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Interaction regimes for oppositely charged plates with multivalent counterions
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Within a mean-field treatment of the interaction between two oppositely charged plates in a salt-free solution,
the distance at which a transition from an attractive to a repulsive regime appears can be computed analytically. The
mean-field description, however, breaks down under strong Coulombic couplings, which can be achieved at room
temperature with multivalent counterions and highly charged surfaces. Making use of the contact theorem and
simple physical arguments, we propose explicit expressions for the equation of state in several situations at short
distances. The possibility of Bjerrum pair formation is addressed and is shown to have profound consequences
on the interactions. To complete the picture, we consider the large-distance limit, from which schematic phase
diagram discriminating attractive from repulsive regions can be proposed.
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I. INTRODUCTION

Although it has been less studied than its like-charge
counterpart [1–3], the behavior of two interacting oppositely
charged mesoscopic bodies in solution is of importance in var-
ious contexts, including colloid physics [4–8], biochemistry-
related experiment interpretations [9,10], drug design [11],
and structural biology [12]. The simple system of two charged
plates with opposite uniform surface charges represents a
model of choice that enables one to get analytical results
in some limits and furthermore provides a starting point to
estimate the interaction energy between two colloids of various
geometries [13,14]. It has been shown that opposite-charge
repulsion could occur within a mean-field (MF) treatment
[15,16]. The physical origin of such a repulsion has been
identified as twofold: a Born repulsion due to short-range
polarization effects when the solvent has a dielectric constant
that significantly exceeds those of the macromolecules [4,17]
and an osmotic repulsion resulting from the trapping of the
counterions that ensure electroneutrality between the un-
equally charged plates [18,19]. Within a mean-field approach
for q:q symmetric solutions (with q = 1), it has also been
emphasized recently that the osmotic repulsion may explain
how the proteins’ shape determines their interaction with DNA
[20]: The essential physics of the ion-mediated interaction
between these biomolecules is well captured by a simple
two-plate model, which opens the way to analytical estimates
of the location and depth of the corresponding energy well.

In salt-free solutions with spherical counterions of size b,
the threshold distance D∗

MF = h∗
MF − b at which the electro-

static attraction is dominated by the osmotic repulsion for
two plates bearing uniform surface charges σ1e and σ2e (with
σ1σ2 < 0) is simply given, within the mean field, by the differ-
ence of their respective Gouy-Chapman lengths: D∗

MF = |μ1 −
μ2| [19]. These quantities read μ1,2 = (2πqlB |σ1,2|)−1, where
lB = e2/4πεkBT is the Bjerrum length (about 0.7 nm in water
at room temperature), which is defined using temperature T

and solvent permittivity ε. Relying on the Poisson-Boltzmann
MF approximation, the previous result only holds provided

the Coulombic coupling between counterions is not too large.
More specifically, this means that the two coupling parameters
�1 and �2, defined as �i = 2πl2

Bq3|σi |, should both be
small [2,21]. However, in cases of practical interest with
multivalent counterions, the coupling parameter may be large;
for instance, converting the charge of double-stranded DNA
into an equivalent surface charge, one finds � � 23 in water
at room temperature with divalent ions (q = 2) and � � 76
with q = 3 [22]. In this paper our goal is therefore to study
the fate of the attraction-repulsion transition for oppositely
charged interfaces under strong Coulombic coupling (large-�
limit).

For the following discussion it is instructive to recall
the essential features of a single strongly coupled planar
double layer without added salt (i.e., counterions only ensure
electroneutrality) [21–32]. Irrespective of the value of �

(from mean-field to strong coupling), the typical distance that
counterions may explore away from the charged wall is given
by the Gouy-Chapman length μ defined above. At large-�
values, the counterions form a strongly modulated liquid (if
not a true crystal at asymptotically large �), with a typical
distance between ions measured by a⊥ = √

q/πσ [23], as
required by electroneutrality (σπa2

⊥ � q). It therefore appears
that μ � a⊥ when � � 1, where a⊥ measures the size of
the correlation hole around each ion. As a consequence, the
counterions, which form a strongly correlated liquid parallel
to the plate, effectively decouple in the direction perpendicular
to the plate and the leading-order profile in the strong-coupling
expansion is given by the interactions of individual counterions
with the confining charged interface [21–32]: This single-
particle picture simply yields a leading exponential counterion
density profile, with a characteristic length μ. Counterion
interactions contribute to the subleading terms [31] and will
not be addressed here: We shall restrict the discussion to
the easily attainable gains of the single-particle viewpoint,
which provides the dominant strong-coupling behavior. We
also stress that again for large �, we have not only μ � a⊥
but also a⊥ � q2lB . More precisely, it is useful to keep in

