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Tuning jammed frictionless disk packings from isostatic to hyperstatic
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We perform extensive computational studies of two-dimensional static bidisperse disk packings using two
distinct packing-generation protocols. The first involves thermally quenching equilibrated liquid configurations
to zero temperature over a range of thermal quench rates r and initial packing fractions followed by compression
and decompression in small steps to reach packing fractions φJ at jamming onset. For the second, we seed
the system with initial configurations that promote micro- and macrophase-separated packings followed by
compression and decompression to φJ . Using these protocols, we generate more than 104 static packings over a
wide range of packing fraction, contact number, and compositional and positional order. We find that disordered,
isostatic packings exist over a finite range of packing fractions in the large-system limit. In agreement with
previous calculations, the most dilute mechanically stable packings with φmin ≈ 0.84 are obtained for r > r∗,
where r∗ is the rate above which φJ is insensitive to rate. We further compare the structural and mechanical
properties of isostatic versus hyperstatic packings. The structural characterizations include the contact number,
several order parameters, and mixing ratios of the large and small particles. We find that the isostatic packings are
positionally and compositionally disordered (with only small changes in a number of order parameters), whereas
bond-orientational and compositional order increase strongly with contact number for hyperstatic packings. In
addition, we calculate the static shear modulus and normal mode frequencies (in the harmonic approximation) of
the static packings to understand the extent to which the mechanical properties of disordered, isostatic packings
differ from partially ordered packings. We find that the mechanical properties of the packings change continuously
as the contact number increases from isostatic to hyperstatic.
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I. INTRODUCTION

The ability to enumerate and classify all of the mechanically
stable (MS) packings of frictionless particles is important for
understanding glass transitions [1] in atomic, molecular, and
colloidal systems and the structural and mechanical properties
of particulate materials such as granular media, foams, and
emulsions. For example, if all MS packings in a given system
are known, one can measure accurately the frequency with
which each MS packing occurs and determine how the packing
frequencies and materials properties depend on the preparation
history [2,3]. Further, MS packing frequencies are important
for identifying the appropriate statistical mechanical ensemble
for weakly perturbed granular materials [4]. However, since
the number of MS packings grows exponentially with the
number of particles [5], exact enumeration of static packings
is prohibitive for even modest system sizes [6]. Thus, one
of the most important outstanding questions in the area
of disordered particulate materials is determining how the
packing-generation protocol influences the distribution of MS
packings and their structural and mechanical properties.

Previous work has suggested that the positional order of MS
packings of frictionless spheres increases monotonically with
packing fraction and contact number in dense packings [7,8].
However, the MS packings in previous studies were created
using monodisperse systems, which are prone to crystallization
[9], and prepared using the Lubachevsky-Stillinger compres-
sion algorithm [10], which is a thermalized packing-generation
protocol. In addition, these prior studies did not distinguish the
distribution of isostatic MS packings (in which the number
of degrees of freedom matches the number of constraints

[11]) from the distribution of hyperstatic packings (with more
contacts than degrees of freedom). Later work characterized
bidisperse systems, which are less prone to crystallization,
but focused on microphase-separated states, not amorphous,
isostatic packings [12]. However, more recent simulation
studies of 3D frictionless, spherical particles have pointed
out that amorphous, isostatic packings can exist over a finite
range of packing fraction, with only weak correlations between
positional order and packing fraction [13–15]. Moreover,
simulations [16] and experiments [17] on two-dimensional
systems also suggest a finite range of jamming onsets rather
than a single packing fraction in the large-system limit.

Further, the body of work on jammed particulate systems
has emphasized the concept of point J, i.e., that there is a
single packing fraction at which jamming occurs in the large-
system limit [18,19]. Since amorphous, isostatic packings can
exist over a finite range of packing fractions, the onset of
jamming should not be classified as a point in the jamming
phase diagram but rather as a region of finite extent [13]. It has
also been argued that the wide distribution of packing fractions
at which the onset of jamming occurs in small periodic systems
[18] is related to the finite range of packing fractions over
which amorphous, isostatic packings occur in the large-system
limit [20]. However, it has not been proved that these two
effects are directly connected.

A number of overarching questions related to the con-
nection between structural order, isostaticity, and material
properties of static packings remain open. For example, can
isostatic or nearly isostatic packings possess significant posi-
tional order and, if so, what are the fundamental differences
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in the normal modes and mechanical properties between those
that do and do not possess significant positional order? This
question is particularly important since recent studies have
emphasized that amorphous, isostatic packings possess an
excess of low-frequency normal modes [21,22] over that for
harmonic, ordered solids.

In addition, previous work has drawn a strong contrast be-
tween amorphous packings and configurations with crystalline
order [23]. However, how do the structural and mechanical
properties of amorphous versus partially ordered particulate
systems differ? For example, it is possible that the amorphous
regions in the interstices between ordered domains in partially
crystalline materials dominate the structural and mechanical
properties, in which case their properties would be similar
to amorphous packings. At the very least, one would assume
that there is not a strong difference between the mechanical
properties of isostatic and only slightly hyperstatic packings
that possess significant positional order.

