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Granular flow during hopper discharge
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Granular material freely discharging from a hopper under gravity is one of the oldest and most widely studied
problems in granular flow. Despite the apparent simplicity of the system, expressions relating the discharge rate
of the hopper to the properties of the individual grains are difficult to determine and typically empirical in nature.
A mathematical model for discharge from a hopper is derived based on the dynamics of individual particles just
within the outlet. In contrast to previous models, this analysis derives a flow rate from granular dynamics, rather
than dimensional arguments. The model, therefore, uses no assumptions about the form of the stress distribution
within the hopper, or the addition of empirical factors or fitting parameters. Our model gives a flow rate identical
in form to a well-known empirical expression, showing that an experimentally determined constant used in this
expression is purely geometry-dependent. Our analysis is also extended to derive an expression for the flow rate
incorporating gas drag, which becomes dominant at small grain sizes, significantly reducing the outflow rate.
The resulting expression shows excellent agreement with a range of computational simulations using a coupled
discrete element and Navier-Stokes method. These simulations also show that the gas flow is much more complex
than previously assumed in this region, and simplified assumptions used in prior hopper flow models do not hold.
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I. INTRODUCTION

The study of granular flow in hoppers has an extensive
history, and the analytical description of granular behavior
within a hopper remains an active research area. During
discharge, the particulate material exhibits the full range of
granular behavior, from static packing within the bed, through
yielding from dense to dilute phase flow over the outlet, to a
free-falling particle stream. Hopper flow is also of significant
importance from a practical aspect. Large-scale hoppers are
used for storage and transportation in chemical processing,
food manufacture, pharmaceuticals, and agriculture. The flow
characteristics of fine powders, in which interstitial gas effects
dominate, are also of importance in process design for each of
these industries.

In contrast to a liquid-filled column, the pressure at the base
of a hopper is constant if H > D, where H is the fill height
and D is the diameter. This pressure saturation occurs because
the weight of the bed is supported by the walls of the hopper,
and results in a constant discharge flow rate, Q, if H > D

and D > 5
2D0, where D0 is the outlet diameter [1,2]. This

effect was first reported by Janssen in 1895 from experiments
in corn-filled silos, although it is likely this was known even
earlier [3]. On dimensional grounds, the flow rate is of the
form Q = Cρb

√
D0

5g, where C is a constant depending on
the system. This relation was investigated by Beverloo [4]
for monodisperse particle distributions in cylindrical hoppers,
who found a dependency of this form existed with C ≈ 0.55–
0.65 [5]. It was also determined, however, that the zero outflow
rate occurred for a nonzero outlet diameter. Beverloo suggested
that “this might be explained by assuming that along the margin
of the orifice a zone is useless or less fit for use for the flow”
and that the reduced diameter DB = D0 − k d should be used
instead, where d is the particle diameter and k � 1.5 is a
constant. This gives an expression for the flow rate as

Q = Cρb

√
D5

Bg, (1)

where ρb is a bulk density and g is gravitational acceleration.
This relation has been shown to hold for a wide range of grain
types in flat-based hoppers [5]. For hoppers with D0 � 6d,
where d is the grain diameter, the flow is intermittent and
jamming can occur, so Eq. (1) only holds provided D0 > 6d.

The bulk density in Eq. (1) is given by ρb = εbρp, where εb

is a bed voidage fraction and ρp is the particle solid density.
The voidage is highly variable over the outlet region, so the
choice of voidage fraction in these expressions has been a topic
of debate. Beverloo originally used the density of the packing
over the hopper, before the hopper had discharged, to define
εb. Huntingdon and Rooney defined a “flowing density” as
the ratio of the measured mass flow rate and the volume flow
rate, determined by observing the upper surface of the particle
bed [5]. Kotchanova suggested using the voidage just above
the outlet, as the flow dynamics only involves the particles
within this region [6].

A wide range of hopper types, outflow geometries, and par-
ticle distributions have previously been studied. For simplicity,
we restrict our analysis to cylindrical, flat-based hoppers with
a central outlet and a monodisperse, noncohesive, spherical
particle distribution. A schematic diagram of this ideal con-
figuration is shown in Fig. 1. The system is also considered
closed, so gas flow can only occur through the outlet. The radial
symmetry and flat base removes any geometry-dependent
effects from the stress field within the hopper, and the choice of
spherical monodisperse particles removes any effect of particle
size distribution on the outflow rate [7]. Particles discharge
through a funnel-shaped region formed by a slowly moving,
almost stagnant, zone of particles surrounding the outlet. The
funnel is approximately conical with angle β from the vertical.
The particle dynamics governing the flow rate occurs in the
immediate vicinity of the outlet, where the granular flow
transforms from slow dense flow, with long-lasting frictional
contacts, to dilute flow. The boundary between these flow types
is known as the “free fall arch,” which is assumed to be a section
of a spherical surface of radius RB/ sin β, where RB = 1

2DB ,
spanning the hopper outlet. This is shown schematically in
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FIG. 1. Schematic diagram for discharge from a cylindrical flat-
based hopper with fill height H , diameter D, outlet diameter D0, and
particle diameter d . Particles form a flowing cone with slope angle β

over a slowly moving, almost stagnant, zone within the hopper.