011407-11539-3755/2011/84(1)/011407(8) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.011407


FABIEN PAILLUSSON AND EMMANUEL TRIZAC PHYSICAL REVIEW E 84, 011407 (2011)

FIG. 1. Schematic view of the two-plate system. Microions are
hard spheres of diameter b with charges qe or −qe. The width of the
slab between the plates is denoted by h and we define D as h − b.

mind the relations

a⊥
μ

√
2

= q2lB
√

2

a⊥
=

√
q2lB

μ
=

√
�, (1)

where the numerical constants are immaterial.
In the following we shall consider two uniformly charged

plates 1 and 2, with respective charge densities σ1 < 0
and 0 < σ2 < |σ1|. Plate 1 is neutralized by counterions of
valency q > 0 while −q counterions neutralize plate 2. The
corresponding microions remain in the gap of width h between
the plates to ensure global electroneutrality (see Fig. 1).
Our goal is to characterize the strong-coupling regimes and
to infer the equation of state at short distances from the
knowledge of ionic density profiles, making repeated use of
the contact value theorem [33,34], which will be recalled in
due time. Several situations will be worked out, depending
on the formation of +q/−q Bjerrum pairs between oppositely
charged microions. In addition to �1 and �2, the physics of the
problem is thus ruled by another coupling parameter �, to be
introduced in Sec. II A, which quantifies the tendency to form
+q/−q pairs. This short-range study is developed in Secs. II B
and II C. It will be complemented by a large-distance analysis
in Sec. II D, from which a tentative phase diagram, which
allows one to discriminate repulsive from attractive regions,
will be put forth. Conclusions will be drawn and the possible
relevance of our approach to weak couplings will be discussed
in Sec. III.

II. STRONG-COUPLING APPROACH FOR OPPOSITELY
CHARGED PLATES

A. Crowding versus pairing

Whereas previous works pertaining to the strong-coupling
limit have been mostly performed in the limit of point
counterions, in some cases it is possible to transpose the results

FIG. 2. (Color online) Two strongly coupled double layers in
different crowding regimes. The left-hand-side plot shows the
uncrowded situation where the finite ionic size does not perturb
the point-counterion predictions while the right-hand-side plot is for
a case where hard core effects lead to crowding, with bilayers or
multilayers of counterions in the vicinity of the plate. For this example
to be meaningful, we set q = 2 for the valency of the counterions.

to the case of finite-size ions, essentially by taking b/2 (the
ionic radius) as the ion-plate distance of closest approach.
For a single plate, the density profiles in the two cases are
therefore identical up to a coordinate shift z → z − b/2, where
z denotes the distance to the plate. Likewise, in the two-plate
problem, the plate-plate distance of closest approach is b.
More precisely, the b = 0 and b 	= 0 cases coincide provided
packing effects are negligible (see Fig. 2, left) while increasing
ionic size b necessarily leads to a situation where b becomes
of the order of a⊥, so that the double layer can no longer
accommodate a monolayer of counterions (see Fig. 2, right).
Understanding the behavior of strongly coupled and crowded
double layers is an open problem that lies beyond the scope
of the present work, so we will restrict our study to the cases
where b < a⊥, i.e., to not-too-big microions. This requirement
should be enforced for both plates: b < a

(1),(2)
⊥ .

In addition to crowding, microion pairing may take place in
the two-plate problem [2,35] (see Fig. 3). The tendency for q

and −q microions to form neutral pairs at T 	= 0 is quantified
by the ratio between the direct electrostatic interaction at close
contact and kBT , i.e., � = q2lB/b. Interestingly, keeping in
mind the no-crowding condition sketched above (b < a

(1),(2)
⊥ ),

we get the inequality 2�2 > � [where � = max(�1,�2) =
�1], so that the possible values � can take are bounded from
below by

√
�/2. Consequently, strongly coupled uncrowded

double layers lead to the important formation of Bjerrum pairs
(large �). We nevertheless start by considering the rather
narrow region where 3 �

√
�/2 < � < 10 in which pair

formation can be neglected. The above constraint translates
into 20 < � < 200, where � is large enough to allow for
a strong-coupling analysis in due form to unveil the main
features. A more quantitative description presumably requires,
especially at the smaller-� values involved, an intermediate
approach interpolating between the mean-field and strong-
coupling limits [36–39].
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FIG. 3. Pair-breaking–pair-formation mechanism. Starting from
a contact configuration for two ions of opposite charges q1e and −q2e

on the left-hand side, the tendency to remain in this configuration
or, on the contrary, to break the pair is given by comparing the
electrostatic loss to the thermal energy.

