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Movers and shakers: Granular damping in microgravity
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The response of an oscillating granular damper to an initial perturbation is studied using experiments performed
in microgravity and granular dynamics simulations. High-speed video and image processing techniques are used
to extract experimental data. An inelastic hard sphere model is developed to perform simulations and the results
are in excellent agreement with the experiments. In line with previous work, a linear decay of the amplitude is
observed. Although this behavior is typical for a friction-damped oscillator, through simulation it is shown that
this effect is still present even when friction forces are absent. A simple expression is developed which predicts
the optimal damping conditions for a given amplitude and is independent of the oscillation frequency and particle
inelasticities.
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I. INTRODUCTION

The characteristic property of dynamic granular systems,
when compared to other many-particle systems, is their ability
to dissipate mechanical energy through particle collisions.
While the dissipative properties of vibrated granulate have long
been investigated [1,2], recently a large body of literature [3–8]
has emerged on the mechanics and technical application of
this damping mechanism in the form of granular dampers.
A granular damper is a container partly filled by granular
particles which may be attached to vibrating machinery to
attenuate the amplitude of the oscillations. In its regime of
operation, the granular material is in a gaseous state and
its dynamics is determined primarily by the interparticle
collisions rather than by long-lasting sliding contacts between
the grains. Static granular dampers (e.g., Refs. [9,10]) which
exploit the rheology of granular matter and impact dampers
(e.g., Refs. [11–14]), where only one particle is located in a
cavity and dissipate energy in collisions with the walls of the
container, are not considered here.

Granular dampers have a number of properties which are
desirable in a wide range of technical applications: Unlike
traditional dampers, granular dampers do not require an
anchor in order to restrict the motion of the system. This
is advantageous for damping in portable equipment and in
space applications where no fixed anchor is available. Granular
dampers are extremely simple devices consisting solely of
particles enclosed in a container or cavity and require very little
maintenance. Granular dampers do not suffer from significant
aging when compared to the oil and rubber components of
traditional dampers. Finally, granular dampers can operate
over a wide range of temperatures without performance
degradation as the mechanics of the particle-particle and
particle-wall interactions exhibit only a weak dependence on
the temperature. Modern technical applications of granular
dampers include the damping of blade integrated disks (blisks)
for compressors [15], structural vibration damping [16–18],
noise reduction of bank note processing machines [19], and
others. Perhaps the most common application is the dead-blow
hammer [20] as well as other impact damping handles [21].

The macroscopic damping properties of granular dampers
under dynamic load is complicated, highly nonlinear, and there
is no straightforward way to optimize their performance for

a given situation. This has been demonstrated in a number
of experiments and molecular dynamics (MD) simulations,
including investigations on the attenuation of a free spring or
cantilever with an attached granular damper [5,7,22–24]. The
response of an oscillating cantilever with respect to periodic
forcing has also been studied [25–30]. Even more complex
systems have been investigated, such as the oscillation modes
of a plate with an abundance of granulate filled cavities
[31–34] with the aim of noise reduction [19]. For simple
systems, such as cantilever oscillators, some progress has
been made. Theoretical models have been developed based on
phenomenological descriptions of the multiphase gas-particle
flow of granular matter for attenuating oscillations [35] and
also for driven steady state oscillations [36].

A granular damper, which is a dynamical system of
dissipative interacting particles, obviously must be able to
dissipate energy; however, its general behavior is not clear
a priori. Properties, such as the dissipation rate, are complex
functions of the frequency and amplitude of the oscillation, as
well as the particle properties, the extension and characteristics
of the container or cavities, and the filling fractions. More
work is needed in this field to generate experimental results
and corresponding models capable of describing the dynamics
of granular dampers.

Salueña et al. [1] have shown that several regimes of
energy dissipation exist for a granular damper and that the
transitions between these regimes are determined primarily by
the influence of gravity. An efficient operation of a granular
damper which is lightweight and needs no fixed anchor can
only be expected if the average kinetic energy of the particles
is much larger than their average potential energy (the damper
operates in the dynamic or collisional regime). In order to
carefully investigate this regime, the influence of gravity
should be minimized and experimental investigations should
be performed under conditions of weightlessness.