Fig. 2(a). The concept of this “free-fall arch” has been used in
many theoretical analyses [5].

Equation (1) agrees well with experimental flow rates for
particle diameters down to O(∼100 μm). For smaller particles

FIG. 2. (a) Difference between vertical cross sections through
the free-fall domain in previous analyses (left), where the region is
assumed to be a spherical section, and our approach (right), where
it is assumed to be a hemispherical region. Previous analyses have
also determined the flow rate from integration over a conical section
(left). (b) The free-fall domain used in our analysis. Particles leave
the free-fall hemisphere and fall a distance h to the outlet. The time
taken for the particle to reach the outlet is th.

the flow-impeding effects of gas drag on the particles cannot
be neglected, leading to a significant deviation between Eq. (1)
and experimental results. Expressions for the outflow rate
where the effect of gas drag is included are much more difficult
to determine. A common approach used in many previous
methods is an ad-hoc modification of Eq. (1) with the addition
of a pressure gradient opposing gravity to give a modified
relation of the form

Q = Cρb

√
D5

B

(
g + 1

ρb

∂p

∂r

)
, (2)

where the pressure gradient is determined from the Carman-
Kozeny equation:

∂p

∂r
= −Kη

d2

(
1 − ε

εb

)2

ur, (3)

where K is the empirical Carman-Kozeny constant, K � 180,
and the relative velocity ur is given by ur = u − v, where u is
the gas velocity and v is the averaged particle velocity over the
region where the expression is used. This approach relies on
the assumption that the outflowing particles in the vicinity of
the outlet can be treated as a porous medium, disregarding the
discrete nature of the particles. An approach used by Crewdson
[8] derived an expression for the slip velocity in terms of
the flow rate from a sequence of assumptions regarding the
voidage distribution and stresses within the bed. A Taylor
expansion was used for terms involving powers of (1 − ε)/ε
in the Carman-Kozeny equation, and an empirical substitution
for the stress was used to derive an approximate value of the
voidage over the outlet. The stress term overpredicts the stress
at the outlet and the voidage term overpredicts the voidage, but
the assumption was made that both errors compensate to give
a correct result. The resulting expression for the flow rate, in
terms of the constant C in Eq. (1), is given by

C =
√

ρ2
bg − 2QKη(1 − εb)

πε2
bd

2D2
0(1 − cos β) [εb(1 − εb) + c(3 − εb)]

,

(4)

where c is an empirical compressibility index. A quadratic
equation was given for determining the flow rate Q from
Eq. (4).

An alternative method for modeling the system is to for-
mulate the granular dynamics in an equivalent thermodynamic
context. This approach was introduced and used by Brown [9]
to derive the outflow rate by assuming the total mechanical
energy per unit mass decreases along a flow streamline until it
is minimized at the free-fall arch. This method was extended by
Altenkirch to incorporate interstitial gas effects by assuming
friction can be neglected in the dilute region and forces due
to interstitial pressure gradients dominate [10]. The gas and
solid volume flow functions are assumed to be linearly related,
giving the relative gas-particle velocity ur as

ur =
(

1 − α
1 − ε

εb

)
y ′(t), (5)

where α is the ratio of gas to solid volume flow rates and
primes represent a derivative with respect to time, ∂/∂t , such
that y ′(t) is the particle velocity. The pressure gradient from
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the Carman-Kozeny equation (3), was also used in the analysis.
The discharge flow rate is calculated by integration of the radial
flow field over a cone of angle β, as shown in Fig. 2(a). This
gives the flow rate constant C in Eq. (1) as

C = π

6

(
(γ 2 + 1)

3
2 − (γ 2 + cos β)

3
2 + 3

2γ (cos β − 1)

sin
5
2 β

)
,

(6)

where

γ =
√

D0

4ρb
√

g

Kη

d2

(
1 − εb

εb

)2 (
1 − α

1 − εb

εb

)
. (7)

Many previous hopper flow analyses have used a conical
flow domain of this type for determining the outflow rate
[8–14]. For flat-based hoppers, such as the ones used in this
study, β is usually assumed to be β = 45◦ in the absence
of further information [15]. The mass flow rate is therefore a
function of the empirical parameter K and the flow ratio α. For
sealed hoppers, gas flow only occurs through the outlet [10]. In
this case, the volume flow rates must be equal and opposite at
the hopper outlet, giving α = −1. This assumption is only
valid within the hopper as we show α switches sign just
below the outlet, making it unsuitable for conical domains
of integration, which extend beyond this region. Expressions
for α have been derived from models of the voidage variation
within the free-fall region [13], although in our analysis α

is assumed constant as we only consider the region within a
sealed hopper.