B. Small separation distances without pair formation

We define in the subsequent analysis D as the shifted
distance between the plates: D = h − b. The first situation
addressed is that in which Bjerrum pair formation can be
neglected, which is the assumption made in Ref. [25]. Under
strong coupling, if D < a

(1)
⊥ (which implies that D < a

(2)
⊥ since

σ2 < |σ1|), the single-particle picture where each microion
interacts with both plates only and not with its fellow microions
is valid. A tagged microion experiences an electric field
−2π (|σ1| + σ2)ẑ/ε, where ẑ is a unit vector along the z

direction, hence a linear potential in z. The corresponding
number densities n+(z) and n−(z) for both q and −q species
then follow a simple Boltzmann law

n±(z) = n
(0)
± e∓z̃, (2)

where n
(0)
+ and n

(0)
− are two normalization constants and we

introduced the reduced distance to plate 1,

z̃ = z/λ with
1

λ
= 1

μ1
+ 1

μ2
. (3)

The two factors n
(0)
± can be determined from the electroneu-

trality conditions

q

∫ h−b/2

b/2
dz n

(0)
+ = |σ1|, (4)

q

∫ h−b/2

b/2
dz n

(0)
− = σ2, (5)

so that

n+(z̃) = |σ1|eb̃/2−z̃

qλ(1 − eb̃−h̃)
, (6)

n−(z̃) = σ2e
−b̃/2+z̃

qλ(e−b̃+h̃ − 1)
. (7)

The expression for the reduced pressure

� = 2πlBq2μ2
1βP = βP

2π lB σ 2
1

(8)

directly follows from the contact value theorem, which yields
the pressure P in the form [33,34]

P = n+

(
b

2

)
+ n−

(
b

2

)
− 2πlBσ 2

1 (9)

= n+

(
h − b

2

)
+ n−

(
h − b

2

)
− 2πlBσ 2

2 . (10)

Consequently, we have

�(D̃) = ζ coth

(
D̃

2

)
+ 1

2
(1 + ζ 2)

[
coth

(
D̃

2

)
− 1

]
, (11)

where we introduced the charge ratio ζ = σ2/|σ1|.
Equation (11) is independent of the plate (1 or 2) where
the contact theorem is applied, which provides a consistency
test for the argument. In other words, the pressure P is
invariant under the change ζ → 1/ζ , so the reduced pressure
should change according to � → �ζ−2 when ζ → ζ−1. This
property can be checked directly in Eq. (11). More importantly,
the expression in Eq. (11) is positive for D > 0, for all values
of the charge ratio (see Fig. 4). Therefore, the interaction
between two oppositely charged plates is always repulsive
at short distances in this regime. The physical mechanism
behind this repulsive behavior is the following. Compared to
the large-distance limit where n+(b/2) � 2πlBσ 2

1 , as follows
from Eq. (9) and the fact that both the pressure and n−(b/2)
vanish, bringing the plates at short distances where D < a

(1)
⊥

enhances the electric field experienced by q microions, which
results in the increase of their density at contact with plate 1.
Invoking again the contact theorem Eq. (9), the consequence
is that P > 0. The interactions between q and −q microions
could counterbalance this effect, but these interactions have

FIG. 4. (Color online) Plot of the reduced pressure following from
the short-distance equation of state Eq. (11) as a function of rescaled
distance D̃ for several values of ζ = σ2/|σ1|: ζ = 0.25 (dashed line),
ζ = 0.1 (dot-dashed line), and ζ = 0.025 (solid line). The short-
distance requirement D < a

(1)
⊥ (the so-called Rouzina-Bloomfield

criterion [23]), translates into D̃ < �1/2.
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been discarded here with the neglect of Bjerrum pair formation.
We will see below that +q/−q interactions, when relevant,
completely change the phenomenology.