In this article, we describe extensive computer simu-
lations of collections of frictionless disks with repulsive
contact interactions to address two important, open questions:
(i) What is the range of packing fractions over which amor-
phous, isostatic static packings occur with similar structural
and mechanical properties? and (ii) How do the structural
and mechanical properties of static packings change with the
deviation in the contact number at jamming onset from the
isostatic value, zJ − ziso [24]? Using two distinct packing-
generation protocols, we construct scatter plots for more
than 104 static packings characterized by the contact number,
packing fraction, measures of positional order, and mechanical
properties. The first protocol involves thermally quenching
equilibrated liquid configurations to zero temperature over a
range of thermal quench rates r followed by compression and
decompression in small steps to reach packing fractions φJ at
jamming onset. For the second, we seed the system with initial
configurations that promote micro- and macrophase-separated
packings followed by compression and decompression to φJ .

Our main results are fourfold: (i) In agreement with
previous studies [13,15,16], we find that isostatic, disordered
packings exist over a finite range of packing fraction in the
large-system limit, with similar structural and mechanical
properties. (ii) We find that the most dilute packings with
φmin ≈ 0.84 are generated when r > r∗, where r∗ is the
rate above which φJ is insensitive to rate. In contrast, the
most compact MS packings generated depend sensitively on
quench rate and boundary conditions. (iii) The amorphous,
isostatic packings coexist with an abundance of hyper-
static and microphase- and macrophase-separated packings.
(iv) When considering the full ensemble of static frictionless
MS packings, the packings possess structural and mechanical
properties that span a continuous range from amorphous to
partially ordered to ordered.

The remainder of the manuscript is organized as follows.
In Sec. II, we describe the computational system we consider
and the two protocols we employ to generate static frictionless
disk packings. In Secs. III and IV, we present our results,
which include characterizations of the structural (packing
fraction, contact number, and several order parameters to
detect positional and compositional order) and mechanical

(shear modulus and eigenvalues of the dynamical matrix in the
harmonic approximation [3]) properties of more than 104 static
packings and comparisons of these properties for isostatic and
hyperstatic configurations. Finally, in Sec. V, we provide our
conclusions and promising future research directions.

II. PACKING-GENERATION PROTOCOLS

We focus on well-characterized two-dimensional systems
composed of N bidisperse disks (50-50 by number), each
of mass m, with diameter ratio d = σl/σs = 1.4 [12,18,25],
within square, periodic simulation cells with side length L.
We consider frictionless particles that interact through the
finite-range, purely repulsive linear spring potential. The total
potential energy per particle is given by

V = ε

2N

∑
i>j

(
1 − rij

σij

)2

�

(
1 − rij

σij

)
, (1)

where rij is the center-to-center separation between disks i

and j , ε is the characteristic energy scale of the interaction,
�(x) is the Heaviside function, and σij = (σi + σj )/2 is the
average diameter. We simulated a range of system sizes from
N = 256 to 8192 particles to assess finite-size effects. Energy,
temperature, length, and time scales are measured in units
of ε, ε/kB , σs , and σs

√
m/ε, respectively, where kB is the

Boltzmann constant.
The packing fraction φJ at which jamming occurs and the

structural and mechanical properties of static packings can
depend strongly on the packing-generation protocol employed
[14]. Our goal is to generate static frictionless MS packings
that span the range of contact numbers from the isostatic value
ziso = 4 to the hexagonal crystal value zxtal = 6 and the range
of positional order from amorphous to phase separated and
from partially crystalline to crystalline states. To accomplish
this, we investigate two distinct classes of packing-generation
protocols: (i) thermal quenching from liquid initial conditions
coupled with compression and decompression steps, which
typically generates amorphous configurations and (ii) com-
pression and decompression steps from initial conditions that
promote micro- or macrophase separation [26].

A. Protocol 1: Thermal quenching from liquid initial conditions

In this algorithm, we prepare equilibrated, liquid config-
urations at high temperature T0 = 10−3 and in molecular
dynamics (MD) simulations quench them to a very low final
temperature Tf = 10−16 � 0 at fixed packing fraction φmin

i �
φi � φmax

i over a time interval t by rescaling the particle
velocities so the kinetic temperature T = N−1 ∑

i mv2
i /2

obeys

T (t) = T0e
−rt , (2)

where r is the thermal quench rate, which is varied over
six orders of magnitude 10−6 � r � 1. The range of initial
packing fractions from φmin

i = 0.835 to φmax
i = 0.856 was

chosen so we averaged over the most probable MS packings
at each thermal quench rate studied. We generated 300
equilibrated, independent liquid configurations at T0 at each
φi by writing out configurations every 10τ , where τ is a decay
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time obtained from the self-intermediate scattering function at
wave numbers corresponding to the first peak in the structure
factor [27].

After reaching a local potential energy minimum at
each initial packing fraction φi and thermal quench rate r ,
we input the configurations into an “athermal” algorithm
(“packing finder”) that searches for the nearest static packing
in configuration space with infinitesimal particle overlaps.
The algorithm has been described in detail in previous
work [3]. Briefly, we successively increase or decrease the
diameters of the grains (while maintaining the diameter ratio
d), with each compression or decompression step followed
by conjugate gradient minimization of V . The system is
decompressed when the total potential energy per particle
at a local minimum is nonzero, i.e., there are finite particle
overlaps. If the potential energy of the system is zero and
gaps exist between particles, the system is compressed. The
increment by which the packing fraction is changed at each
compression or decompression step is gradually decreased.
Numerical details of the algorithm are the same as in Ref. [3].
When this algorithm terminates, we obtain a static packing
defined by the particle positions {�r1,�r2, . . . ,�rN } and packing
fraction φJ . Since we use an energy tolerance (per particle)
Vtol/ε = 10−16 for the termination of the energy minimization
and compression/decompression scheme in the packing finder,
the positions and packing fraction at jamming are extremely
accurate with errors at one part in 108.

