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Transport of superparamagnetic beads through a two-dimensional potential energy landscape
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The nonlinear dynamic behavior of superparamagnetic beads transported through a two-dimensional potential
energy landscape is explored empirically and through numerical simulation. The beads are driven through a
periodic array of micromagnets by an external rotating field oriented at an angle θ relative to the magnetization
direction of the substrate. The bead’s motion was highly sensitive to the angle of the driving field near critical
angles and to various system parameters, including bead size, rotation frequency, and substrate pole density. Our
results suggest the possibility of using this behavior in a highly discriminative colloidal separation system, in
which two different bead types can be tuned to move in orthogonal directions.
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I. INTRODUCTION

The propagation of magnetic particles through a micro-
magnet lattice in time-modulated external fields is a subset of
a broad class of systems that describe the behavior of particles
of various kinds moving through potential energy landscapes.
Some physical examples include electron transport in a lattice
of scatterers, [1] driven charge density waves, [2] driven
vortex lattices, [3] and colloidal transport [4–18] by electric,
magnetic, or optical fields. These systems are physically
intriguing due to their rich nonlinear synchronization behavior
(often given unusual names such as Devil’s staircases, Arnold
tongues, and Farey trees) and different regimes of periodic
entrainment of the particle relative to the underlying lattice.
The ability to precisely tune the synchronization of driven
objects has been exploited in a number of applications, which
at their root have the same common goal of separating particles
(e.g., electrons, flux vortices, and colloidal particles) in order
to dynamicaly control the flow of information, material, or
energy.

Colloidal systems are convenient experimental models to
study these dynamic systems because the synchronization
processes can be observed at the single-particle level. In partic-
ular, the transition between phase-locked and phase-slipping
states has been observed in the magnetophoretic, [4–11]
dielectrophoretic, [12] and optophoretic [13–18] transport of
beads through a periodic lattice. During phase-locked motion,
the bead is trapped in a potential energy minima and moves
through the lattice at a characteristic rate defined by the
oscillator driving frequency. During phase-slipping motion,
the bead can no longer remain in phase with the oscillator due
to large external friction, resulting in a range of quasiperiodic
and subharmonic motions that depend on the external damping
conditions. By controlling the transition between these two
states, highly discriminate separation between different collo-
dial species has been achieved based on minor differences in
the particle size or its material properties. [4–6]

Two-dimensional (2D) motion of glass spheres flowing
through an array of optical traps has been demonstrated by

*mukarram.tahir@duke.edu

Grier and colleagues, [14] which revealed that the particle
trajectories could be strongly influenced by the periodicity and
strength of the optical lattice, tending to follow along preferred
lattice directions at different driving angles. Motivated by the
interesting results and potential for colloidal fractionation,
here we investigate the motion of superparamagnetic beads at
different driving angles relative to the magnetization direction
of the substrate. Through a combination of numerical simula-
tion and experiment, we demonstrate that the magnetophoretic
system has the potential to achieve extremely high separation
resolution between different bead types. Briefly, our results
suggest that it is possible to cause two different colloidal
species to move at right angles, which can have a tremendous
impact in life sciences and lab-on-a-chip applications.

The rest of the manuscript is organized as follows. In Sec. II,
we derive the equations of motion for the beads and describe
our numerical simulation methods. In Sec. III, we describe the
experimental apparatus that was used to observe the various
dynamics predicted by simulations. In Sec. IV, we discuss the
results obtained from simulations and experiments and their
application to colloidal separation, and conclude in Sec. V
with an overview of future work.

II. COMPUTATIONAL METHODS

Our experimental model consists of an array of micromag-
nets all uniformly magnetized along the x axis according to the
schematic in Fig. 1. To first-order approximation, the substrate
field distribution can be modeled as a 2D array of point poles
with positive and negative charges denoting the north and south
poles of the magnets. The pole density for an array of Dirac
delta functions is modeled through Fourier series as

σ (x,y) = λ

∞∑
n=1

∞∑
m=−∞

[
cos

(
2π

d
nx

)

− cos

(
2π

d
nx − 2πndmag

d

)]
cos

(
2π

d
my

)
,

(1)

where dmag is the diameter of the magnet, d is the lattice period,
and λ is the effective charge density of the substrate determined
through matching with experiment. Through separation of
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variables and matching the boundary conditions of (1), the fields produced by the substrate are given by
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The particles are driven through the micromagnet lattice
with a uniform external field of magnitude H ext that is rotating
at a frequency ω and applied at an orientation θ relative to the
magnetization of the micromagnets (i.e., track magnetization).
The external fields are thus represented as