Three remarks are in order here. (i) We see that the reason
for observing repulsive behavior (an enhanced electric field
acting on a microion within the single-particle picture) is the
same as that leading to attraction in the like-charged case
(a decreased electric field, with a corresponding decrease of
microionic density at contact; this effect is most pronounced
in the symmetric case where σ1 = σ2, for which the electric
field vanishes and the microion densities is uniform in the
z direction). (ii) The possibility of attraction under strong
coupling reported in Ref. [25] for oppositely charged plates
stems from the fact that only one type of microion was
considered in Ref. [25]. This results in a smaller amount
of counterions (per unit surface) compared to that which is
necessary to neutralize the isolated plate, with a concomitant
decrease of contact ionic density, which opens the way to
a possible attraction. The physical situation considered in
Ref. [25] thus differs from the one under study here. (iii)
Our finding P > 0 relies on the condition D < a

(1)
⊥ . At large

distances, we should have P < 0 since a mean-field scenario
is then expected to prevail [24,36,40,41]. We will return to this
point in Sec. II D.

C. Small separation distances with pair formation

We now turn to the case where 1 � √
�/2 < �, with a

strong tendency for two microions to form a neutral pair.
While pair formation is unlikely as long as the two condensed
microion layers from each plate do not overlap, it becomes
important at smaller separations. By “pair formation” we
loosely refer here to the more or less complex structures,
or aggregates, that may form from the association of several
of individual pairs. Pairs may indeed exist in the form of
well-defined entities, but may also self-assemble into chains
(see, e.g., Ref. [42]) or into more complex structures (regular
or empty crystals) uncovered in a related context in Ref. [43].
The corresponding aggregates are electrically neutral, with
the number of Bjerrum pairs involved per unit area limited by
the less abundant species of microion, i.e., the counterions of
plate 2. Therefore, the aggregate surface density is bounded
from above by σ2/q. These aggregates coexist with a strongly
correlated Wigner-like crystal made up of the remaining
majority species. In this work we did not attempt a precise
evaluation of the aggregate or pairs’ contribution Pagg to the
total interplate pressure P , but instead we considered two
limiting cases where we bound Pagg from below by zero (see
Sec. II C 1) and from above by kT σ2/qD (see Sec. II C 2). The
latter bound corresponds to a density of aggregates, which are
neutral entities, equal to σ2/qD, that is, to the maximum mean
density of possible pairs. Any self-assembly of the pairs in a
more complex architecture leads to a decrease of that density.
We now investigate separately these two limiting cases.

1. Without the osmotic contribution from the pairs

With only positive counterions in the system, the typical
lateral distance becomes A⊥ = √

q/π (|σ1| − σ2) and for
separation distances D < A⊥, the single-particle picture holds

and yields the microionic density n+(z) in a form similar to
Eq. (2),

n+(z) = n
(1)
+ e−z̃, (12)

where n
(1)
+ is a positive constant. As for n

(0)
+ , the prefactor n

(1)
+

can be determined using the electroneutrality condition

q

∫ h−b/2

b/2
dz n+(z) = |σ1| − σ2 (13)

and the ion density then reads

n+(z) = |σ1| − σ2

qλ(1 − eb̃−h̃)
eb̃/2−z̃. (14)

Initially, we do not consider the contribution of Bjerrum
pairs to the total pressure (we therefore bound from below the
term Pagg by zero). In doing so, the pressure at a given reduced
separation distance D̃ can again be found by means of the
contact value theorem, with only one species of microions:
βP = n+ (b/2) − 2πlBσ 2

1 , so that

�(D̃) = −1

2
(1 + ζ 2) + 1

2
(1 − ζ 2) coth

(
D̃

2

)
. (15)

We recover the same expression as in Ref. [25] from a
mechanical (contact theorem) instead of energy route. Unlike
Eqs. (11) and (15) does not have a definite sign and as a
consequence the interaction is attractive at large distances:
There exists a threshold

D∗
0 = 2λ ln(|σ1|/σ2) (16)

below which the interaction becomes repulsive (� > 0) (see
Fig. 5). We note from Eq. (16) that attraction prevails until
D → 0 when σ2 → |σ1| and we add that as long as microions
(even a small amount) remain between the plates as required
by electroneutrality, the corresponding entropy cost for con-
finement makes the pressure diverge (hence positivity) for
D → 0. Only for ζ = 1, i.e., σ2 = −σ1, would the microion
total density vanish, which leaves two oppositely charged
plates interacting without any screening. In that specific
case the interaction is obviously attractive until close contact
h = 0. In contrast, in the large-D̃ limit, with the requirement

