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Identification of rolling resistance as a shape parameter in sheared granular media
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Using contact dynamics simulations, we compare the effect of rolling resistance at the contacts in granular
systems composed of disks with the effect of angularity in granular systems composed of regular polygonal
particles. In simple shear conditions, we consider four aspects of the mechanical behavior of these systems in the
steady state: shear strength, solid fraction, force and fabric anisotropies, and probability distribution of contact
forces. Our main finding is that, based on the energy dissipation associated with relative rotation between two
particles in contact, the effect of rolling resistance can explicitly be identified with that of the number of sides in
a regular polygonal particle. This finding supports the use of rolling resistance as a shape parameter accounting
for particle angularity and shows unambiguously that one of the main influencing factors behind the mechanical
behavior of granular systems composed of noncircular particles is the partial hindrance of rotations as a result of
angular particle shape.
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I. INTRODUCTION

Most numerical studies on the mechanical behavior of
granular materials deal with model systems composed of disks
in two dimensions or spheres in three dimensions. This is
usually due to the technical difficulties that arise when dealing
with particles of complex shapes in experiments or discrete
element methods. However, real granular materials are rarely
composed of spherical particles, and it has been shown that
the nonspherical shape of the grains strongly influences the
mechanical behavior of granular systems. This influence can
be evidenced when characterizing the shear strength [1–4] and
solid fraction [4–7], as well as microstructural properties such
as the distribution of contact forces [8,9]. The effect of grain
shape is thus a crucial aspect to be taken into account for a
realistic description of granular systems.

One of the numerical “tricks” that can be used to obtain
realistic values of strength and solid fraction while using
only circular particles in simulations is to partially restrict the
relative rotations between grains [10]. For example, several
studies have shown that rolling resistance leads to shear
strengths and solid fractions that are comparable to those
observed in granular soils and rocks (e.g., [11–14]). However,
the extent to which rolling resistance can actually be compared
to angular shape in more general terms, or whether rolling
resistance and angular shape lead to similar structures at the
mesoscopic scale, are interesting issues that remain poorly
understood.

In this article, we compare, by means of discrete element
simulations, the effects of rolling resistance and angularity.
We construct two sets of polydisperse two-dimensional (2D)
packings. In the first set, the packings are composed of disks
with an increasing magnitude of rolling resistance, whereas in
the second set, the packings are composed of regular polygonal
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particles of an increasing number of sides. By comparing
various properties extracted from the two sets, we find a
remarkable matching of the data from the disk packings with
those of the polygon packings for a rolling resistance expressed
by a simple equation as a function of the number of sides. This
one-to-one mapping between the two sets is based on energy
dissipation considerations and might be generalized to other
particle shapes.

II. MODEL DESCRIPTION

All packings are made up of 7500 grains with diameters
uniformly distributed by volume fractions between 0.6d and
2.4d, where d is the mean diameter. In all simulations, the
coefficient of sliding friction μs between particles is 0.4 and
collisions are perfectly inelastic. The particles are initially
placed in a semiperiodic box 100d wide using a geometrical
procedure [15]. Next, the packing is sheared by imposing a
constant shear velocity and a constant confining stress. To
avoid strain localization at the boundaries, sliding and rolling
are inhibited for the particles in contact with the walls. The
samples are sheared up to a large cumulative shear strain
γ = �x/h = 5, where �x is the horizontal displacement
of the upper wall and h is the thickness of the sample. All
measures are averaged over the last 50% of cumulative shear
strain in order to guarantee that they characterize the behavior
of the system in the steady state, also known as the “critical
state” in soil mechanics. In all tests, the gravity is set to
zero.

The simulations were carried out by means of the contact
dynamics method [16–19], which assumes perfectly rigid
particles interacting through mutual exclusion and Coulomb
friction. For specific implementation of the contact dynamics
method, see Refs. [15,19].

In the first set of samples, composed of disks, the rolling
resistance is introduced through a rolling friction law [20–22],
analogous to the sliding friction law. Although rolling friction
is introduced here as a numerical parameter, it may reflect
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various material parameters such as hysteresis, microsliding
when the elastic moduli are different, inelasticity (in particular
for polymers), and surface roughness [23]. This law assumes
that a contact can transmit a torque M not exceeding a limit
value Mmax = μr�fn, where μr is the coefficient of rolling
friction, � is the magnitude of the branch vector joining
the centers of the contacting particles, and fn is the normal
force. The scaling of Mmax with � is meant to make μr

dimensionless. Relative rotation between two grains in contact
is allowed only if M = Mmax. For some examples of works
introducing rolling friction in discrete element simulations, see
Refs. [24,25].