�H ext = H ext

⎡
⎣ cos ωt cos θ

cos ωt sin θ

sin ωt

⎤
⎦ . (3)

Using the force equation for a point dipole in a magnetic
field gradient, F = μ0 (m · ∇) H, with m = χ̄V H and assum-
ing that H ext � H sub, we can determine the lateral magnetic
force on the beads to be
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where the following substitutions are made to simplify the
notation:

Fmag = 2μ0χ̄λπV H ext

d
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In the above equations, μ0 represents the magnetic perme-
ability of free space, χ̄ = 3χ/ (χ + 3) is the bead’s magnetic
volume susceptibility corrected for its spherical shape, and V
is the volume of the bead.

For simplicity, we have ignored the force in the z direction
because the force is usually negative (i.e., attractive toward
the substrate) and the height of the bead was not found
to change dramatically during our simulations. Thus, the
forcing dynamics are assumed to be wholly accounted for
using the lateral forces Fx and Fy to describe the translation
of the beads across the substrate. In order to simplify the
analysis, Brownian motion was ignored in our calculations,
which is reasonable for colloidal particles larger than a few
microns that are exposed to strong external forces. We also
verified through numerical simulations that the inertial terms
were negligible, which is quite reasonable for low Reynold’s
number systems; thus the equations of particle motion in the
overdamped limit were expressed as

dx

dt
= Fx

6πηa
, (7a)

dy

dt
= Fy

6πηa
. (7b)

Here, a is the bead radius, and η represents the dynamic
viscosity of water. All simulations were performed in the
PYTHON programming language, using Euler’s method
for numerical integration; however, we verified that the
simulations did not change when the equations of motion were
programmed in different software packages and using different
integration techniques. A timestep of 1/100th of a cycle was
sufficient for numerical stability, and the average θ∗ was
determined through the inverse tangent of the ratio of magnets
traveled along the x and y directions after 200 driving cycles.
To ensure that transients were excluded from the presented
results, we initialized our simulations for 200 cycles before
running an additional 200 cycles, from which the end-to-end
θ∗ values were determined. We verified the accuracy of the
Euler simulation method against other numerical methods,
including fourth-order Runge-Kutta integration as well as
adaptive timestep implemented in Mathematica’s NDSolve
routine. All simulations yielded practically indistinguishable
results, and the overarching trends and key transition points in
the computed θ∗ versus θ relationships were insensitive to the
choice of solution method for a sufficiently refined timestep.
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FIG. 1. (Color online) (a) The periodic potential energy land-
scape produced by an array of micromagnets is plotted above a
schematic of the experimental system. The (blue) sphere represents
the superparamagnetic bead, and the trailing (solid red) line denotes
one of the expected trajectories under a rotating field applied at an
angle θ relative to the track magnetization m. The average angle of
motion θ∗ is different from θ . (b) An experimental image depicting a
1.35 μm radius bead moving across an array of magnets, where the
angles θ and θ∗ are illustrated by arrows, and experimental trajectory
by the trailing (solid red) line.

III. MATERIALS AND METHODS

In our experimental work, we used substrates composed of
a square lattice of circular 4.9-μm micromagnets with 8.0-μm
periodicity. The external rotating field apparatus has been
described in previous work. [4] Originally we fabricated the
micromagnets using conventional photolithographic lift-off
process [19] using single-layer Co; however, due to the
low coercivity of thin Co films, we had to resort to more
complex Co-Pd multilayer magnets that could better resist
remagnetization against the in-plane external fields oriented
along the y direction. Co-Pd multilayers have both high
coercivity and high remnant magnetization, which allow the
track magnetization to remain fixed along the x direction even

in the presence of a field component in the y direction. The data
in Fig. 3 clearly show the effect of substrate remagnetization.

Although the optimal thicknesses for high coercivity
reported in the literature [20] are 0.9 nm/0.28 nm for Pd/Co
multilayers, limitations of our evaporation equipment (CHA
Industries Solution E-Beam) allowed us to deposit 5-nm
alternating layers for both Co and Pd without running into
issues such as noncontinuous film deposition and inconsistent
layer depths. Using a ferrofluid bitter decoration process,
we found that the Co-Pd multilayers had a higher coercivity
(remagnetizing above 50 Oe), whereas the single 50-nm-thick
Co layer remagnetized at a lower field around 20–30 Oe.