The pressure gradient within the hopper can also be
measured experimentally from the pressure difference 
p

between two points within the hopper, giving a relation of
the form

C = K1

√
g + K2
p, (8)

where K1 and K2 are empirical constants [16]. A variety of
related expressions have been given [17–19]. The majority of
models for hopper flow incorporating the effects of interstitial
gas follow a similar approach, with an ad-hoc pressure gradient
being added to reduce the effect of the gravitational term.
We show that this approach is unnecessary, as the flow rate
can be derived directly by integration of the particle velocity
distribution at the hopper outlet. Our analysis relies on no
empirical expression for the stress distribution within the
hopper, or on the addition of a Carman-Kozeny term.

II. DERIVATION OF FLOW RATES FOR A CYLINDRICAL
FLAT-BASED HOPPER

A. Flow rates without gas drag

The empirical expression for hopper discharge rate, Eq. (1),
can be derived by integrating the velocity of the discharging
particles over a hemisphere spanning the outlet. This approach
differs from previous approaches by assuming the free-fall
region is hemispherical and starts from the base of the hopper,
rather than a cone of angle β projecting upward from below
the center of the outlet, as shown in Fig. 2(a). A hemispherical
domain of integration resolves the problem of a singularity at
the apex of a conical integration region as r → 0. Furthermore,
the mass flux is assumed to be perpendicular to the outlet in

our analysis, which conforms better to observations than the
assumption of a conical-shaped flow field below the outlet of
the hopper.

The particles are assumed to fall from the surface of the
hemisphere freely under gravity. The flow rate is measured as
the mass flux through the horizontal plane of the outlet. The
vertical distance, h, each particle falls from the hemisphere
to the outlet plane is dependent on the radial position, r , of
the particle. This is given by h(r) = √

RB
2 − r2, as shown

in Fig. 2(b). The particles are reasonably assumed to have a
negligible velocity on the hemisphere, compared to their final
outflow velocity. The flow rate over the outlet plane is then
given by

Q = 2πρb

∫ RB

0
ry ′(th,r) dr, (9)

where th is the time it takes a particle to vertically fall a distance
h and cross the horizontal plane of the outlet. No assumptions
regarding the geometry are required in the analysis, with the
exception of the reduced diameter, DB , as this is a physical
effect due to particle clustering around the orifice.

The equation of motion with initial conditions for a single
particle falling from rest with no gas drag and no collisional
interactions is

y ′′(t) = g, y ′(0) = 0 (10)

with the trivial solution

y(t) = 1
2gt2, (11)

y ′(t) = gt. (12)

Solving Eq. (11) for th at y = h and substituting into Eq. (12)
gives

y ′(th,r) =
√

2g
(
R2

B − r2
) 1

4 . (13)

Substituting this into the flow rate integral, Eq. (9), gives the
flow rate as

Q = π

5
ρb

√
gD5

B, (14)

which is Beverloo’s relation, Eq. (1), with C = π/5 = 0.628,
well within the empirically measured range [5]. The change
in the conceptual shape used makes the analysis particularly
simple and allows the Beverloo expression to be derived
without the use of assumptions that restrict the range of validity
of the relationship.

B. Flow rates incorporating the effects of gas drag

This analysis can be extended to account for the effects of
gas drag on the particles. Due to the low particle Reynolds
number at the small length scale where drag dominates, the
drag force, Fd , on each particle is Stokesian:

Fd = −3πdηur, (15)

where η is the gas viscosity. Using Eq. (5) for the relative gas
velocity gives

Fd = −3πd

(
1 − α

1 − ε

ε

)
ηy ′(t), (16)
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where α is the ratio of gas to solid flow rates, Eq. (5). The
resulting equation of motion with initial conditions for each
particle is

y ′′(t) = g −
(

1 − α
1 − εb

εb

)
18η

ρpd2
y ′(t), y ′(0) = 0, (17)

where the bulk voidage fraction, εb, has been assumed constant
over the free-fall region. To simplify the analysis, two time
scales are introduced: the inertial time scale,

τi =
√

RB

g
, (18)

and the viscous time scale,

τη =
(

1 − α
1 − εb

εb

)−1
ρpd2

18η
. (19)

The use of these two time scales allows Eq. (17) to be cast in
a particularly simple form as

ȳ ′′(t̄) = k[1 − ȳ ′(t̄)], ȳ ′(0) = 0, (20)

where the overbars represent nondimensionalized variables
and k = (τi/τη)2. The Stokes number, St, is the ratio of viscous
to inertial time scales in the system, so k is related to the
Stokes number by k = 1/St2. For St 	 1, the granular motion
is inertially dominated, whereas viscous drag dominates at
St 
 1.