The objective of this paper is to develop an effective model
for the energy dissipation of a granular damper operating
in the collisional regime. Our approach is as follows: First,
experiments in microgravity are performed and the attenuation
of a spring with an attached granular damper for several
sets of parameters is obtained (Sec. II). A model capable of
reproducing the experimental results is also developed and
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high-precision discrete element method (DEM) simulations
are performed (Sec. III). The two free parameters of the
model (coefficients of restitution) are obtained by adjusting
the values until the simulation matches the experiment as
closely as possible for a single experiment (Sec. III C). From
the excellent agreement of the simulation results for the fitted
system and for all other experiments, it is concluded that
the model underlying the simulation replicates the system’s
essential features (Sec. III D). Thus, the DEM simulations are
an effective model for granular damping in the collisional
regime. In Sec. IV, a simple equation for the optimal design
of a simple damper is derived and tested against the results of
the DEM simulations. Section V discusses the observed linear
decay of the amplitude. Finally, in Sec. VI the conclusions of
the paper are outlined.

II. EXPERIMENTAL SETUP

Figure 1 is a diagram of the experimental setup. Our
granular damper comprises a container of adjustable length
which is partially filled with granular material. The damper is
mounted to one end of a spring-steel blade and the opposite end
is clamped in a solid aluminum base plate. The spring blade is
described fully in Sec. III C. The rectangular damper container
is constructed from 5-mm-thick transparent polycarbonate
plates. The internal dimensions of the container are 50 mm ×
50 mm × L, where the length L (in the direction of the
oscillation) is adjusted by altering the spacing of the end walls.
The container’s net weight (without granulate) is M = 434 g.
In this work, four different container lengths of L = 40,65,85,

and 104 mm are used. The damper is loaded with N = 37
precision steel ball bearings of diameter σ = 10 mm and mass
m = 4.04 g. This number of particles is chosen as it packs
to form a layer two particles deep on the end walls of the
container.

The motion of the damper and contained granulate is
recorded using a high-speed camera (MotionScope M3TM),

FIG. 1. Schematic of the experimental setup in front view (left)
and side view (right). The curvature of the oscillations is exaggerated
for the purpose of illustration.

FIG. 2. An example frame from the high-speed camera. An
example video which compares simulation and experimental results
is available online [37].

which records at a frame rate of 500 fps and with a spatial
resolution of 1024 × 1280 pixels. A 45◦ mirror is placed at
the side of the container and allows for the simultaneous
observation of the granulate from the top and the side
(see Fig. 2). The position of the damper and the center of
gravity of the particles are extracted from the top view using
standard image-processing techniques. Although the side view
facilitates more complex methods of reconstruction, it will be
shown that the motion of the granulate is well described by
the center of mass motion. All position measurements are
made in a two-dimensional (2D) plane which is parallel to and
intersecting the top of the container while it is in its equilibrium
position. Although this introduces some error at the peaks of
the oscillations due to the curved damper trajectory, this error
is negligible.

At the start of the experiment, the spring blade is deflected
and held at the initial displacement of �0 = 107.5 mm using
an electromagnet. A trigger mechanism begins the experiment
and starts the camera recording. After a short delay of 1 s,
the spring blade is released from the electromagnet and the
oscillations are recorded for 30 s.

To assure conditions of weightlessness, the experiment is
performed on a modified Airbus A300 aircraft which has been
retrofitted for performing parabolic flights. The parabolic flight
provides a suitable microgravity environment (±0.05 g) which
lasts around 22 s and allows a number of experiments to be
performed. In the following section, the numerical model and
simulation techniques are described.

III. NUMERICAL MODEL AND SIMULATION METHOD

A sufficiently complex model, capable of reproducing the
observed experimental behavior, must be found if the system’s
dynamics is to be understood. The model presented here is
complex enough to yield quantitative agreement with the
experiments and yet simple enough to gain insight into the
dynamics of the system. The model for the granulate consists
of a system of N = 37 smooth inelastic hard spheres, each of
mass m = 4.04 g and diameter σ = 10 mm. Although inelastic
hard spheres are a basic model for the granulate they capture all
of the essential behavior of the system: dissipative interactions
between hard spherical particles.