FIG. 5. (Color online) Pressure curves from Eqs. (15) (solid line)
and (17) (dashed line) for ζ = 0.2.
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D < A⊥ nevertheless enforced, and for any value of ζ one can
immediately find the pressure from the contact theorem applied
at plate 2: For large D̃ the positive microions are expelled from
the vicinity of the positive plate, which means that the contact
density n+(h − d/2) vanishes and βP → −2πlBσ 2

2 . In terms
of rescaled pressure, we then have � → −ζ 2, which is indeed
observed in Fig. 5.

2. With the osmotic contribution from the pairs

We now include the pairs’ contribution to the equation of
state through the upper bound σ2/qD alluded to above. We
then get

� = (1 + ζ )ζ

D̃
− 1

2
(1 + ζ 2) + 1

2
(1 − ζ 2) coth

(
D̃

2

)
. (17)

Clearly, compared to the expression in Eq. (15), the effect
of this osmotic contribution is to increase the threshold
value where repulsion (� > 0) can be observed. The two
limiting behaviors Eqs. (15) and (17) are sketched in Fig. 5.
The corresponding values of the thresholds D̃∗

0 and D̃∗
1 are

indicated. These two quantities are plotted in Fig. 6 as a
function of charge asymmetry, together with the analytical
estimation of D̃∗

1 obtained as follows. If D̃ is large enough,
Eq. (17) simplifies to

� � −ζ 2 + (1 + ζ )ζ

D̃
. (18)

FIG. 6. (Color online) Reduced threshold distance discriminating
(strong-coupling) attraction from repulsion, as a function of ζ , on
a semilogarithmic scale. The solid line shows D̃∗

0 obtained from
Eq. (15); the dotted line is for D̃∗

1 , the exact root of Eq. (17); and
the dashed line displays the approximation in Eq. (19). The dot-
dashed line shows Ã⊥, in the particular case �2 = 25: Our approach is
meaningful for D̃ < Ã⊥ only, which translates into ζ > 1/(2�2 + 1)
(see the text). Here 1/(2�2 + 1) � 0.02.

This expression can now exhibit a repulsive behavior below
D̃ = (1 + ζ )/ζ , i.e.,

D∗
1 � μ2. (19)

It can be seen that this approximation (dashed line) is in fair
agreement with the root of Eq. (17) found numerically (dotted
line), in the whole available range.

The single-particle picture invoked here relies on two
assumptions. First, � should be large to have pair formation.
Second, the (shifted) distance D between the plates should not
exceed A⊥ (see the dot-dashed line in Fig. 6). Making use of the
approximation in Eq. (19), this means that 1/(2�2 + 1) < ζ .
For smaller values of ζ , the analysis is significantly more
complex (the single-particle viewpoint is lost). Hence, if
ζ > 1/(2�2 + 1) the interaction is repulsive at short distances
and then turns attractive at intermediate distances, while if
ζ < 1/(2�2 + 1), Eq. (18) does not lead to any transition
between repulsion and attraction and is always repulsive in
its range of validity, as is the case for Eq. (11). Of course, for
large �2, the threshold (2�2 + 1)−1 is small, so that extremely
asymmetric cases only (very low ζ ) are not covered by our
analysis.

D. Large separation distances

Our analysis has so far been restricted to short-distance
expansions. We are now interested in large-distance asymp-
totics and in attempting to match the short- and large-distance
behaviors. In doing so, we will discuss qualitatively an
attraction-repulsion transition of an effective mean-field type,
which leads to reentrant attraction as the distance between the
two plates is varied from infinity to close contact.

1. Crossover between strong-coupling and mean-field
regions for one plate

We will assume first that a given strongly coupled plate
(having thus a large �i) can be effectively described by mean-
field theory at sufficiently large distances z. This common
wisdom stems from the remark that for large z the typical
distance between counterions becomes large, which leads to a
low-coupling regime [24,36,40,41]. It should be emphasized
though that the above point of view, which predicts a large-z
density decay in 1/z2, is incorrect in two dimensions, as
shown in a recent work [31]. The present study pertains to
three-dimensional systems, so we nevertheless expect for a
single plate the crossover scenario discussed in Ref. [41] and
summarized in Fig. 7. In essence, the density is expected to
decrease exponentially at short distances and algebraically
at large distances: Beyond a distance δ from the plate, the
counterion density n is simply given by the solution of the
nonlinear Poisson-Boltzmann equation