B. Protocol 2: Compression and decompression steps
from initial conditions that promote order

We will see below in Sec. III that Protocol 1 produces
disordered, isostatic packings. Thus, we seek an algorithm
that will generate static packings with significant positional
and compositional order. To bias the system toward micro-
and macrophase-separated configurations, we seed the packing
finder with particular sets of initial conditions. We first
divided the simulation box into s × s equal-sized partitions,
where s is an even integer that ranged from 2 to 26,
and placed approximately N/s2 large or small particles in
alternating partitions to create a checkerboard-like pattern. The
particles were placed randomly in each partition. The initial
configuration is then input into the packing finder to yield
a static packing. In the large s limit, we expect amorphous
static packings, while at intermediate and small s, we expect
micro- and macrophase-separated packings. To generate static
hexagonal crystalline packings [28] with φxtal = π/2

√
3, we

divided the simulation box into two partitions and placed the
large and small particles on a hexagonal lattice in a region
with area AL = d2/(1 + d2) and 1 − AL, respectively, and
then applied the packing finder.

III. STRUCTURAL PROPERTIES

After generating static packings using the two packing-
generation protocols described above, we contrast them
by calculating several structural and mechanical properties.
The structural characterizations include the packing fraction,
contact number, and compositional and positional order

parameters. For the packing fraction at jamming onset, we
calculate

φJ = Nπ

8

(σs

L

)2
(1 + d2), (3)

including all N particles. For the contact number at jamming,
we sum up all overlapping pairs (rij � σij ) of particles,
zJ = Nc/N

′, where N ′ = N − Nr , Nr is the number of rattler
particles with fewer than three contacts, and Nc only includes
overlapping pairs among the N ′ particles within the “true”
contact network. It is crucial to perform an error analysis on
the contact number zJ , which is described in Appendix A.

A. Packing fraction

We show results for the average packing fraction 〈φJ 〉
versus thermal quench rate r over nearly six orders of
magnitude obtained from Protocol 1 in Fig. 1. For large rates
r > r∗ ≈ 0.03, the average packing fraction 〈φJ 〉 → 0.842 is
independent of rate, which agrees with studies that employ
athermal compression/decompression packing-generation al-
gorithms [2,18]. For r < r∗, 〈φJ 〉 increases approximately as
[log10(r∗/r)]0.5 with decreasing rate. In Appendix III B, we
will show that all packings used to present the data in Fig. 1
are (very nearly) mechanically stable and isostatic. Since 〈φJ 〉
increases so slowly, we are not able to approach φxtal using
Protocol 1. Using an extrapolation, we estimate that rates
below 10−45 are required to reach φxtal, and thus we employed
Protocol 2, not Protocol 1, to generate compositionally and
positionally ordered packings. We also show in Fig. 1 that
the system-size dependence of 〈φJ 〉 is weak. The faster
rates show some system-size dependence, but we know from
previous studies that 〈φJ 〉 ≈ 0.842 in the infinite quench and
large-system limits [18].

0 1 2 3 4 5 6
-log10 r

0.84

0.844

0.848

0.852

0.856

<
φ J>

FIG. 1. (Color online) Average packing fraction 〈φJ 〉 obtained
from Protocol 1 as a function of the negative logarithm of the
thermal quench rate r for N = 256 (circles), 512 (squares), and
1024 (diamonds). Data points at each rate represent an average over
typically 300 static packings. The dashed line shows the scaling
〈φJ 〉 ∼ [log10(r∗/r)]μ, where μ ∼ 0.5 and r∗ ≈ 0.03 is the thermal
quench rate above which 〈φJ 〉 ≈ 0.842 is independent of r (for the
large N data).
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FIG. 2. (Color online) Scatter plot of the contact number zJ

versus the packing fraction at jamming onset φJ . The open circles
indicate static packings that were generated using Protocol 1 for
N = 1024, while all other symbols indicate static packings generated
using Protocol 2. The open squares, diamonds, upward triangles,
and downward triangles correspond to N = 1024, 2048, 4096, 8192,
respectively. The solid squares, diamonds, and triangles correspond
to N = 1024, 2048, and 4096, respectively, for the systems with two
partitions and initial crystal lattice positions. The black cross indicates
the values zJ = 6 and φJ = π/2

√
3 for the hexagonal crystal. The

labels (a)–(d) correspond to the images in Fig. 3. The inset shows the
system-size dependence for systems with two partitions and random
initial positions at N = 256 (leftward triangles), 1024 (squares), and
4096 (upward triangles).

B. Contact number

In Fig. 2, we display a scatter plot of the contact number
zJ versus φJ for all static packings (where the contact number
is insensitive to the definition of “contact”) generated using
Protocols 1 and 2. (See Appendix A for a discussion of the
sensitivity of the contact number on the definition of contacting
particles.) Figure 2 shows several compelling features. First,
nearly all of the static packings obtained from Protocol 1 (open
circles) are isostatic with zJ = 4, but they occur over a range of
packing fractions φmin � φJ � φmax(r), where φmin = 0.837
and φmax(r = 10−6) = 0.853. In Appendix D, we show that
all packings generated from Protocol 1 are (very nearly)
mechanically stable, and thus z = ziso defines isostaticity.
Clearly, φmax will increase with decreasing thermal quench
r; however, further studies are required to determine whether
static packings with φJ > φmax(r = 10−6) are isostatic. Sec-
ond, we find a cluster of data points for Protocol 2, for
which the average zJ is strongly correlated—varying roughly
linearly—with φJ . The cluster originates near φJ ≈ 0.84,
zJ = ziso = 4. In the inset to Fig. 2, we show that the width
of the cluster of data points from Protocol 2 narrows with
increasing system size, but the approximate linear relationship
between the average zJ and φJ is maintained. Images of five
representative packings from the scatter plot in Fig. 2 are
displayed in Fig. 3.