To model the oscillating mass and granular damper, the
hard spheres are shaken in a rectangular box of mass M ,
which is coupled to a linear spring. The box is assumed
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to remain parallel to the axis of the system and oscillate
along only one axis. By only permitting oscillations in a
single dimension, this model neglects the arcing motion of
the blade spring (see Fig. 1) and oscillatory modes induced
by the collisions of the particles with the box. However, these
effects are expected to be small in comparison to the dynamics
of the modeled oscillation. With these approximations, the
collision-free motion of the box can then be modeled using a
simple harmonic oscillator

�rbox(t) = n̂� cos [2πω (t + tshift)] + �r (0)
box, (1)

where �rbox is the current position of the oscillator, �r (0)
box is its

equilibrium position, n̂ is the unit vector in the direction of
the oscillation, and ω is the frequency of the empty damper.
The amplitude of the oscillation � and the phase shift of
the oscillator tshift are dynamical quantities and are altered
by particle-box interactions. At time t = 0, the plate is at its
positive maximum (tshift = 0) with an initial displacement of
� = �0.

The methods for performing event-driven simulations using
smooth hard spheres and fixed walls are well established (e.g.,
see Ref. [38]) and will not be discussed in detail. Here an
event-driven dynamics simulation package (DynamO [39]) is
used to simulate the dynamics of granular-damped oscillators.
The only extension to the basic event-driven method concerns
the detection and execution of events between particles and the
oscillating boundary walls perpendicular to the oscillation
direction n̂, which is discussed in the following sections.

A. Detecting oscillating wall interactions

Event-driven algorithms require an expression to calculate
if and when a collision (an event) occurs between a particle
and the bounding walls of the damper. If a collision is detected
and it is the next event to occur in the system, the system is
moved to the time of the collision and the event is executed by
updating the velocities of the colliding particle, and the phase
shift tshift and amplitude � of the oscillator.

To determine the time at which a particle i will collide with
an oscillating wall, the equations of motion for the particle
and the oscillating plate must be solved. Essentially, this is a
search for the shortest positive root �t of the function

f (�t) = [�ri + �t �vi − �rbox(�t + t)] · n̂ ±
(

L − σ

2

)
= 0,

(2)

where �ri and �vi are the position and velocity of particle i

at the current system time t , and �t is the time until collision.
The sign of the term ±(L − σ )/2 is used to set which side of
the oscillating box is tested for collisions.

To guarantee that no roots are missed, the root finding
technique of Frenkel and Maguire [40] is used. This root
finding routine requires a fixed interval to search for possible
roots. The upper bound on the interval to search is determined
from the time the freely moving particle takes to cross the
extrema of the tested wall’s oscillation,

�tmax = sgn(n̂ · �vi)([L − σ ]/2 + �) − n̂ · (�ri − �r (0)
box

)
n̂ · �vi

, (3)

where sgn(x) is the sign function. The lower bound is typically
the current system time (�tmin = 0). However, if the last event
to occur was a collision between this particle and an oscillating
wall, the lower bound is increased to avoid redetecting the same
root. The lower bound is then set to

�tmin = |2ḟ (0)|
f̈max

, (4)

where f̈max = �ω2 is the maximum absolute second deriva-
tive of Eq. (2). The root finding technique used to search
for suitable roots of Eq. (2) iterates towards a root from the
boundaries of the interval by approximating the function at
each iteration with a parabola. The equation of the parabola is
generated using the derivatives of Eq. (2) and its smallest root
provides the next iteration point. The iterations are halted on
the nth iteration once the following criterion is met:

|�tn − �tn−1| <
[L − σ ]

2ḟmax
× 10−12, (5)

where ḟmax = |�vi · n̂| + 2πω� is the maximum absolute first
derivative of Eq. (2). Unlike the hard line system of Frenkel
and Maguire [40], all roots of Eq. (2) are acceptable and only
the earliest root must be found. This completes the description
of the collision detection and root finding technique.