n(z) = 1

2πlBq2(z + μeff)2
, (20)

where z ≡ z − b/2 and μeff is an effective Gouy-Chapman
length characterizing this long-range behavior. Following
Ref. [41], one can match the two regimes by assuming that
the condensed counterion layer forms a two-dimensional
one-component plasma and by applying a mean-field
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FIG. 7. (Color online) Crossover scheme: following Ref. [41], a
schematic representation on a semilogarithmic scale of the crossover
between the strong-coupling (SC) and mean-field regimes for the
counterion density in the vicinity of a single highly charged plate.
The solid curve represents the exponential decay expected close to the
plate while the dashed curve stands for the algebraic decay expected
at large distances where the Poisson-Boltzmann (PB) theory should
hold. The shaded region corresponds to the crossover between these
two regimes: lSC is the distance beyond which the exponential decay
no longer holds and δ is the distance to the plate beyond which the
PB profile is expected to be valid.

approximation for the dilute layer. Equating the two corre-
sponding chemical potentials yields

n(δ) = nSCe−β|εc |, (21)

where nSC is a δ-related average density in the condensed
layer and βεc(�) ≈ −1.56

√
� is the contribution to the two-

dimensional one-component plasma chemical potential that
stems from the correlations between the counterions [2,24].
Extrapolating the validity of Eq. (20) to δ → b/2 and assuming
that in such a situation nSC is well approximated by the average
density over the characteristic length lSC, we arrive at [41]

n(z = 0) = |σ |
qlSC

(1 − e−lSC/μ)e−1.56
√

�. (22)

Equation (22) is nothing but the density that the mean-field
profile, valid at large distances from the plate, would have if
extrapolated at z = 0 and is therefore not the real density at the
plate. However, by invoking Eq. (20), it allows one to estimate
the effective Gouy-Chapman length μeff corresponding to
the charged plate dressed by a condensed counterion layer,
which will prove useful in the following. For the subsequent
quantitative discussion, we shall take the value lSC ≈ 3.6μ,
already used in Ref. [41].

2. Application to the two-plate problem

When the separation distance between plates 1 and 2 is
decreased from infinity, the first interplate weak-interaction
regime is expected to be of mean-field type, so the presumably
large-distance attraction may turn into repulsion at a distance

D∗
MF =|μeff

1 −μeff
2 |. In this picture the distance is varied at con-

stant effective Gouy-Chapman lengths μeff
1 and μeff

2 given by

μeff
i = 1.92μie

0.78
√

�i , i = 1, 2. (23)

If |μeff
1 − μeff

2 | is significantly larger than the characteristic
thresholds obtained in the preceding sections, we should have
the reentrant sequence (attraction → repulsion → attraction
→ repulsion) as D decreases. The first transition is described
by a mean-field argument and the last one by strong-coupling
considerations, but the intermediate transition (repulsion → at-
traction) occurs in a crossover region that resists our theoretical
understanding and where additional (repulsion → attraction)
transitions might take place. A related question deals with
the lower bound for the distance Dbound below which the
mean-field profiles are no longer accurate. For the sake of com-
pleteness, we will consider below that Dbound = a

(1)
⊥ + a

(2)
⊥ .

Depending on the respective surface charge densities σ1 and
σ2, we can then discriminate between two distinct situations.

(i) |μeff
1 − μeff

2 | < Dbound. The interaction between the two
plates is always attractive at large distances (mean-field
regime); at short separation distances, the strong-coupling
phenomenology described earlier prevails.

(ii) |μeff
1 − μeff

2 | > Dbound. There is already a transition
between attraction and repulsion in the mean-field regime.
By decreasing further the distance D and entering the short-
distance limit, one should observe another attractive range, as

FIG. 8. (Color online) Sketch of attractive and repulsive regimes,
as a function of the ratio ζ = σ2/|σ1| and the distance D (on
a logarithmic scale). The repulsive island on the left-hand side,
delimitated by a continuous line, shows D∗

1 where the pressure
in Eq. (17) vanishes. The other repulsive region on the right-hand
side, delimitated by a dotted line (stars), shows D∗

MF = |μeff
1 − μeff

2 |,
where the effective Gouy-Chapman lengths are given by Eq. (23).
These data are displayed provided that they satisfy the constraint
D∗

MF > Dbound = a
(1)
⊥ + a

(2)
⊥ . Likewise, the left boundary for this

mean-field repulsive island has been taken to be Dbound, which is
shown by a dotted line (squares). Here we have taken �2 = 10.
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expressed in Eq. (15) for instance, before repulsion sets in at
even smaller separations.