We chose a magnetic field strength of 15 Oe for all
experiments in order to maintain the integrity of the substrates’
magnetization while allowing for adequate motion of the
magnetic beads. To vary the orientation of the field, we
constructed a rotational stage capable of ∼1◦ accuracy in
the field orientation. All experiments used 1.35-μm radius
superparamagnetic beads (Invitrogen M-270 Dynabeads),
which are convenient due to their high monodispersity in size
and magnetization. To reduce adhesion with the substrate, the
beads were washed and coated with Bovine Serum Albumin.
The beads were diluted, dispersed in water, and then placed in
a fluid well using a 100-μm insert layer (Invitrogen SecureSeal
spacers) to reduce hydrodynamic friction from the top surface.
An external rotating field at 0.5 Hz was applied to the system,
leading to particle motion on the order of a few microns per
second. Video capture and bead tracking were achieved with
SimplePCI software and ImagePro interfaced with a Leica
DMLM microscope. The video tracking speed was maintained
at 4.3 frames per second in all experiments, and the camera
exposure time was 2 milliseconds. Our camera has a pixel size
of 290 nm, allowing for high-resolution trajectory analysis
relative to the length scale of the micromagnet. Although
this low tracking speed did not capture the fine details of
the beads’ motion, it was necessary for taking sufficiently
long movies (a minute and longer) that could capture the
long time average of the bead’s trajectory. Care was taken
to restrict our measurements to beads that were sufficiently
isolated from surrounding ones, in order to evaluate the particle
dynamics without interparticle interaction. The mean and
standard deviations presented in Fig. 3 represent averages over
five beads’ trajectories. Though the motion was more or less
uniform for all beads, we selected for measurements only those
that had moved continuously for at least 20 magnets.

IV. RESULTS AND DISCUSSION

A comparison between the predicted and experimental
trajectories is provided in Fig. 2 for different driving angles
but constant driving frequency of 0.5 Hz. Qualitatively, the
agreement between theory and experiment is reasonably good,
evidenced by the highly visible hopping motion of the bead
from one magnet to the next. Clearly, the experimental motion
is more muted in terms of the actual trajectory, which may
have resulted from surface adhesion and other subtrate friction
effects that were not accounted for in our model. When the
external field is oriented at 0◦ or 90◦ relative to the track
magnetization, the beads move colinearly in the direction
of the driving angle. For all other driving angles, there is
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FIG. 2. Comparison between (a) experiment, and (b) simulation
of characteristic trajectories exhibited by beads of radius 1.35 μm
in an external field of 15 Oe, corresponding to λ = 1.5 Oe. The
experimental data were obtained using the Co-Pd substrates.

a pronounced difference between θ and θ∗. For low driving
angles, θ∗ < θ , which results from the bead attempting to
following the track direction while the driving field is pushing
the bead away toward another adjacent track. For very high
driving angles, the opposite occurs, i.e., θ∗ > θ , in which
case the bead prefers to follow a trajectory orthogonal to the
track direction. Theory and simulation agreed reasonably well
when the substrate magnetization λ is assumed to be 1.5 Oe.
See Ref. [21] for a video depicting that motion of a sample of
beads for the angles included in Fig. 2(a).

Experimental results for θ∗ versus θ are provided in Fig. 3
to demonstrate how substrate remagnetization affects the bead
trajectories. For single-layer Co, the preferred direction of
transport clearly shifts at θ = 45◦, which is consistent with
the expected behavior of soft-magnetic material, where the
easy axis becomes the 1,1 line in a 2D analogy to 3D
crystallographic planes. The same results are observed for
many driving frequencies, field strengths, and micromagnet
thicknesses. For Co-Pd multilayers, the transition of bead
motion away from the x direction (i.e. 1,0 line) is observed at
much higher angles, e.g., θ > 60◦. Moreover, the field strength,

0 15 30 45 60 75 90

0

15

30

45

60

75

90

θ

θ*

FIG. 3. Comparison between experiment and simulation of re-
lationship between θ∗ and θ (presented in degrees). The hollow
squares and solid circles represent the bead trajectories on single-layer
Co substrates and Co-Pd multilayers, respectively. Closed orbits are
indictated as ×, which were observed only in simulations above 85◦

using the present system parameters.

driving frequency, and other control parameters lead to highly
tunable bead trajectories that enable the design of a better
separation system. Results from simulations using λ = 1.5 Oe
were found to match the experimental data with regard to the
key transition angles; however, the intermediate kinetic state
of θ∗ = 45◦ was observed only rarely in experiments. We
speculate that there are two likely causes of this discrepancy.
First, the micromagnets are 5 μm in diameter and thus are
likely to have multiple magnetic domains; furthermore even if
they were single domain, the pole density of the micromagnets
will still be distributed around the circumference of the
magnet and cannot be represented exactly as an array of
point charges. However, for the sake of deriving analytically
tractable equations that could enable long time simulations, we
resorted to the assumption of a point charge array. A second
source discrepancy may be due to the possibility that the track
magnetization could have tilted slightly along the y direction
during our experiments. These two effects are not easy to
include in simulations and would likely have contributed
different types of errors, so for convenience we present the
numerical simulations of a point charge array exclusively.