B. Executing particle-oscillating wall collisions

The final part of the simulation algorithm concerns the
execution of oscillating boundary wall collisions. The con-
servation of momentum and the assumption of a constant
coefficient of restitution leads to

� �pi = −� �pwall = −mM(1 + εpw)

m + M
(n̂ · [�vi − �̇rbox])n̂, (6)

where � �pi and � �pwall are the momentum change of the
colliding particle i and oscillating wall, respectively, and εpw is
the coefficient of restitution for particle-wall collisions. During
a collision, the phase tshift and amplitude � of the oscillating
wall are altered under the constraints of conserving momentum
and the current box position. This results in the following
expressions for the postcollision state of the oscillating plate:

t ′shift = 1

ω
arctan

( −n̂ · [� �pbox + �̇rbox]

2 π ω n̂ · [�rbox − �r (0)
box

]
)

− t, (7)

�′ = n̂ · (�rbox − �r (0)
box

)
cos(2π ω[t + t ′shift])

, (8)

where the primes denote postcollision values. Care must
be taken at this point in the calculation to ensure that the
magnitudes of t and tshift do not affect the precision of the
calculations. Care must also be taken to retain the correct
quadrant of the calculated angle when using the arctan function
(e.g., by using the C function a tan 2).

A difficulty with the event-driven simulation method arises
from its inability to simulate events with finite durations. When
the oscillating wall is accelerating, a particle can repeatedly
collide with the plate until its relative velocity and separation
are numerically zero. Physically, the particle sticks to the wall
and is pushed until the plate enters the deceleration phase of
its oscillation or interacts with another particle. To prevent this
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TABLE I. Model parameters for the event-driven simulations.

σ (mm) m (g) N �0 (mm) ω (s−1) M (g) εpp εpw

10 4.04 37 107.5 1.23 434 0.75 0.76

unresolvable situation from occurring within the event-driven
simulation, the interactions between the oscillating wall and a
particle are turned elastic when

n̂ · (�vi − �̇rbox)

πω�
< 0.04. (9)

The pushing of the particle is then transformed into a sequence
of small hops which, as in the physical pushed case, do not
dissipate energy. As this expression is linear in the current
displacement �, the long time behavior of the system is still
recovered (� → 0 as t → ∞). This elastic approximation is
small when the plate motion dominates the dynamics of the
system and the results appear to be unaffected if smaller values
for Eq. (9) are used.

C. Parameters of the simulation

The simulations are initialized with all particles arranged
in a regular lattice (fcc), with initial velocities assigned from
a Gaussian and a total particle energy less than <0.002% of
the initial spring energy. The particles are packed in a loose
layer on the wall at the initial extrema of the oscillation. The
particles in the experiment are also typically arranged this way
due to the influence of gravity before the microgravity phase
of the experiment.

The simulations require several inputs and these parameters
are reported in Table I. All parameters, with the exception of
the box frequency ω and coefficients of restitution εpp and εpw,
are directly obtained from the experimental setup described
in Sec. II. The three remaining parameters must be calculated
from material parameters or obtained through experimental
results.

The frequency of the unloaded damper ω may be estimated
using the simple harmonic oscillator model. The spring
constant of the spring blade may be calculated using the
Euler-Bernoulli beam equation

k = Ewh3

4 l3
= 25.4 N m−1, (10)

where E = 2.06 × 1011 N m−2 is the elastic modulus of the
spring steel, w = 30 mm is the spring width, h = 1.5 mm is
the spring thickness, and l = 590 mm is the spring length. If
the system behaves as a simple harmonic oscillator and the
mass of the spring is ignored, the frequency may be estimated
using

ω ≈ 1

2π

√
k

M
≈ 1.217 s−1. (11)

The frequency of the loaded granular damper ωsystem is lower
than that of the empty damper ω due to the added mass and the
interactions of the granulate. In the simple harmonic oscillator

model, the additional mass of the granulate alters the frequency
of the oscillations by

ωloaded = ω

√
M

M + Nm
. (12)

In the limit that the granulate is tightly packed in the granular
damper, the frequency of the system should limit to the simple
harmonic oscillator frequency ωsystem → ωloaded. In the limit
of a large box, the granulate will completely decouple from the
oscillator and ωsystem → ω. Remarkably, the frequency of the
experimental oscillators, obtained through averaging the peak
and center point frequencies, is consistent for all box lengths at
approximately ωsystem ≈ 1.05 s−1 with a standard deviation of
±0.01 s−1. If it is assumed that ωsystem ≈ ωloaded for small
box lengths, Eq. (12) estimates an unloaded frequency of
ω ≈ 1.22 ± 0.1 s−1 for the experimental system. This agree-
ment with the beam equation is promising and suggests that,
although the granulate is periodically decoupled from the
oscillator, the deviation from Eq. (12) is still small for the
experimental box lengths studied here. For the simulations,
a slightly higher frequency of ω ≈ 1.23 s−1 is used which is
within the standard deviation of the experimental values and
yields an excellent fit to the experimental data.