C. Compositional order

We now describe measurements of the compositional and
positional order for static packings. For the compositional

FIG. 3. (Color online) Images of representative static packings
from the scatter plot in Fig. 2 with (a) φJ = 0.837, zJ = 3.99,
(b) φJ = 0.853, zJ = 4.00, (c) φJ = 0.846, zJ = 4.04, (d) φJ =
0.860, zJ = 4.41, and (e) φJ = 0.892, zJ � 4.1. (See Appendix A.)

order, we quantify the fraction of overlapping pairs (rij � σij )
that involve two small fss or large fll particles or one small
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FIG. 4. (Color online) Scatter plot of the fraction of contacts
between two large fll or two small particles fss versus packing
fraction φJ for all static packings from both protocols. The diamonds
(circles) and triangles (squares) display data from Protocol 1 (2) for
fll and fss , respectively.

and one large particle fsl . A scatter plot of fll and fss versus
φJ for static packings generated from both protocols is shown
in Fig. 4. The packings from Protocol 1 show no signs of
complete phase separation with fss + fll ≈ fsl ≈ 0.5 for all
packings. However, when binned over narrow intervals of φJ

[Fig. 5(a)], fll shows a small systematic increase over the range
of φJ studied, which is consistent with results from Ref. [16].
In contrast, Protocol 2 generates static packings with a wide
range of compositional order as shown in Figs. 3(c)–3(e). For
example, at the largest φJ , the system displays macrophase
separation with fss + fll ≈ 1 and fsl ≈ 0. We find similar
results when we define contacting pairs as those with
rij � rminσij , where rmin is set by the first minimum in g(r).

D. Bond orientational order

To quantify positional order, we calculate the bond orienta-
tional order parameter ψ6, which measures the hexagonal reg-
istry of nearest neighbors [29]. ψ6 can be calculated “locally,”
which does not consider phase information, or “globally,”
which allows phase cancellations. A polycrystal will yield
a relatively large value for the local bond orientational order
parameter ψl

6, even though the global order parameter ψ
g

6 ∼
1/

√
Nd , where Nd is the number of polycrystalline domains.

Equations (4) (global) and (5) (local) provide expressions for
bond-orientational order parameters in 2D.

ψ
global
6 = 1

N

∣∣∣∣∣∣
N∑

k=1

1

nk

nk∑
j=1

e6ıθkj

∣∣∣∣∣∣ , (4)

ψ local
6 = 1

N

N∑
k=1

1

nk

∣∣∣∣∣∣
nk∑

j=1

e6ıθkj

∣∣∣∣∣∣ , (5)

where θkj is the angle between a central particle k and
neighbors j and nk denotes the number of nearest neighbors
of k. Two particles are deemed nearest neighbors if their
center-to-center separation rij < rminσij .

0.84 0.844 0.848 0.852
φJ

0.304

0.306

0.308

0.31

f ll
0.84 0.844 0.848 0.852

φJ
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0.566

0.568

0.57

0.572

ψ
6lo

ca
l

(a)

(b)

FIG. 5. (a) Fraction of contacts between two large particles fll

and (b) local bond orientational order parameter ψ local
6 averaged over

narrow bins in φJ for Protocol 1.

The results for the global and local bond orientational
parameters ψ

global
6 and ψ local

6 are shown in Fig. 6. The static
packings obtained from Protocol 1 possess only local bond
orientational order with ψ local

6 ≈ 0.55 as found in dense liquids
[29] and ψ

global
6 ∼ 1/

√
N . Further, there is little correlation

between the packing fraction φJ and global or local bond

0.83 0.84 0.85 0.86
φJ

0

0.2

0.4

0.6

0.8

ψ
6lo

ca
l , 

ψ
6gl

ob
al

FIG. 6. (Color online) Scatter plot of local and global bond
orientational order parameters, ψ local

6 and ψ
global
6 , versus packing

fraction φJ for all static packings from both protocols. The diamonds
(circles) and triangles (squares) display data from Protocol 1 (2) for
ψ local

6 and ψ
global
6 , respectively.
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m
,0
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FIG. 7. Ratio of several local bond-orientational order parameters
ψl

m relative to their values ψl
m,0 at the smallest φJ obtained at large

thermal quench rates for Protocol 1. The solid and dashed lines
represent the order parameters ψll

6 and ψs
4 for definitions 1 (circles)

and 2 (squares) for neighboring particles.

orientational order. When we average ψ local
6 over narrow bins

in φJ , we find that ψ local
6 increases weakly (less than ≈1%)

with φJ as shown in Fig. 5(b).
However, Fig. 3(b) indicates a propensity for small-scale

clustering of large and small particles for φJ > φmin. Thus, we
also studied order parameters (described in Appendix C) that
are particularly sensitive to clustering in bidisperse systems
[30]. As shown in Fig. 7, the most sensitive order parameters
change by at most 5–6% over the range of φJ obtained
from Protocol 1. However, as discussed in Appendix D these
packings with modest order obtained from Protocol 1 are still
mechanically stable and isostatic.