In the second set of samples, composed of regular polygonal
particles, two types of contact may occur: (1) between a corner
and a side, and (2) between two sides. Side-side interactions
represent two constraints and are treated by associating two
contact points along the common side and applying the volume
exclusion and the sliding friction law to each of them. Thus,
in practice, two contact forces are calculated at each side-side
contact. However, only their resultant and application point are
physically relevant, and the result is independent of the choice
of the two contact points [26,27].

III. RESULTS

The stress components can be calculated from the simu-
lation data by the relation σij = nc〈f c

i �c
j 〉, where nc is the

number of contacts per unit volume and the average runs
over the contacts c with contact force f c and branch vector
�c [28]. The mean stress is p = (σ1 + σ2)/2, where σ1 and
σ2 are the principal stress values, and the deviatoric stress
is q = (σ1 − σ2)/2. It is worth noting that in the presence
of rolling resistance the stress tensor can be asymmetric
and a couple-stress tensor may be added to the description.
However, in all our tests the asymmetry is negligibly small
[i.e., |(σ12 − σ21)/(σ12 + σ21)| � 0.0002], suggesting that we
do not need to consider the couple stress in the present study.
Similar observations on the contribution of the couple stress
tensor are reported in [29].

Figure 1 shows the shear strength q/p and solid fraction
ν = Vp/V , where Vp is the volume occupied by the particles
and V is the total volume, as functions of μr for the disks and
of 1/ns for the polygons, where ns is the number of sides of
the polygons. It can be seen that both q/p and ν follow similar
trends in the two sets as μr and 1/ns increase. However, a direct
comparison of the data between the two sets is not possible in
this representation due to the different physical meanings of
μr and 1/ns .

The respective effects of rolling friction and angular shape
can be compared by their roles in the hindering of relative
rotation. Let us consider a particle (a disk with rolling friction
and a regular pentagon) that rolls on a horizontal plane with
a vertical force N exerted at its center of mass and that is not
allowed to slide; see Fig. 2(a). Figure 2(b) shows the horizontal
force T that must be applied at the center of mass in order to
make the particle roll, as a function of the rotation angle θ .
The work needed to displace the particle a distance equal to
its perimeter is

Wd = 4πμrRdN (1)
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FIG. 1. (Color online) Shear strength q/p (top) and solid fraction
ν (bottom) as functions of μr for the disks and of 1/ns for the
polygons. Error bars indicate the standard deviation.

for the disk with rolling friction, where Rd is the radius of the
disk, and the magnitude of the branch vector � (necessary to
calculate Mmax) has been replaced by the disk diameter, and

Wp = ns(1 − cos(π/ns))RpN (2)

for the polygon, where Rp is the radius of its circumcircle.
Assuming equal work (i.e., Wd = Wp), we arrive at the
following mapping between μr and ns :

μr = (1/4) tan ψ̄, (3)

where it has been assumed that both particles have the same
perimeter [i.e., Rp = Rd (π/ns)/ sin(π/ns)], and ψ̄ = π/(2ns)
is the mean dilatancy angle of the trajectory of the center of
mass of the polygon [see Fig. 2(c)]. For a similar attempt to
quantify the role of grain shapes in hindering relative rotation,
see Ref. [30].

Figure 3 shows the shear strength q/p and solid fraction
ν as functions of μr for the disks and of (1/4) tan ψ̄ for the
polygons. Remarkably, the shear strengths and solid fractions
of the two sets of packings collapse, both increasing and
decreasing, respectively, with μr and (1/4) tan ψ̄ and tending
to a constant value at μr = (1/4) tan ψ̄ � 0.1. In other words,
from a macroscale viewpoint, a packing of regular polygons of
ns sides is equivalent to a packing of disks with a coefficient
of rolling friction μr given by Eq. (3). This result supports
also the choice of the required energy for rolling as a relevant
physical quantity for the rheology of granular materials.

The mapping evidenced in Fig. 3 hints at similar packing
structures in the two sets. Figure 4 shows two snapshots:
one representing a disk packing with μr = 0.05 and the
other representing a polygon packing with ns = 8 [note that
0.05 � (1/4) tan(π/(2 ∗ 8)] according to Eq. (3). The contact
forces are represented by segments joining the particle centers,
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FIG. 2. (Color online) (a) Schema of rolling on a plane. (b)
Horizontal force T required for rolling a distance equal to the
perimeter. (c) Trajectory of the center of mass of the polygon (dashed
line) and definition of the mean dilatancy angle ψ̄ .

with a thickness proportional to the force magnitude. We
observe that the force-carrying backbone is astonishingly
similar in the two systems.