Finally, the coefficients of restitution εpp and εpw describing
the inelastic collisions between particles and between a particle
and the wall must be determined. These model parameters are
obtained by fitting simulation results to the experimental data
for the smallest box length (L = 40 mm, Fig. 3). As best fits
the following results are obtained:

εpp = 0.75, εpw = 0.76. (13)

The value for the particle-wall coefficient of restitution is in
close agreement with published results reported for a 9.35 mm
steel ball bearing impacting a clamped acrylic plate [41].
However, the particle-particle coefficient of restitution is
significantly lower than expected. Performing an automated
drop test [42] of the granulate on to a silicon carbide plate
yields a coefficient of restitution of ε ≈ 0.95. Due to the
high rigidity of the base plate, this value should be close
to the experimental value for particle-particle interactions.
The fitted particle-particle coefficient of restitution εpp may be
unexpectedly lower than the drop test results due to missing
dissipation mechanisms in the model (e.g., granulate friction).
Despite this, the agreement of the simulation and experimental
results (see Sec. III D) shows that this is still an effective model
for the system.

It should be noted that the fitting of the coefficients of
restitution εpp and εpw is performed exclusively for the box
width of L = 40 mm. For all other simulations reported
here, the optimized coefficients of restitution are used without
further fitting.

D. Validation of the numerical method

The simulation and experimental results are compared in
this section to validate the model. Figure 3 presents the box
position xbox and the granulate center of mass xCOM as a func-
tion of time for a box length of L = 40 mm. Two experimental
measurements are reported and both are in close agreement
with the simulation results. The experimental and simulation
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FIG. 3. (Color online) A comparison of simulation results and
experimental data for (a) the box position xbox and (b) the granulate
center of mass xCOM as a function of time for a box length of L =
40 mm. The simulation data is fitted to the experimental data through
the coefficients of restitution εpp = 0.75 and εpw = 0.76.

results display a high degree of repeatability (compare Figs. 3
and 4) and single realizations are representative of the averaged
values. This is due to the uniqueness of the initial state, with
the spring held in a deflected state and the particles resting
in a regular, repeatable layer on the outer wall due to the
influence of gravity before the microgravity phase. However,
the experimental results begin to fluctuate toward the end of
the microgravity phase due to disturbances in the flight.

The numerical result for the box position xbox as a
function of time is in excellent quantitative agreement with the
experimental data. For the position of the center of mass xCOM

the agreement is also very good albeit not as close as for xbox(t),
with some overestimations near the peaks of the oscillations.
The error could arise from the experimental method due to the
top-down view of the simulation and 2D image reconstruction
used. The area of the visible particles is identified and the
centroid location is taken to be the center of mass. Due to
the end walls and slight arcing motion of the box (see Fig. 1)
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FIG. 4. (Color online) A comparison of simulation results and
experimental data for (a) the box position xbox and (b) the granulate
center of mass xCOM as a function of time for a second experiment
at the box length of L = 40 mm. Line types are described in Fig. 3.
The simulation data is not fitted to this data set and the parameters of
Fig. 3 are used.
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FIG. 5. (Color online) The same comparison as Fig. 4, but for a
box length of L = 85 mm. Note the change of time scale.

the reconstructed center of mass is slightly biased toward the
center of the box.

The agreement between the simulation and experiment
for the frequency of the damped oscillator is excellent and
confirms the accuracy of the fundamental frequency ω.
However, the excellent agreement in the amplitudes between
experimental data and simulations for L = 40 mm is perhaps
not too surprising since this experimental data set is used
to determine the coefficients of restitution, εpp and εpw.
The model parameters are now fixed and the numerical
result for several different box widths are compared with the
corresponding experimental data (see Figs. 4–6).