In contrast, for the phase separated and partially crystalline
packings from Protocol 2, we find that there is a strong positive
correlation between ψ local

6 and φJ and a somewhat weaker
correlation between ψ

global
6 and φJ . Thus, we find that static

packings from Protocols 1 and 2 have different structural
properties. Those from Protocol 1 are largely disordered and
possess similar structural properties even though they exist
over a range of packing fraction. In contrast, there is a strong
positive correlation between compositional and positional
order and packing fraction for the phase-separated and partially
crystalline packings from Protocol 2.

IV. MECHANICAL PROPERTIES

We will now describe the mechanical properties of the static
packings, including the spectrum of normal modes from the
dynamical matrix in the harmonic approximation and the static
shear modulus as a function of contact number and order.

A. Spectrum of normal modes

The spectrum of normal modes provides significant insight
into the structural and mechanical properties of mechanically
stable packings [18]. For example, there is evidence that
the low-frequency region of the spectrum controls the static
shear response of jammed packings [31]. To calculate the
spectrum, we diagonalize the dynamical matrix of all possible

0 0.5 1 1.5 2 2.5
ω

0

0.2

0.4

0.6

0.8

1

1.2

D
(ω

) -2 -1.5 -1 -0.5 0
log

10
ω

-0.7

-0.6

-0.5

-0.4

lo
g 10

 D
(ω

)

FIG. 8. (Color online) Density D(ω) of normal mode frequencies
ω for N = 1024 bidisperse frictionless disk packings obtained using
Protocols 1 and 2 as a function of the contact number at jamming
onset for zJ � 4.0 (black), 4.0 � zJ � 4.1 (red), 4.1 � zJ � 4.2
(green), 4.3 � zJ � 4.4 (blue), and 4.5 � zJ � 4.6 (violet), from top
to bottom, at low frequencies. The inset shows the same data except
that it focuses on low frequencies ω < 1 and includes power-law fits
to D(ω) ∼ ωα as dashed lines.

second derivatives of the potential energy with respect to
particle positions evaluated at positions of the static packing—
assuming that no existing contacts break and no new contacts
form [32]. This yields 2N ′ − 2 nontrivial eigenvalues ei

after accounting for translational invariance. We focus on
mechanically stable packings, where (nearly) all 2N ′ − 2 of
the eigenvalues are nonzero [33]. (See Appendix D.)

The density D(ω) of normal mode frequencies ωi =√
ei/N , or density of states (DOS), is given by D(ω) =

[N (ω + δω) − N (ω)]/δω, where N (ω) is the number of modes
with frequency less than or equal to ω. The density of states
D(ω) for packings of bidisperse frictionless disks is shown in
Fig. 8 as a function of the contact number at jamming onset zJ .
As in previous studies [18], we find that for isostatic systems
with zJ � 4, D(ω) possesses a nearly constant regime at low
frequencies, which signals an abundance of low-frequency
modes compared to ideal Debye behavior [where D(ω) ∼ ω

as ω → 0] for ideal 2D harmonic solids. For the micro- and
macro-phase separated bidisperse packings generated using
Protocol 2 with zJ � 4.1, the density of states develops
two other interesting features. First, D(ω) develops two
strong peaks near ω � 1.0 and 1.6 instead of a single broad
peak centered near ω ≈ 1.4 for isostatic amorphous systems.
(We will see below that these peaks are associated with
crystallization.) Second, we observe that as zJ increases and
the packings become hyperstatic, the weight in D(ω) at low
frequency (ω � 0.3) decreases. As shown in the inset to Fig. 8,
the density of states scales as a power law

D(ω) ∼ ωα (6)

in the limit ω → 0 with a scaling exponent α that varies
continuously with contact number zJ as shown in Fig. 9. (See
Appendix B for a discussion of the system-size dependence
of the exponent α.) Note, however, that the plateau in the
density of states remains largely unchanged in the intermediate
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FIG. 9. Power-law exponent α for the scaling of the density of
normal modes with frequency in the limit ω → 0 [D(ω) ∼ ωα] as
a function of contact number at jamming onset zJ for bidisperse
(circles) and monodisperse (squares) packings. (The error bars
indicate the error in α from least-squares analysis.) The dashed line is
a fit to Eq. (7) (with c = 0.17), which interpolates the data between the
limiting values α = 0 at zJ = ziso = 4 and α = 1 (Debye behavior)
at zJ = zxtal = 6. The solid line is Eq. (7) with c = 0.

frequency regime 0.3 � ω � 1 over a wide range of zJ , which
implies that some of the remarkable features of jamming in
isostatic systems also hold for hyperstatic systems.

To test the generality of the results for the density of states,
we also calculated D(ω) for monodisperse frictionless disk
packings generated using Protocol 1 as shown in Fig. 10. The
density of states for monodisperse systems displays similar
features to that for bidisperse systems. (i) A plateau in D(ω)
exists at low to intermediate frequencies for nearly isostatic
systems. (ii) Strong distinct peaks are located near ω � 1.4 and

0 0.5 1 1.5 2 2.5 3
ω
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10
ω
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FIG. 10. (Color online) Density D(ω) of normal mode fre-
quencies ω for N = 1024 monodisperse frictionless disk packings
obtained using Protocol 1 as a function of the contact number at
jamming onset for 4.1 � zJ � 4.2 (green), 4.5 � zJ � 4.6 (violet),
4.9 � zJ � 5.0 (cyan), 5.4 � zJ � 5.5 (magenta), and zJ � 6.0
(orange), from top to bottom, at low frequencies. The inset shows
the same data except that it focuses on low frequencies ω < 1 and
includes power-law fits to D(ω) ∼ ωα as dashed lines.