More complicated scenarios could be envisioned, but we
summarize in Fig. 8 the simplest possible and provide a phase
diagram obtained when considering that the Bjerrum pairs do
contribute to the pressure, as in Sec. II C 2. We note that for
the parameters chosen there is a reentrant behavior observed
with respect to the separation distance, in a large fraction
of the (ζ,D) plane, more specifically, when ζ < 0.5 (this
threshold depends on the value of �2 chosen and increases
with �2). We recall that the bottom part of the diagram, more
specifically, for ζ < 1/(2�2 + 1), corresponds to a region
where our arguments do not apply, as discussed in Sec. II C 2.
In this region our short-scale analysis provides an all-repulsive
behavior and we may then speculate that repulsion persists up
to the effective mean-field threshold indicated by the asterisks,
which corresponds to large distances, on the order of 100 q2lB
or more.

III. DISCUSSION AND CONCLUSION

In this paper we have analyzed the interaction of two
oppositely charged parallel interfaces, each neutralized by its
own counterions, without other microions involved (salt-free
case, but with two species of microions of opposite signs).
We have shown that a repulsive behavior is quite expectedly
always present at short enough separations; it simply stems
from the diverging entropy cost for confining microions in
a slab of vanishing extension. Our analysis completes the
known Poisson-Boltzmann phenomenology by investigating
the case of strong Coulombic couplings. Short-distance ex-
pansions reveal that, depending on the formation of Bjerrum
pairs between the oppositely charged microions, an attractive
regime may or may not be observed. By formation of pairs
we understand here the wealth of different self-assembly
scenarios where the pairs may further associate into more
complex objects such as chains or various crystals [42,43].
We did not attempt a precise evaluation of the corresponding
contribution to the pressure (a particularly demanding task)
but rather we analyzed limiting cases where this unknown
contribution is bounded by reasonable values (see Sec. II C).
We have supplemented our short-distance analysis by a more
speculative investigation of the large-distance behavior, from
which a phase diagram was put forth with reentrant features
between attraction and repulsion as the distance D between the
plates is varied. The experimental observation of such features
would imply that other sorts of interactions, such as van der
Waals, do not modify the main effects uncovered.

In our approach single-particle arguments play a crucial
role and allow us to compute the density of microions from
which the equation of state follows. These single-particle
arguments, however, are a priori not restricted to strongly

coupled interfaces, but can equally be invoked when the
coupling parameters �1 and �2 are small (see, e.g., Sec. 3.3 of
Ref. [44] and in particular Fig. 16 therein for simulation results
backing up this statement in the like-charge case σ1 = σ2).
Indeed, when D becomes smaller than the characteristic lateral
distance a⊥ between ions, these ions effectively decouple and
experience the external potential of the plates only (we are
concerned here with the ionic density dependence on the
z coordinate, perpendicular to the plate; in the transverse
direction, parallel to the plate, a correlation hole remains
around each particle, of typical size q2lB). As a consequence,
the pressures given by Eqs. (11), (15), and (17) still hold with
the same range of validity for �i → 0. In the corresponding
distance range, the Poisson-Boltzmann results break down due
to discreteness effects. (It is therefore essential here to make
a clear distinction between Poisson-Boltzmann theory and
the low-� limit of the original model dealing with discrete
particles: The Poisson-Boltzmann approach considers from
the outset continuous density fields and therefore cannot be
expected to hold at separation distances such that discreteness
effects do matter, i.e., when D < a⊥; the adequacy of the
Poisson-Boltzmann approach to describe the low-� physics
should then be understood as a statement that excludes a small
range of short separations D.) From the analysis of Sec. II
we learn that when Bjerrum pair formation can be neglected,
the threshold distance D∗ where repulsive behavior sets in
is still given by the Poisson-Boltzmann result |μ2 − μ1| =
μ2 − μ1 provided this length is larger than both characteristic
distances a