In general, the simulation results are in excellent agree-
ment with the model’s predictions. This implies that the
approximations of the model (one-dimensional oscillations,
no air resistance, ideal spring) are small and have little effect
on the dynamics of the granular damper. Some of these
approximations may already be compensated for in the fitting
of the coefficients of restitution, but they appear to be well
behaved with the changes in box length. In the simulation,
rotational degrees of freedom are neglected by eliminating
friction between the particles, and between a particle and
the container walls. In contrast to vibrated granular dampers
in gravity (where the energy dissipation due to friction is
of the same scale as energy dissipation by impact [43]), in
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FIG. 6. (Color online) The same comparison as Fig. 4, but for a
box length of L = 104 mm. Note the change of time scale.
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microgravity, friction seems to be less important or easily
characterized into the restitution coefficient εpp. Overall, the
fitting of the coefficients of restitution appears to be effective at
capturing the behavior of the system and no further parameters
or extensions of the simulation model are required.

The most striking feature of the curves in Figs. 3–6 is the
linear decay of the peak amplitude of the oscillation with time.
A detailed discussion of this property is postponed to Sec. V
and optimal dampers are discussed in the following section.

IV. OPTIMAL DAMPERS

There is a significant dependence of the damping efficiency
on the container length, as is seen in Figs. 3–6. The number
of cycles before the oscillations are sufficiently damped varies
from 13 to 4 as the box length is increased. By examining the
energy transfer mechanisms within the granular damper, an
expression for optimizing the damper’s design may be found.

Figure 7 plots the cumulative energy lost through the three
classes of collisions in the simulation system. It should be
noted that Fig. 7 is only valid for the fitted coefficients of
restitution and will therefore differ from the true experimental
values. Nevertheless, the results should agree qualitatively and
allow some insight into the experimental system. The sides of
the box appear to be unimportant in this design of a damper
and may present an opportunity for optimization by utilizing
alternative shaker geometries (e.g., an hourglass design).
Although the inclusion of friction forces in the simulation will
increase the sidewall dissipation, the video observations of the
granulate show little or no drag on the cluster during the flying
phase. This indicates that these friction forces are relatively
small as the granulate is densely packed and in contact with
the wall (see Fig. 2) but shows no effect from sliding against
the wall.

Not only are the particle–end-wall collisions the sole
mechanism for the transferral of oscillation energy from the
oscillator into the contained granulate, but simulation results
estimate that these collisions are also a significant dissipa-
tion mechanism for the damper. The end-wall interactions
both transfer and dissipate the maximum energy when the
relative velocity of the oscillator end walls and granulate are
maximized. Therefore, maximizing this relative speed should
optimize the performance of the granular damper. In the
following section, an attempt is made to estimate the optimal
box length using a simple model for the dynamics.
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FIG. 7. (Color online) Simulation values for the cumulative
energy loss through interactions with the side walls (P-S), end walls
(P-E) and particle-particle interactions (P-P) for a box length of
L = 40 mm.

A. Theoretical predictions

Attempting to optimize the system by modeling the gran-
ulate as a single particle or some other simplified description
is difficult [44] due to the lack of an analytical solution to
Eq. (2). To estimate the optimal damping conditions, only two
plausible assumptions for the motion of the granulate in the
box are required: (a) the granulate will be “collected” and form
a packed layer on the approaching oscillating wall during the
initial inward stroke (when the oscillator accelerates towards
the center point), and (b) the center of mass velocity of the
granulate at the end of the inward stroke is, on average,
the maximum oscillator velocity. The time from the center
of the stroke at which the granulate would hit the peak
displacement of the oscillator is then given by

tg,peak = L + � − σlayer

2πωloaded�
, (14)

where σlayer = 2σ = 20 mm is the thickness of the layer of
granulate when it is packed on the surface of the oscillating
wall. This is a good estimate of the layer thickness as the
particles are smooth, monodisperse, and the number was
selected to ensure that they do not jam easily in an irregular
packing (see Fig. 2 and Ref. [37]). It should be noted that
Eq. (14) decreases in time, as � decreases on average due to
interactions with the granulate. If for any integer n the peak
collision time lies in the range n < ω tg,peak < n + 1

4 , the
granulate will hit the oscillating wall on the outward phase
of its stroke. All experimental boxes with the exception of
the largest system (L = 104 mm) are within this regime. It is
expected that improved damping occurs if the granulate hits
on the inward stroke as the relative velocity is maximized.