In order to explore the parameter space, we systematically
varied all the control parameters, including driving frequency,
field strength, and bead size. In Fig. 4 we present graphical
relationships for the effect of substrate magnetization on the
bead trajectories, and an additional phase diagram of θ∗ versus
θ is also provided in Fig. 4(d) in order to depict the general
trends. Generally, as λ is increased, the transition of the bead’s
motion from the 1,0 to the 0,1 direction becomes sharper,
and the range of angles for which different kinetic modes
is observed also decreases. This switching behavior was not
often observed in our experimental data for both Co and
Co-Pd substrates, and we were surprised to see such erratic
behavior in the velocity transition in our numerical simulations
of the system. However, there is some experimental evidence
that potentially large and abrupt changes in the direction of
the bead’s motion may occur near certain critical driving
angles (see, e.g., the Co-Pd data near 60◦) Originally, we
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FIG. 4. (Color online) θ∗ vs θ (in degrees) is plotted for various values of λ: (a) λ = 1.5 Oe, (b) λ = 2.5 Oe, (c) λ = 7.5 Oe. Closed orbits
are indictated with ×, which were discovered only for certain initial conditions. (d) A phase diagram depicts the results for λ ranging between
0.25 and 7.0 Oe, with fixed 1.35 μm bead radius and 0.5 Hz driving frequency. The progression from black to red to yellow corresponds the
abrupt switching primarily between primarily three states θ∗ = 0◦, 45◦, and 90◦. The intermediary states of θ∗ = 30◦ and 60◦ were sometimes
observed, though rarely.

thought the nonintuitive simulation results were caused by
numerical error; however, the same effect was observed
regardless of the timestep, number of magnets traveled, or
the type of integrator, e.g., Runge-Kutta, Euler difference,
and the adaptive integration techniques built into Mathematica
packages. We confirmed the same behavior occurred when
inertial terms were included, as well as when the static forcing
terms of the substrate were included in the equations of
motion. [5] The phase plot in Fig. 4(d) demonstrates the
reentrant transitions in the angle-driven bead transport at low
driving frequencies. Note that the distinct colors on the plot
representing unique regimes predominantly occurred near 0◦,
45◦, and 90◦.

The transition angles of the switching behavior were
predominantly independent of the initial conditions. For each
driving angle, we tested 100 initial conditions (a 10 × 10 grid
spanning one unit magnet cell) and found that for nearly all
angles the steady-state trajectories were identical. Only in the

vicinity of high driving angles (θ > 75◦) did we observe a
dependence on initial conditions, in which we found that for
some initial conditions the beads were trapped in a closed
orbit. This trapped state is depicted by using “x” markers for
the θ∗ data in Figs. 3–6. We observe that the beads in this state
were dynamically trapped in local potential energy minima and
could not escape. Video in Ref. [21] illustrates this trapping
effect, which occurs only for certain initial conditions using the
system parameters θ = 88◦, a bead radius of 1.35 μm, a driving
frequency of 0.5 Hz, and a substrate magnetization of 1.5 Oe.
On the other hand, for a different set of initial conditions and
using the same system parameters, an open orbit is produced.
For other areas of the mobility spectrum, the jitter behavior
observed in simulations remains a mystery. While these effects
may be unexpected, our simulations indicate that the jitter in
the switching behavior is not a numerical artifact and is not
sensitive to initial conditions, except in the cases where closed
orbits are produced instead of open orbits.

011403-5



TAHIR, GAO, VIRGIN, AND YELLEN PHYSICAL REVIEW E 84, 011403 (2011)

FIG. 5. Plots for simulation of relationship between θ∗ and θ (both in degrees) for various driving frequencies: (a) 0.3 Hz, (b) 0.5 Hz, and
(c) 0.7 Hz. Note that λ = 3.0 Oe in this case. Closed orbits are indictated with ×.