From the expression of the stress tensor, it can be shown
that the shear stress q/p reflects the packing structure and
force transmission via a simple relation [31]:

q/p � (1/2)(ac + an + at ), (4)
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FIG. 3. (Color online) (Top) Shear strength q/p as a function of
μr for the disks and of (1/4) tan ψ̄ for the polygons, both from raw
simulation data (solid symbols) and as predicted by Eq. (4) (open
symbols). (Bottom) Solid fraction ν as a function of μr for the disks
and of (1/4) tan ψ̄ for the polygons. Error bars indicate the standard
deviation.

FIG. 4. Snapshots of the force network in (a) a system composed
of disks with rolling friction (μr = 0.05) and (b) a system composed
of octagonal particles. The line thickness is proportional to the normal
force. The floating particles are represented in light gray.

where ac, an, and at , are the anisotropies of the angular
distributions of contact orientations Pn(θ ), normal forces
〈fn〉(θ ), and tangential forces 〈ft 〉(θ ), respectively, as a
function of contact orientation θ , which are approximated by
their lowest order Fourier expansions:

Pn(θ ) � 1/π{1 + ac cos 2(θ − θc)},
〈fn〉(θ ) � 〈fn〉{1 + an cos 2(θ − θn)}, (5)

〈ft 〉(θ ) � −〈fn〉at sin 2(θ − θt ),

where 〈fn〉 is the mean normal fore, and θc = θn = θt are
the corresponding privileged directions, which, in the steady
state, coincide with the principal stress direction. Equation (4)
reveals distinct origins of the shear strength in terms of force
and texture anisotropy. The open symbols in Fig. 3 show q/p

as predicted by Eq. (4). We see that this equation approximates
well the shear strength for all raw data.

The anisotropies ac, an, and at are shown in Fig. 5 as
functions of μr for the disks and of (1/4) tan ψ̄ for the
polygons. It is remarkable that all anisotropies are almost
identical between the two sets. This correspondence is only
broken for polygons with small numbers of sides (i.e., for
ns = 3 and 4). This happens because for these polygons the
contact orientation is strongly influenced by the low rotational
symmetry of the particles and the orientations of the sides
rather than the relative positions of the particles.

The mapping between rolling friction and angular shape of
particles is also reflected by the probability density function
(PDF) of normal forces displayed in Fig. 6. In this figure, we
compare the PDFs of the two samples shown in Fig. 4. The
two PDFs are almost identical. The PDF can be approximated
by a power law [i.e., PDF ∝ (fn/〈fn〉)−α] in the range of
small forces and by an exponential function (i.e., PDF ∝
eβ(1−fn/〈fn〉)) in the range of strong forces [32]. The inset in
Fig. 6 shows the coefficients α and β as functions of μr for
the disks and of (1/4) tan ψ̄ for the polygons, confirming that
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FIG. 5. (Color online) Contact anisotropy ac (top) and force
anisotropies, an (solid symbols) and at (open symbols) (bottom),
as functions of μr for the disks and of (1/4) tan ψ̄ for the polygons.
Error bars indicate the standard deviation.

the similarity of the PDFs is maintained for the whole range
of rolling frictions and numbers of sides studied in this work.

IV. CONCLUSION

To sum up, the simulations presented in this article provide
strong evidence for the mapping between the two studied
parameters (i.e., rolling resistance and shape angularity).
This correspondence was established by considering shear
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FIG. 6. (Color online) Probability distribution function of nor-
malized normal forces fn/〈fn〉 for the two systems of Fig. 4. The inset
shows the evolution of the exponents α and β (see text for definitions)
with μr for the disks and with (1/4) tan ψ̄ for the polygons.

strength, solid fraction, force and fabric anisotropies, and
the PDFs of normal forces in the steady state. A practical
consequence of this finding is that rolling resistance may be
employed to imitate the effect of angular shape in discrete-
element simulations of granular materials. More importantly,
it suggests that the hindrance of particle rotations is a major
effect of angular particle shape. In this picture, the effect of
rolling friction is to force the particles to rearrange as if they
were glued to each other. In this way, the clusters of two
or more particles behave as noncircular particles. This result
may be tested in other loading conditions and it is potentially
extensible to other particle shapes (in 2D and 3D), opening
new scopes in modeling complex granular systems.
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