The granulate travels the length of the box in

tg,box = L − σlayer

2πωloaded �
. (15)

If n + 1
4 > ω tg,peak > n + 1 and n < ω tg,box < n + 1

2 , the
granulate will collide on the inward phase of the stroke. The
largest system, where ω tg,box ≈ 0.15, collides after the turning
point of the oscillator. However, the dissipation is maximized
when ω tg,box ≈ 1

2 . At this point, the relative velocity between
the granulate and oscillating box is also maximized. For
ω tg,box > 1

2 the plate is either decelerating or multiple cycles
of the oscillation occur without the granulate colliding.

The damping of the oscillator from the initial state can be
optimized, independently of the coefficients of restitution, by
altering either L, ω, or � such that ω tg,box ≈ 1

2 . Efficiency
will be lost and recovered as � changes over time, but if the
granulate is relatively inelastic this will occur after most of the
energy is dissipated or transferred in the first cycle.

Setting ω tg,box = 1
2 in Eq. (15) and using Eq. (12), the

optimal box length Lopt may be estimated for a given initial
amplitude �0 using

Lopt = π�0

√
M

M + Nm
+ σlayer. (16)

This expression is remarkable in that it is independent of
the oscillation frequency. This may be understood from
dimensional analysis as, due to the negligible initial kinetic
energy, the model has only one time scale. As such, the
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(a)

(b)

FIG. 8. (Color online) A comparison of simulation results and
experimental data for the box and granulate (a) position, and (b)
velocity as a function of time for the optimal box length of L = 311
mm, as predicted by Eq. (16). Note the change of time scale.

solutions to the model must scale trivially in the frequency of
the oscillations. In the following section, the results of Eq. (16)
and its assumptions are checked against simulation results.

B. Numerical test

The validity of the basic assumptions made in Sec. IV A
and the result, Eq. (16), are now tested using the results of
the DEM simulations. Using Eq. (16) to predict the optimal
box length for the damping of the experimental system yields
a value of Lopt = 311 mm. The results of a simulation at
this box length are presented in Fig. 8. A square step in the
granulate center of mass velocity is visible at the peak of the
box velocity as the granulate decouples from the oscillator.
The assumption of an equal box and granulate velocity at
the midpoint of the stroke (at peak velocity) appears to hold.
Visual inspection [37] confirms the granulate is collected in
a layer on the approaching oscillating wall. The recollision
of the granulate also appears to occur close to the peak of
the box velocity, maximizing the relative velocity, energy
dissipation, and energy transfer in this first collision. The
largest oscillations are effectively damped within one second.
However, the oscillator is now susceptible to smaller amplitude
oscillations which appear to decay very slowly. The optimal
approach would be to couple two or more dampers to damp a
wider range of amplitudes within short time scales. This idea
has already been pursued for impact dampers (e.g., Ref. [45])
which are related to granular dampers except that in the
container or cavity there is only a single particle.

To test the predictions of Eq. (16) for the optimal damping
length L, a suitable metric must be defined to compare various
box lengths. Figure 9 compares the time an oscillator takes to
dissipate a certain fraction of the initial energy as a function
of the box length. Despite the continuing low-amplitude
oscillations of the damper at L = 311 mm (see Fig. 8), the
damper effectively eliminates 95% of the initial energy in
well under two oscillations. Equation (16) appears to yield an
excellent estimate for the global optimal box length, avoiding
both the highly inefficient zones toward the edges of the graph.
Previous work on forced granular dampers (e.g., see Fig. 7
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FIG. 9. Simulation results for the time t to dissipate a percentage
of the initial energy, versus the box length L. The vertical dashed line
indicates the optimal box length as predicted by Eq. (16).

in Ref. [25]) also yields performance curves with the same
general U shape as Fig. 9.