The solution of Eq. (20) is

ȳ(t̄) = 1

k
(e−kt̄ − 1) + t̄ , (21)

ȳ ′(t̄) = 1 − e−kt̄ . (22)

Solving Eq. (21) for t̄h at ȳ = h̄ gives

t̄h = 1

k
[1 + kh̄ + W (−e−kh̄−1)], (23)

where W is the Lambert-W function, defined as x =
W (x)eW (x), and h̄(r̄) = √

1 − r̄2, r̄ = r
RB

. The Lambert-W
function commonly occurs in solution to differential equations
of this type, and the range used here is restricted to the upper
branch between W (0) = 0 and W (−e−1) = −1. It cannot
be expressed in terms of elementary functions, but several
accurate approximations for this branch exist, given in terms
of logarithms [20,21]. Substituting this into the expression for
ȳ ′, Eq. (22) gives the particle velocity at the outflow plane as

ȳ ′(t̄h,r̄) = 1 + W (−e−k
√

1−r̄2−1), (24)

where the definition of the Lambert-W function has been used
to simplify the result. The dimensionalized flow rate can then
be found by using Eq. (9):

Q = πρbR
2
Bτηg

[
1 + 2

∫ 1

0
r̄W (−e−kh̄−1) dr̄

]
. (25)

This can be solved in closed form to give an expression
for the flow rate incorporating the effects of interstitial

FIG. 3. Difference in nondimensionalized velocity profiles with
and without drag effects, Eqs. (24) and (13) (nondimensionalized),
respectively. At large Stokes numbers, inertial terms dominate and the
profiles are the same. Around St ∼ 10, the profiles diverge, with drag
effects causing a plug profile. Low Stokes numbers give a broader
and flatter plug profile.

gas:

Q = πρbR
2
Bτηg

[
1 + 1

k2

(
5

6
+ w2

k

6
(2wk + 3)

+wk(wk + 2)(k + 1)

)]
, (26)

where

wk = W (−e−k−1). (27)

The closed-form result must be evaluated with high numer-
ical accuracy at large length scales, so we directly evaluate
Eq. (25) numerically for the comparisons used within this
study.

The difference in predicted nondimensionalized particle
velocity profiles at the outlet without gas and including gas
drag effects, Eq. (24), is shown in Fig. 3. The expression
for the profile with no drag, Eq. (13), is nondimensionalized
to ȳ ′(r̄) = √

2k(1 − r̄2)
1
4 , so all plots have been normalized

by dividing by
√

2k. The plot is shown in terms of the
Stokes number, St = 1/

√
k. As St → ∞, the velocity profile

converges to that of the profile for flow with no drag effects.
Below St ∼ 10, the velocity profiles diverge, with the inclusion
of drag effects giving a plug flow profile. This profile becomes
broader and flatter as St decreases, where the limiting form at
k → 0 is a flat profile over the entire outlet.

At small particle diameter, viscous effects will dominate
and the particles will fall at a terminal velocity, y ′

t . From
Eq. (15), and using the assumption that the particle density is
much greater than the gas density, this is y ′

t = τηg. The outflow
rate for particles at terminal velocity, Qt , can be determined
by using this expression in Eq. (9) to give

Qt = πρbR
2
Bτηg. (28)

From inspection, it can be seen that Eq. (28) is equal to the
left-hand side of Eq. (25), and the integral term in Eq. (25),
therefore, represents an inertial correction to the viscous limit
of the flow rate.

011307-4



GRANULAR FLOW DURING HOPPER DISCHARGE PHYSICAL REVIEW E 84, 011307 (2011)

III. COMPUTATIONAL MODELING
OF HOPPER DISCHARGE

To test the derived theoretical expressions for the flow rates,
Eqs. (14) and (25), the discharge of hoppers at a range of length
scales spanning several orders of magnitude must be measured.
Ideally, the geometry and particle setup must be the same in
each test so that any differences in flow rate are due only to
the effect of the length scale alone. This is difficult in practice,
but straightforward using computational modeling.

We use a Lagrangian approach for particles called the
discrete element method (DEM), which was first formulated
by Cundall and Strack [22]. Hopper flow has been investigated
extensively computationally using the DEM. Potapov and
Campbell carried out one of the first investigations into hopper
discharge using the DEM [23]. Later, Holst et al. carried
out a detailed range of simulations on silo filling to compare
continuum and DEM models [24]. Recent studies include that
of Zhu and Yu [25], who investigated the dependency of solids
mass flow rate on orifice diameter using a flat-based cylindrical
geometry scaled by a fixed particle diameter. The simulation
results correlated well with the Beverloo equation. Anand et al.
[15] utilized the DEM to investigate the dependence of mass
flow rate on particle properties in a pseudo-three-dimensional
angled hopper. The majority of DEM simulations assume
spherical particle geometry, however Cleary and Sawley [7]
have shown that particle shape can significantly alter hopper
mass flow rates. Using a superquadric formulation, it was
found that particles of large aspect ratio give a flow rate
reduction of up to 30% over spherical particles. Sphero-disks
[26] and spherical clusters [27] have also been considered.
Applying shear to the base of the hopper through rotation has
also been shown to cause an increase in the hopper outflow
rate [28].