In Figs. 5 and 6, we present the effects of driving frequency
and bead size on the resultant bead trajectories. When the
driving frequency is increased, the transition from motion
along the 1, 0 to the 0, 1 direction shifts to higher critical angles,
and it also increases the prevlance of switching behavior
within the θ∗ versus θ relationship. For the particular case
of fext= 0.7 Hz, we provide an inset within Fig. 5(c) to show
a close-up view of the jitter behavior in the bead trajectory
simulations. Fig. 6 represents the effect of three different

bead radii on the resulting trajectories, and we provide an
additional phase diagram of θ∗ versus θ in Fig. 6(d), which
graphically depicts the general trends as a function of the
bead radius. Since larger beads will move along the track
magnetization at higher driving angles than small beads, this
finding suggests the ability to achieve 2D bead separation by
adjusting the driving angle to a critical threshold. For example,
if an 80◦ driving angle is used, the 1.35-μm radius beads
will move along the y direction while the 2.0 and 3.0-μm

FIG. 6. (Color online) θ∗ vs θ (in degrees) is plotted for bead radius, a, of 1.35 μm, (b) 2.0 μm, and (c) 3.0 μm. Closed orbits are indictated
with ×. (d) A phase diagram depicting the velocity spectrum for bead sizes ranging between 1.0 and 4.0 μm, with λ = 3.0 Oe and driving
frequency being 0.5 Hz. For these conditions, the bead trajectory switches between predominantly two states θ∗ = 0◦ or 90◦, respectively.
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radius beads will move along the x direction. A different set
of angles can separate the 2.0- and 3.0-μm radius beads in
a similar manner. Figure 6(d) is further illustrative of the
system’s potential to induce divergent transport in beads of
varying radii, with field orientation being the only control
parameter. The system allows particles of specific radii to be
successively isolated from a dispersion, leading to an efficient
separation mechanism. Note that the critical angle dependence
on bead size results from an amalgamation of effects that
include differences in the volume [exhibited by the parameter
V in Eq. (6a)], vertical location of the bead center [parameter
z in Eq. (6f)], and viscous drag coefficient [hydrodynamic size
parameter a in Eq. (7)]. This analysis suggests that orthogonal
motion can also be induced in two different sets of identical
beads that differ only in the type of nonmagnetic physical
coating (e.g., a protein, virus, bacteria monolayer), which
would alter the bead’s hydrodynamic size and its vertical
location above the substrate in Eqs. (7) and (6f), respectively.
Due to the small size of proteins, this effect would not be
observable for micron-sized beads; however, it could become
a useful separation approach when scaled into the submicron
regime.

Compared with alternative linear magnetic separation
techniques, such as field flow fractionation, which can also
sort particles based on size [22–24] and separate polymers
[25], the magnetic separation technique presented here utilizes
nonlinear synchronization behavior, which can dramatically
improve the separation resolution. Conventional field-flow
fractionation method works by imposition of a field gradient
orthogonal to a channel through which samples are flowed at
various speeds. [26] Due to differences in material properties
such as particle size or hydrodynamic diameter, various
constituents of the sample are driven to exit the channel at

different times or at different positions. In this inherently linear
system, the separation resolution scales with the square of
the bead radius, since magnetic force scales with volume and
viscous drag scales with radius. On the other hand, our method
uses nonlinear dynamics to move beads along potentially
orthogonal directions under the same operating conditions.
Thus, it is possible to tune this device to achieve highly
discriminative separation resolution between different species,
leading to greater efficiency and smaller devices.

Despite our recent progress, there are some issues that
require future optizimation. For example, when the substrate
magnetization becomes too large (i.e., very high λ), then
the beads become locally trapped in closed orbits at high
driving angles, θ . Work is ongoing to develop improved
experiments that can achieve the correct λ and ω that will
enable practical applications of this approach in colloidal
separation in microenvironments.

V. CONCLUSIONS

In this work we explored the fascinating dynamics of super-
paramagnetic beads transported in a 2D potential landscape as
a function of the driving angle between an external rotating
field and the track magnetization. We observed that the beads
exhibit interesting locking modes and different 2D trajectories
that can be adjusted with the driving angle. The bead trajectory
is very sensitive to various experimental parameters such as
driving frequency and bead size, which allows us to tune
the system to cause beads to travel in orthogonal directions.
This observation has important applications in magnetic
separation, and our current efforts are focused on improving
the micromagnet substrates to realize this separation system
more efficiently.

[1] J. Wiersig and K.-H. Ahn, Phys. Rev. Lett. 87, 026803 (2001).
[2] S. E. Brown, G. Mozurkewich, and G. Grüner, Phys. Rev. Lett.
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