(a)

(b)

FIG. 11. Eigenvectors corresponding to the modes with frequen-
cies near the (a) first and (b) second peaks in the density of states D(ω)
for monodisperse packings with zJ � 6 and φJ � φxtal for N = 256.
The size of the eigenvector component for each particle is proportional
to the length of the vector displacement associated with each particle.

2.25 for hyperstatic packings. Eigenvectors that correspond
to the two peak frequencies are visualized in Fig. 11. (iii) A
power-law regime D(ω) ∼ ωα develops in the ω → 0 limit for
hyperstatic packings. The exponent α varies continuously with
zJ with a similar functional dependence to that for bidisperse
systems as shown in Fig. 9. A notable difference between
bidisperse and monodisperse systems is that a continuous
power-law regime in D(ω) persists to higher frequencies
(ω ∼ 1) for monodisperse compared to bidisperse systems.

The dependence of the scaling exponent α on zJ is displayed
for all bidisperse and monodisperse packings (binned by zJ )
in Fig. 9. We find that α increases monotonically with zJ and
use the suggestive empirical form

α = (d − 1)
zJ − ziso

zxtal − ziso
+ c(zJ − ziso)(zJ − zxtal), (7)

where c is a fitting parameter to describe the data between
the limiting values α = 0 at zJ = ziso and α = d − 1 (Debye
behavior) at zJ = zxtal. The continuous increase in α from 0 to
1 as the contact number increases suggests a different scenario
for the behavior of the jamming transition as a function of zJ

and positional order compared to the discontinuous changes
in the structural properties of frictional granular systems when
they are compacted above random close packing [34,35]. More
work needs to be done to understand how key differences in
these studies (spatial dimensionality, frictional interactions,
and packing protocols) affect the evolution in the positional
order with contact number in jammed packings.
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FIG. 12. (Color online) Static shear modulus G versus the
deviation in packing fraction from the jamming onset φ = φ − φJ

for static packings at 〈zJ 〉 = 4.0 (circles), 4.15 (diamonds), 4.35 (left
triangles), and 4.55 (right triangles). The long dashed (dot-dashed)
line has slope 0.4 (0.5). The inset shows the power-law scaling
exponent β for the static shear modulus [G ∼ (φ)β ] versus the
contact number zJ at jamming.

B. Static shear modulus

To measure the static linear shear modulus G, we slightly
deform the system by applying an infinitesimal simple shear
strain γ (along the x direction with gradient in the y direction),
allowing the system to relax via energy minimization at
fixed strain, and then measuring the resulting shear stress
response, G = d�xy/dγ . In Fig. 12, we show the shear
modulus versus the amount of compression φ = φ − φJ for
bidisperse packings obtained from Protocols 1 and 2 at several
values of zJ . We find generally that in the limit φ → 0 the
static shear modulus scales as a power law with φ:

G = G0(φ)β, (8)

where the scaling exponent β (and prefactor G0) depend on
zJ . As shown in Fig. 12, β decreases steadily from 0.5 to 0.4
as the contact number zJ at jamming increases. Note that β =
0.5 for zJ = ziso was obtained in previous work on isostatic
packings [18]. The results in Fig. 12 suggest that the critical
behavior (e.g., power-law scaling of the shear modulus) found
in jammed isostatic systems persists when the jamming onset is
hyperstatic. Further studies are required to determine whether
the scaling exponent for the static shear modulus can be varied
over the full range from 0.5 to 0.

V. CONCLUSIONS

Using computer simulations, we generated a large library of
mechanically stable packings of bidisperse, frictionless disks
that span a wide range of contact number from zJ = ziso = 4 to
zxtal = 6 and packing fraction at jamming from φJ ∼ 0.84 to
near φxtal. We find that there is a disordered, isostatic branch of
MS packings that spans a finite range in packing fraction in the
large-system limit. Over this range of packing fraction, these
packings are disordered with only weak correlations between
bond orientational order, clustering propensity, compositional
order, and φJ . Further studies need to be performed to pin down
the upper bound in φJ for the disordered, isostatic branch of
MS packings. We also find a branch of phase-separated and

partially crystalline packings for which the compositional and
positional order increase with φJ . In addition, we characterize
the mechanical properties of the static packings by measuring
the spectrum of normal modes in the harmonic approximation
and the static shear modulus. We find that the mechanical
properties of the packings vary continuously as the contact
number and structural and compositional order at jamming
onset increase from their isostatic values. In particular, we
find that the static shear modulus scales as a power law in
the amount of compression, G ∼ (φ)β , and that the low-
frequency density of states scales as a power law in frequency,
D(ω) ∼ ωα , and both α and β vary continuously with contact
number at jamming onset. These findings emphasize that
jamming behavior in systems with purely repulsive contact
potentials occurs over a range of contact numbers, not just
near zJ = ziso [36–38]. In future studies, we will investigate the
relationship between the scaling exponents α and β, which is
likely an important feature of jamming in hyperstatic systems.
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APPENDIX A: ERROR ANALYSIS OF CONTACT NUMBER

In this Appendix, we study how sensitive the contact
number zJ is to the definition of whether two particles are
in contact. In Fig. 13, we show zJ versus log10 a where two