The effect of gas flow on hopper discharge has, however,
been largely neglected. Eulerian-Lagrangian coupling of gas
and solid phases was introduced to the DEM by Tsuji et al. [29]
in the context of two-dimensional fluidized beds. Langston
et al. [30] investigated the effects of drag on particle flow rate
in a shallow angled hopper for closed-top gravity flow and
open-top air-assisted discharge. For the closed-top case, solids
flow rates were observed to decrease with decreasing effective
particle density. For the air-assisted case, an increase in the
forcing overpressure led to a steady increase in particle velocity
magnitudes and increasing wall stresses. A solid discharge
ratio from air-assisted simulation data was compared to a
continuum result of Nedderman [31], although no comparison
to theoretical correlations concerning the effect of particle
size scale on gas-drag effects was presented. The assumption
of radial gas flow was used, and interstitial fluid effects
were modeled by varying the effective particle density. More
recently, Guo et al. [32] used the DEM to investigate the
effects of interstitial gas drag on fine particles in die-filling.
A pseudo-two-dimensional flat-based geometry was used, and
both particle diameter and density were varied systematically.
For vacuum conditions, simulation results for monodisperse
particles were observed to have an average dimensionless flow
rate agreeing well with the Beverloo expression, Eq. (1). Small
particle diameters and low densities both gave a lower mass
flow rate when a gas model was used.

The DEM model used in our simulations and the details of
the particle coupling to the gas field are given in the following
sections.

A. Particle dynamics

The computation and time integration of the forces and ve-
locities for a large set of individual particles forms the basis of
the DEM. In this implementation, the particle-particle contact
force, Fc, is determined by the particle overlap information
using a linear spring, dashpot and slider approximation. This
force is the sum of a normal force Fn and a tangential force Ft

at the contact point. The normal force is determined from the
particle overlap δl and relative normal velocity vn:

Fn = −knδl + Cnvn, (29)

where Cn is the normal damping coefficient, chosen to give
the required normal coefficient of restitution, and kn is the
spring stiffness. The spring stiffness determines the maximum
particle overlap, which is ∼0.1% of the particle diameter, to
give an accurate simulation within a reasonable computational
time frame.

The tangential force is determined incrementally by
calculating

δFt = (ktδt + Ct )vt , (30)

where kt is the tangential spring stiffness, δt is the integration
time step, Ct is the tangential damping coefficient, and vt is
the relative tangential surface velocity. The tangential force is
then updated with this increment if the new tangential force
does not exceed the Coulomb friction limit:

Fnew
t =

{
Ft + δFt if Ft + δFt < μFn,

μFn otherwise,
(31)

where Fnew
t is the tangential force at the next time step and μ

is the interparticle coefficient of friction.
The force balance on each particle i is given by

mi

dvi

dt
= Fci + Fgi + mig, (32)

where mi is the mass of particle i and vi is the velocity. The
forces consist of the solid particle-particle contact force, Fc, a
gas-particle interaction force, Fg , and the gravitational force
mg. The gas-particle interaction force, Fg , is the sum of the
gradient of the gas pressure, p, and the particle drag force, Fd :

Fgi = −Vi∇p + Fdi , (33)

where Vi is the particle volume. The moment balance on each
particle is given by

Ii

dωi

dt
= Ti + Tdi , (34)

where Ii is the moment of inertia in the principal frame of
the particle, Ti is the interparticle contact torque, Tdi is a
Stokesian rotational drag on the particle, and ωi is the spin of
the particle.

The dominant gas-particle interaction is the drag force on
each particle. Other gas-particle interaction forces such as the
Saffman shear lift force, the Magnus rotational lift force, and
the Basset force are considered small enough to be neglected
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in this system. The drag force exerted by the gas on a single
particle must be corrected in multiparticle systems to account
for the presence of neighboring particles. We use an empirical
correction given by Di Felice [33]:

Fdi = 1
2Cdρgε

−χA⊥|ur |2ur , (35)

where χ is given by

χ = 3.7 − 0.65 exp

[
− (1.5 − log Re)2

2

]
(36)

and the particle Reynolds number, Re, for a particle of diameter
d in a gas with viscosity η is Rep = dρg|ur |/η. We use a drag
coefficient given by Holzer et al. [34] for spherical particles:

Cd = 27

Re
+ 0.42. (37)

Particles are also subject to Stokesian rotational drag, given
by

Td = πηd3ωr , (38)

where ωr is the particle rotation vector relative to the fluid,
given by ωr = 1

2ωg − ωp, ωg is the curl of the gas velocity
field, and ωp is the spin of the particle.