V. LINEAR DECAY

Figures 3–6 reveal a linear decay of the amplitude of
the oscillation with time, and thus the energy of the system
decays quadratically in time. This is highlighted in Fig. 10,
where the time dependence of the square root of the total
energy of the damper is plotted. This behavior is a common
motif in granular dampers and has been reported previously
[3,7,23,24,46,47], even for single-particle dampers. Surpris-
ingly, the same behavior is also found for rather different
dampers such as thrust-based damping [48] and impact
dampers [49–52]. However, this is not a general rule and other
published results exist (e.g., Ref. [5]) where a nonlinear decay
of the amplitude of the oscillation (possibly exponential) is
found. The result is surprising as the common viscous dampers
yield an exponential decay of the amplitude. The linear decay
of a static granular damper may be due to the frictional forces
in the system; however, the simulations carried out in this
paper reproduce the linear decay in the absence of frictional
or viscoelastic interactions. This is in contrast to previous
simulation or experimental studies.

This result is also surprising if the approximations of the
previous section are used to perform dimensional analysis. To
recap, the oscillator appears to have a constant frequency for
a given box length, and the oscillator collects the granulate
on a wall and then collides the granulate in each half period.
For the amplitude decay to be linear, the energy dissipated
in each of these “collisions” of the granulate must then be
proportional to the amplitude �. However, if an inelastic
particle with a constant coefficient of restitution is given a
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FIG. 10. (Color online) Total energies of the oscillators as
obtained from numerical simulations.
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velocity proportional to the maximum plate velocity (2π ω�),
it will dissipate energy proportional to the square of the
plate amplitude (�2) for any nonzero number of collisions.
Therefore, despite the simplicity of the current model, no
simple explanation is yet available for the linear decay and
further research is required to explore this effect.

VI. CONCLUSIONS

In this paper, a method for performing controlled ex-
periments on granular damped oscillators in microgravity
is outlined. High-speed video capture and image-processing
techniques are used to reconstruct the motion of the oscillator
to obtain accurate experimental results. A simple hard sphere
model and event-driven dynamics are also used to generate
quantitative results that compare well against the experimental
values. From the excellent agreement of the simulation and
experimental frequency, it appears that the damper frequency
responds like a simple harmonic oscillator to changes in load
[Eq. (12)] for short box lengths. This is remarkable given the
periodic decoupling of the granulate from the spring and box.
The simulation model scales trivially with the frequency of
the oscillations as, apart from the negligible initial energy, the
model has only one time scale. Further research is required on
experimental systems to determine the frequency dependence
of granular dampers and generalize the current model to these
systems. This may require extending the current model to a
velocity dependent coefficient of restitution.

The model has two major limitations which must be
discussed. First, friction forces are absent in the model. These
forces are typically vital to capture granular dynamics and are
dominant in quasistatic regimes. However, it is shown here that
by the excellent agreement with the experiment that the
frictional forces are effectively approximated by the coefficient
of restitution and/or the frictional effects are small in this
system. Another limitation is that the particle model contains
no inherent time scale. Therefore, the model has only a trivial
dependence on the frequency of the oscillations. The granular
dampers here operate in a “collect and collide” regime and
with microgravity conditions and the high Young’s modulus
of steel (200 GPa) it is not expected that there is a strong
dependency on the frequency. Despite these limitations, the

model has several advantages. The model is computationally
cheap when compared to Hertz models of systems with a high
Young’s modulus. The model is also simple enough to allow
theoretical analysis (see Sec. IV) and is used here to explore
the significance of frictional effects in granular dampers.

The straightforward design of these granular dampers yields
a remarkably simple expression for the optimal damping
configuration of the form of Eq. (16). Simulations at the
predicted optimal box length damp large-amplitude oscil-
lations remarkably well (see Fig. 8) but are susceptible to
smaller-amplitude disturbances. The final expression for the
optimal box length is independent of the oscillation frequency,
due to the lack of a time scale in the simulation and theoretical
model.

Unlike conventional viscous-damped systems, the granular
damped system studied here displays a linear decay in the
amplitude. This behavior is not intuitive and is a feature typical
of friction-damped oscillators. This work clarifies that this
apparent frictional behavior may also arise solely from the
collisional granular dynamics and does not necessarily arise
from friction or viscoelastic forces within the experimental
setup. The linear decay is a useful property as it implies
that a granular damper can completely damp oscillations
within a finite time. However, this is not the case as, at low
oscillation energies a transition occurs and the damping force is
significantly reduced. Further research is required in designing
dampers with a wider amplitude response by coupling multiple
dampers with different lengths. The internal geometries may
also be optimized to eliminate the decoupling of the granulate
in the midpoint of the stroke to create more effective dampers.
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