−8 −7 −6 −5 −4 −3 −2 −1
log10 a

4

4.4

4.8

5.2

5.6

6

z J

FIG. 13. The contact number zJ as a function of a, where
the condition rij � (1 + a)σij determines whether particles i and
j are in contact. The packings shown are N = 1024, φJ = 0.837
(circles); N = 1014, φJ = 0.892 (squares); and N = 2390, φJ =
0.897 (diamonds).
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FIG. 14. (Color online) Contact number zJ versus packing
fraction φJ for the same data in Fig. 2 and an additional set of
packings obtained from thermalizing the configurations in Fig. 2 with
φJ > 0.86 and then identifying the nearest packing. The variation in
zJ increases with φJ .

disks i and j are considered in contact (or overlapping) if rij �
(1 + a)σij for three representative configurations: N = 1024,
φJ = 0.837 (circles); N = 1014, φJ = 0.892 (squares); and
N = 2390, φJ = 0.897 (diamonds). We see that the contact
number is well defined for amorphous configurations at low
packing fractions, i.e., the contact number is constant over
a wide range of a that determines whether two particles
are in contact. In contrast, for packings with large φJ and
significant order as shown in Fig. 3(e), the contact number
varies continuously with a down to the numerical precision
of the particle positions in the simulations. Thus, at the
current numerical precision of the simulations, it is difficult to
determine zJ accurately for the partially ordered and ordered
configurations. To test the robustness of the contact numbers,
we also added weak thermal fluctuations to the packings with
φJ > 0.855 in Fig. 2 for times significantly shorter than the
structural relaxation time and then found the nearest static
jammed packing. These data, shown by the small solid symbols
in Fig. 14, possess surprisingly small contact numbers and
begin to fill in the region at large φJ and small zJ . As a result,
we only include configurations in Fig. 2 that possess plateaus
in zJ versus a over a range amin � a � amax of at least two
orders of magnitude with amin � 10−8.

APPENDIX B: ROBUSTNESS OF THE DENSITY OF STATES

In this Appendix, we test the robustness of our measure-
ments of the the density of states D(ω) by (1) studying
the system-size dependence of the accumulated frequency
distribution N (ω) and (2) comparing D(ω) for hyperstatic
packings at jamming onset with contact number zJ to that for
overcompressed packings at the same contact number z = zJ .

To eliminate noise from numerical differentiation, we
calculate the accumulated distribution N (ω) = ∫ ω

0 D(ω′)dω′
(number of modes with frequency less than or equal to ω).
For reference, in Fig. 15, we show N (ω) for monodisperse
packings at jamming onset with zJ � 6 and φJ � φxtal as a
function of system size for N = 16 to 6400. The crystalline
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ω
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( ω
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FIG. 15. (Color online) Number N (ω) of normal modes of
the dynamical matrix with frequency less than or equal to ω for
monodisperse packings at jamming onset with zJ � 6 and φJ � φxtal

and N = 16 (circles), 64 (squares), 256 (diamonds), 1024 (upward
triangles), 2304 (leftward triangles), and 6400 (downward triangles).
The solid line has slope 2.

systems show robust Debye power-law scaling N (ω) ∼ ω2

at low frequency for all system sizes. N (ω) for bidisperse
packings at jamming onset is shown in Fig. 16 for 4.4 � zJ �
4.5 as a function of system size. N (ω) displays a power-law
scaling with an exponent that approaches 1 + α = 1.16 > 1
in the large-system limit. Similar robust scaling exponents are
found for all zJ .

Distinctive features of the density of states D(ω) for
hyperstatic bidisperse packings at jamming onset are the
power-law scaling of D(ω) ∼ ωα at the lowest frequencies,
where α varies continuously with zJ , and the persistence
of the plateau in D(ω) at intermediate frequencies over
a range of zJ . Do highly compressed packings display

-3 -2 -1 0
log

10
ω

-4

-3

-2

-1

0
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 N
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)

FIG. 16. (Color online) Number N (ω) of normal modes of the
dynamical matrix with frequency less than or equal to ω for bidisperse
packings at jamming onset generated using Protocol 2 with 4.4 �
zJ � 4.5 and N = 512 (circles), 1024 (squares), 2048 (diamonds),
and 4096 (triangles). The solid (dashed) line has slope 1.16 (1).
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FIG. 17. (Color online) The density of normal modes D(ω) with
frequency ω for bidisperse packings at jamming onset generated
using Protocol 2 with 4.4 � zJ � 4.5 (blue) and overcompressed
packings with contact number z in the same range (red), from top to
bottom, at low frequency. The dashed lines in the inset have slope 0.16
and 1.

these same features? In Fig. 17, we compare D(ω) for
hyperstatic packings at jamming onset with 4.4 � zJ � 4.5
and overcompressed packings in the same range of contact
number z ∼ zJ . For the overcompressed packings, we find
that D(ω) ∼ ωα , with α = 1, while α ≈ 0.16 at the lowest
frequencies with a crossover to a plateau at intermediate fre-
quencies for the hyperstatic packings at jamming onset. Thus,
hyperstatic packings at jamming onset possess significantly
more low-frequency normal modes than overcompressed
systems at the same contact number as shown in the inset to
Fig. 17.