B. Fluid dynamics

The constitutive equations for gas flow through a particle
bed are derived by Anderson and Jackson [35], and are given
by Kafui [36] in a “pressure gradient force” (PGF) form. These
can be reformulated into relations for a superficial gas velocity,
u′, rather than an interstitial gas velocity, u, using u′ = εu and
making the assumption that the gas density, ρg , is constant,
giving

∂ε

∂t
= −∇ · u′ (39)

∂u′

∂t
+ 1

ε
(u′ · ∇)u′ + u′∇ ·

(
u′

ε

)

= −ε∇p

ρg

− fg
ρg

+ ∇ · (ετ ′)
ρg

+ εg, (40)

where p is the pressure and τ ′ is the local stress tensor, given
by

τ ′ = η

(
∇ u′

ε
+ ∇ u′

ε

T
)

. (41)

Due to the moderate Reynolds numbers over the system
considered here (<103), no turbulence terms are included in
our simulations. The particle-gas interaction body force, fg , is
defined as

fg = 1

Vc

nc∑
i=1

Fdi = 1

Vc

nc∑
i=1

1

2
ρg|u − vi |

×CdA⊥ε(2−χ)(u − vi), (42)

where nc is the number of particles in the characteristic gas
volume Vc.

The gas flow is numerically calculated using a modification
of the pressure correction method, using Eq. (39) as a source
term [37]. This method is more straightforward than methods
based on compressible flow equations, which require an extra
expression for the energy term as well as an equation of
state. The equations are discretized onto a semistaggered grid
to reduce checkerboard pressure oscillations, with velocity
and force defined on the cell vertices, and voidage fraction,
pressure, and the stress tensor defined at the cell centers.
Advection terms are calculated using upwind biased methods
and divergence; curl and gradient terms are calculated using
semi-staggered finite-difference stencils. The forces on the
gas from the particles are mapped using collocation, whereas
the forces from the gas on the particles are mapped using
trilinear interpolation. The effect of the hopper geometry on
the gas solution is implemented by imposing a zero-velocity
no-slip condition on computational cells intersecting with
any solid boundaries. Time integration is carried out using
a second-order Runge-Kutta method. This method has been
validated for a range of gas-particle flows, including fluidized
beds [37] and pneumatic conveying systems [38].

IV. EFFECT OF SCALING

To allow us to determine the effects of interstitial gas at
different length scales, two sets of simulations were carried
out at a range of length scales, one with gas effects and the
second in vacuum. Each simulation used the same particle
setup, so that any differences between the simulations were due
only to the imposed scaling. The base setup was H = 6.0 m,
D0 = 1.0 m, D = 3.0 m, and d = 62.5 mm (= D0/16),
containing around ∼200 000 particles for a closed-top hopper.
The dimensions were chosen to ensure that the bed filling
height and the ratio of particle diameter to orifice diameter
did not affect the particle outflow rate. The grid resolution
was 16 × 62 × 16, giving a cell size of 200 mm and a ratio
of cell to particle diameter of 3.2. The mass flow during
discharge rapidly reaches steady state, where it remains until
the hopper has almost emptied. The flow rate was measured
through the plane 1 m vertically below the orifice. This base
setup was run over a range of length scalings, s, given in
Table I. This scaling was applied to all parameters in the
simulation that were dependent on length, including the spring
constant k. The parameters used in the simulation are given in

TABLE I. Size scalings used in simulations.

Scaling factor, s Particle diameter, d

1.0 62.5 mm
1.0 × 10−1 6.25 mm
1.0 × 10−2 625 μm
5.0 × 10−3 312.5 μm
2.5 × 10−3 156.25 μm
1.0 × 10−3 62.5 μm
7.5 × 10−4 46.875 μm
5.0 × 10−4 31.25 μm
2.5 × 10−4 15.625 μm
1.0 × 10−4 6.25 μm
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TABLE II. Simulation parameters.

Name Symbol Values

Carman-Kozeny coefficient K 180
Angle of stagnant region β π/4
Beverloo diameter constant k 1.5
Gravity magnitude g 9.8 m/s−2

Gas viscosity η 1.8 × 10−5 Pa s
Particle friction μ 0.3
Gas density ρg 1.2 kg/m3

Particle density ρp 2700 kg/m3

Voidage fraction (free-fall region) εb 0.44

Table II, along with the constants used in the theoretical mod-
els. The average bulk density within the free-fall hemisphere
was used for εb, as per Kotchanova’s suggestion [6]. This is
difficult to measure experimentally but straightforward in our
computational simulations.

