G(z,θ ), (A8)

where

G(z,θ ) = 2 J0(z) − 3 cos(2θ ) J2(z)

+ 2 cos(4θ ) J4(z) − cos(6θ ) J6(z)

with Jn the Bessel functions.
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