APPENDIX C: EVOLUTION OF STRUCTURAL
PROPERTIES WITH φJ

In this Appendix, we complement the scatter plots of the
structural and mechanical properties in Secs. III and IV by
showing how these quantities averaged over narrow bins in
φJ vary with packing fraction for packings generated using
Protocol 1. We find that the averaged quantities display small
systematic increases or decreases with φJ , typically several
percentage points or less. In Fig. 5, we show the average
(a) fraction of large-large contacts fll and (b) local bond
orientational order parameter ψ local

6 as a function of φJ . Both
quantities show a ≈1% increase over the range φJ = φmin

to φmax(r = 10−6). Both fss and ψ
global
6 show less systematic

dependence on φJ than fll and ψ local
6 .

In Fig. 18, we show [Fig. 18(a)] the pair correlation between
large particles gll(r) and [Fig. 18(b)] density of normal
mode frequencies D(ω) for φJ ≈ 0.84, 0.842 � φJ � 0.844,
0.846 � φJ � 0.848, and φJ � 0.85. We find only subtle
changes in both quantities with increasing φJ . The peaks in
gll(r) grow and minima become deeper and shift to slightly
larger separations r/σl with increasing φJ as shown previously
for 3D bidisperse frictionless packings [15]. Similarly, we find
only a small change in the peak height near ω = 1.5 in the
density of normal modes with increasing φJ .
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3

g ll(r
/σ

)

0 0.5 1 1.5 2 2.5
ω
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0.4
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0.8
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D
(ω

) 1.2 1.4 1.6
ω

0.56
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0.64

D
( ω
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(a)

(b)

FIG. 18. (Color online) (a) Pair correlation function between
large particles gll(r) as a function of separation r/σl and (b)
density D(ω) of normal mode frequencies ω using Protocol 1
for φJ � 0.84 (black), 0.842 � φJ � 0.844 (red), 0.846 � φJ �
0.848 (green), and φJ � 0.85 (blue), from top to bottom, near
the first minimum in g(r) in (a) and near the strong peak in
D(ω) in (b). The inset to (b) magnifies the peak in D(ω) near
ω = 1.5.

We have also studied more general bond orientational order
parameters in which we distinguish among large-large, small-
large, and large-large contacts to detect clustering of large or
small particles. We calculated several classes of local bond
orientational order parameters:

ψl
m = 1

Nl

Nl∑
k=1

1

nk

∣∣∣∣∣∣
nk∑

j=1

eimθkj

∣∣∣∣∣∣ , (C1)

ψs
m = 1

Ns

Ns∑
k=1

1

nk

∣∣∣∣∣∣
nk∑

j=1

eimθkj

∣∣∣∣∣∣ , (C2)

ψll
m = 1

Nl

Nl∑
k=1

1

nl
k

∣∣∣∣∣∣
nl

k∑
j=1

eimθkj

∣∣∣∣∣∣ , (C3)

ψls
m = 1

Nl

Nl∑
k=1

1

ns
k

∣∣∣∣∣∣
ns

k∑
j=1

eimθkj

∣∣∣∣∣∣ , (C4)
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FIG. 19. Average number of nontrivial zero eigenvalues Nz of the
dynamical matrix for static packings generated from Protocol 1 as a
function of φJ .

and

ψss
m = 1

Ns

Ns∑
k=1

1

ns
k

∣∣∣∣∣∣
ns

k∑
j=1

eimθkj

∣∣∣∣∣∣ , (C5)

where m = 2, 4, and 6 and Ns (Nl) is the number of small
(large) particles. For ψl

m, the first sum over k includes only
large particles and the second sum over neighboring particles
j includes both large and small particles. For ψs

m, the first
sum includes only small particles and the second sum over
neighboring particles j includes both large and small particles.
For ψll

m, the first and second sums include only large particles.
Similar definitions are used for ψls

m , ψsl
m , and ψss

m . We also
calculated the corresponding global versions of these order
parameters and defined neighboring particles as (i) contacting
(or infinitesimally overlapping) particle pairs or (ii) particle
pairs with separations less than the location of the first
minimum in g(r). As shown in Fig. 7, over the full range
of packing fractions obtained from Protocol 1, the largest
decrease in the order parameters [Eqs. (C1)–(C5)] occurs in
ψs

4 (between 4 and 6%) and the largest increase occurs in

0.84 0.843 0.846 0.849 0.852
φJ

0.55

0.56

0.57

0.58

ψ
6ll

FIG. 20. Bond orientational order parameter ψll
6 versus φJ for

packings obtained from Protocol 1 with no nontrivial zero eigenvalues
of the dynamical matrix (circles) and a small number of nontrivial
zero eigenvalues (squares).

ψll
6 (between 2 and 4%), which are larger than the changes

(–2%) in fll and ψ local
6 in Figs. 5(a) and 5(b).

APPENDIX D: MECHANICAL STABILITY

Static packings are isostatic if they are mechanically
stable [i.e., all nonrattler particles in the packing are in
force balance, and the number of nonzero eigenvalues of the
dynamical matrix Nn = N∗

n ≡ d(N − Nr ) − d, where d is the
spatial dimension], and if they possess only the minimum
number of distinct contacts Nc = Nmin

c ≡ N∗
n + 1 required

for stability. In Fig. 19, we plot the average number of
nontrivial zero eigenvalues of the dynamical matrix Nz versus
packing fraction for packings generated from Protocol 1. Most
static packings from Protocol 1 are mechanically stable; the
average number of zero modes is roughly 1 out of 2N modes
independent of φJ . In Fig. 20, we show that the small number of
nontrivial zero modes present in the packings from Protocol 1
does not strongly affect their structural properties. ψll

6 versus
φg is nearly the same for static packings with and without
nontrivial zero eigenvalues of the dynamical matrix.
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