Figure 4 shows hopper discharge at five different hopper
scalings. Particle sizes of d = 62.5 mm and d = 6.25 mm
discharge as a linear stream, where the width of the stream
∼DB . For these particle sizes, the interstitial gas has a
negligible effect on the flow rate. For d = 625 μm particles,
slight sinuations appear in the discharge stream, showing gas
effects beginning to affect the outflow. These are much more
evident at d = 62.5 μm, where a kink in the path can clearly
be seen midway down the stream. The stream is also slightly
pinched at the bottom, where the width of the stream <DB .
The gas effects can very clearly be seen in the smallest length
scale considered, with d = 6.25 μm particles. The stream here
is pinched and clumped, with a correspondingly large decrease
in flow rate. This effect has been experimentally observed and
investigated [39].

The behavior of the gas within the free-fall region is crucial
to the dynamics of the particles during discharge. Figure 5
shows gas velocity streamlines in the vicinity of the outlet.
There is an annular backflow of gas into the hopper around the

FIG. 5. Gas velocity streamlines near the hopper outlet, shaded
by velocity magnitude, superimposed over the discharging particles.
The base of the hopper is shown as the two thick horizontal lines,
and the average gas flow direction is schematically indicated by the
arrows. Gas is drawn into the hopper through an annular region just
inside the rim of the outlet. The velocity of the gas just below the
center of the outlet is close to zero. Further below the outlet gas is
entrained by the discharging particles.

outside of the outlet that percolates upward through the hopper
bed. Along the central axis of the hopper, within the free-fall
hemisphere, the gas flow is in the opposite direction to the

FIG. 4. Outflow from five hoppers with scaling ranging from D0 = 1.0 m to D0 = 0.1 mm. Each image has been scaled for comparison.
The maximum particle velocity, vmax, is reached at the base of the particle stream. Gas drag can be seen altering the outflow path in the d = 625
and 62.5 μm cases. The effects of the interstitial gas are most apparent in the d = 6.25 μm scaling case with pinching of the stream.
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FIG. 6. Logarithmic plot of simulation and theoretical flow rates,
(a) in vacuum and gas and (b) in gas only. The flow rates in vacuum
closely match the Beverloo relation, Eq. (1), with C = π/5, as given
by Eq. (14). The flow rates incorporating gas effects very closely
match the derived expression, Eq. (25). Equation (6) is shown for
three values of α. All overpredict the drag and therefore underpredict
the flow rates at small length scales.

motion of the particles. The volume flux must balance within
the hopper, so the ratio of gas to solid volume flow rates, α,
within this region gives α = −1. Just below the outlet, the gas
flow is almost stationary, balanced by the pressure drop from
the discharging hopper above and the downstream entrainment
of the gas below, giving α ∼ 0. Further below the outlet, the
gas is strongly entrained by the falling particles and the gas
flow is in the same direction as the particle flow, giving α > 0.

The steady-state flow rates at each scaling are shown in
Fig. 6 on a logarithmic plot. The results in vacuum are plotted
with Eq. (1), where C = π/5, as given by Eq. (14). Our results
very closely match Eq. (1) for flow rates with no gas, showing
that the empirical prefactor in this relation is purely dependent
on the geometry of the free-fall region within the hopper.
The results incorporating the effects of interstitial gas are also
plotted with the new theoretical expression, Eq. (25). The value
of α has been taken to be α = −1. Equation (25) closely
matches the simulation flow rates across the full range of
scales. At very small particle diameters, with correspondingly
low Stokes numbers, the particles fall at a terminal velocity.

From Eq. (28), the outflow rate at this terminal velocity
Qt ∼ d4 in this system, as DB ∼ d and τη ∼ d2. Figure 6(b)
shows that the simulation and theoretical flow rates obey this
dependency on d4 and approach Qt in the low Stokes number
limit, as expected.

The flow rates from previous models are also plotted in
Fig. 6, where C in Eq. (1) is given by Crewdsen’s expression,
Eq. (4), and Altenkirch’s expression, Eq. (6). The flow rates
from the simulations match Eq. (4), but show a mild sensitivity
to the empirical compressibility parameter c. The parameter
c is taken as c = 0.025, which was chosen as the closest
corresponding value to the measured bulk density in the
simulation from a set of values given by Crewdsen [8].
Equation (6) is plotted for three values of α but greatly
overpredicts the effect of gas drag for each of these. This
difference is due to the value of α used in the derivation of
Eq. (6), which was assumed to be a constant value over the
entire conical integration region used in the analysis [10]. This
is clearly not the case, as this conical region extends beneath
the outlet, and the sign of α switches from the top to the
bottom of this region. In contrast, our analysis uses the value
α = −1 only within the hopper, which is exact as it is a sealed
system.