(1)
⊥ and a

(2)
⊥ . In the opposite case, when |μ2 − μ1| <

inf(a(1)
⊥ ,a

(2)
⊥ ), we may speculate that D∗ lies between a

(1)
⊥ and

a
(2)
⊥ since the single-particle argument that holds at smaller

separations leads to repulsion, while the Poisson-Boltzmann
theory yields attraction at larger separations [20]. If, in
contrast, Bjerrum pairs form and contribute to the pressure
through their mean density (see Sec. II C 2), we have seen that
D∗ = μ2, which is thus larger than the Poisson-Boltzmann
result μ2 − μ1. However, this result only holds provided
ζ > (1 + 2�2)−1 � 1 (we are still considering the low-�i

limit). Given that ζ � 1 by definition (i.e., σ2 < |σ1|), we see
that here the single-particle picture does not apply up to μ2

(except in a small-ζ region close to 1), which means that D∗
is larger than A⊥ = [π (|σ1| − σ2)]−1/2. It can be checked that,
generically, this length is smaller than the Poisson-Boltzmann
prediction μ2 − μ1, except again in a small-ζ region around
unity.
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(2010).
[44] A. G. Moreira and R. R. Netz, Eur. Phys. J. E 8, 33 (2002).

011407-8

http://dx.doi.org/10.1063/1.1949191
http://dx.doi.org/10.1063/1.1949191
http://dx.doi.org/10.1063/1.3193556
http://dx.doi.org/10.1016/S0927-7765(99)00025-9
http://dx.doi.org/10.1002/bit.21724
http://dx.doi.org/10.1002/bit.21724
http://dx.doi.org/10.1088/0957-4484/16/10/059
http://dx.doi.org/10.1093/nar/gkg922
http://dx.doi.org/10.1093/nar/gkg922
http://dx.doi.org/10.1006/jcis.1997.5076
http://dx.doi.org/10.1006/jcis.1997.5076
http://dx.doi.org/10.1016/S0006-3495(72)86155-1
http://dx.doi.org/10.1007/BF01775681
http://dx.doi.org/10.1103/PhysRevLett.84.4862
http://dx.doi.org/10.1209/0295-5075/79/48002
http://dx.doi.org/10.1080/00268970902893156
http://dx.doi.org/10.1080/00268970902893156
http://dx.doi.org/10.1103/PhysRevLett.102.228101
http://dx.doi.org/10.1007/s101890170039
http://dx.doi.org/10.1016/j.physa.2004.12.029
http://dx.doi.org/10.1016/j.physa.2004.12.029
http://dx.doi.org/10.1021/jp960458g
http://dx.doi.org/10.1021/jp960458g
http://dx.doi.org/10.1103/PhysRevE.60.5802
http://dx.doi.org/10.1103/PhysRevE.78.061105
http://dx.doi.org/10.1103/PhysRevLett.101.188101
http://dx.doi.org/10.1063/1.3078492
http://dx.doi.org/10.1063/1.3078492
http://dx.doi.org/10.1063/1.3361672
http://dx.doi.org/10.1063/1.3361672
http://dx.doi.org/10.1209/0295-5075/89/25002
http://dx.doi.org/10.1103/PhysRevE.84.011502
http://dx.doi.org/10.1103/PhysRevE.84.011502
http://dx.doi.org/10.1140/epje/i2011-11020-1
http://dx.doi.org/10.1103/PhysRevLett.106.078301
http://dx.doi.org/10.1063/1.436535
http://dx.doi.org/10.1063/1.443547
http://dx.doi.org/10.1063/1.443547
http://dx.doi.org/10.1088/0953-8984/21/42/424102
http://dx.doi.org/10.1088/0953-8984/21/42/424102
http://dx.doi.org/10.1103/PhysRevE.70.016102
http://dx.doi.org/10.1103/PhysRevE.70.016102
http://dx.doi.org/10.1073/pnas.0600282103
http://dx.doi.org/10.1073/pnas.0600282103
http://dx.doi.org/10.1103/PhysRevE.73.041512
http://dx.doi.org/10.1103/PhysRevLett.105.158103
http://dx.doi.org/10.1103/PhysRevLett.105.158103
http://dx.doi.org/10.1016/j.physrep.2005.06.006
http://dx.doi.org/10.1063/1.3098556
http://dx.doi.org/10.1063/1.3098556
http://dx.doi.org/10.1103/PhysRevLett.71.2729
http://dx.doi.org/10.1209/0295-5075/89/36001
http://dx.doi.org/10.1209/0295-5075/89/36001