Our theoretical expression for the flow rate, Eq. (25), does
not rely on assumptions for the gas flow, and hence the value of
α, outside the hopper. No assumptions are also made regarding
the stress distribution within the granular material, such
as the angle of repose in the hopper β = 45◦. Furthermore,
the model does not rely on approximations of the pressure
field within the bed, such as the Carman-Kozeny equation.
The derived expression closely matches our simulation data
without requiring any additional parameters.

Figure 6 shows that two regimes exist for the flow rates
incorporating gas effects: an inertial regime at large particle
diameters, with a flow rate Q ∼ d

5
2 , and a viscous drag-

dominated regime, with a flow rate Q ∼ d4, at small particle
diameters. The transition between these two regimes occurs at
a critical Stokes number, which can be determined from the
point of divergence between the flow rates with and without
gas. Figure 7 shows a plot of the ratio of these flow rates
against the Stokes number. The transition occurs where this
ratio diverges from unity, around St ∼ 10. A related study

FIG. 7. Ratio of simulation flow rates in vacuum and gas, plotted
against the Stokes number on a logarithmic scale. The transition
from inertial to viscous dominated granular dynamics occurs where
the ratio diverges from unity, around St ∼ 10, shown as a vertical
dashed line.
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of granular avalanches in gases and fluids gave the same
value for the transitional Stokes number [40], showing that
this critical value appears to apply over a range of coupled
gas-grain systems.

V. CONCLUSION

Expressions for outflow rates from a flat-based hopper have
been derived by integration of the mass flux of freely falling
particles over a hemispherical region just within the hopper. In
contrast to previous models, our method is based on the motion
of the individual particles, rather than a flow rate expression
derived from dimensional arguments. Previous models have
also typically relied on integration using spherical coordinates
over a conical region matching an arbitrarily imposed funnel-
shaped discharge region within the hopper. A conical region of
integration implies that the particle flow at the outlet is directed
toward the apex of this cone, which is not observed to be the
case. The new model assumes outflow perpendicular to the
outlet, which matches observations. Furthermore, the model
imposes no arbitrary conditions on the granular material within
the hopper, such as a funnel-shaped discharge region, giving a
broad range of applicability to similar systems.

For the case in which the effects of interstitial gas are
neglected, the new expression for the flow rate, Eq. (14), is
identical in form to the empirical Beverloo relation, Eq. (1).
Comparison of the terms between these relations shows
that the empirical constant used in Eq. (1) results from the
geometry of the integration region. The new analysis derives
this empirical expression purely by considering the motion of
the individual particles.

At low Stokes numbers, the discharge rates strongly deviate
from Eq. (14) due to drag from the interstitial gas. The analysis
was extended to take this into account by incorporating a drag
relation into the expression for the motion of the individual
particles. When drag is taken into account, the particle velocity
has a functional form dependent on the upper branch of the
Lambert-W function, Eq. (24). The bulk flow velocity of small
particles, experiencing high drag, takes the form of a plug-
shaped profile over the outlet, as shown in Fig. 3. This plug

flow profile gives the corresponding decrease in mass flow rate
observed at small particle length scales.

The decrease in flow rate occurs at the transition between
the inertial and viscous dominated regimes of particle motion.
The critical Stokes number at the point of transition in this
system was found to be St ∼ 10. This is the same value found
in previous studies of related gas-particle systems [40]. As
St → ∞, the system is inertially dominated, the interstitial
gas has a negligible effect on the flow rate, and Eq. (14) can
be used. As St → 0, the system is dominated by viscous drag
effects, the hopper outflow rate decreases, and our expression
taking the interstitial gas into account, Eq. (25), applies.

The new flow rate expressions have been compared to
computational results from a coupled gas and DEM model.
The derived flow rates with and without interstitial gas effects
both very closely match the flow rates measured from the
simulations over a range of length scales. Earlier empirical and
semiempirical models for the flow rate were also compared to
the simulation results. The Crewdsen relation, Eq. (1), with
C given by Eq. (4), slightly underpredicts the flow rates and
also depends on an empirically determined compressibility
parameter. The Altenkirch relation, Eq. (1), with C given by
Eq. (6), was found to perform poorly, underpredicting the flow
rate over a range of α. The simulations allowed us to examine
the gas flow field in the vicinity of the outflow, showing that
gas flow reverses direction just under the outlet. The value of α

was assumed constant in the derivation of Eq. (6), but changes
sign over the hemispherical domain of integration used in this
analysis. This assumption was shown only to hold within the
domain used in our analysis.

The close match between the derived flow rates and the
simulations shows that the new theoretical model accounts for
the diverse range of dynamics within this granular system.
Our analysis shows that the discharge flow rate from a sealed
flat-based hopper, with spherical particles, can be derived
from a straightforward relation integrated over a hemispherical
region, requiring no empirical or fitting parameters. The
methodology leading to the derivation of the flow profiles may
also have a wide range of additional applications in related
gas-grain systems.
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