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Velocity fluctuations of population fronts propagating into metastable states
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The position of propagating population fronts fluctuates because of the discreteness of the individuals and
stochastic character of processes of birth, death, and migration. Here we consider a Markov model of a population
front propagating into a metastable state, and focus on the weak noise limit. For typical, small fluctuations the
front motion is diffusive, and we calculate the front diffusion coefficient. We also determine the probability
distribution of rare, large fluctuations of the front position and, for a given average front velocity, find the most
likely population density profile of the front. Implications of the theory for population extinction risk are briefly
considered.
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I. INTRODUCTION

Population fronts are ubiquitous in nature. They control
the speed of a multitude of processes ranging from epidemic
outbursts to invasion of species to biological evolution [1,2].
There is a fundamental difference between fronts propagating
into an unstable state and those propagating into a metastable
state (a state which is linearly stable but non-linearly unstable).
The former can be extremely sensitive to intrinsic noise in the
leading edge [3–7]. In particular, for pulled fronts, the front
diffusion coefficient Df , describing wandering of the front
position around the position, predicted by the deterministic
rate equation, is only logarithmically small with N , the
number of particles in the front region [7]. Fronts propagating
into metastable states are expected to behave “normally” in
this respect, and Df ∼ 1/N scaling was conjectured [5,6].
Surprisingly, not much is known beyond this conjecture. Yet
fronts, propagating into metastable states, appear in many
applications [1,2,8]. For example, they describe colonization
and extinction waves when an Allee effect is present in the form
of a critical population size needed for establishment of a local
population [2,9]. Motivated by this and other front propagation
phenomena—in physics, chemistry, and biology—we present
here a systematic theory of fluctuations of the position of a
population front propagating into a metastable state.

II. MODEL

Let a single population of individuals (we will call them
particles) reside on a one-dimensional lattice of sites labeled
by index i. The population size ni at each site varies in time
as a result of two types of Markov processes [10]. The first
type involves stochastic births and deaths with rates λ(ni) and
μ(ni), respectively. The second one is random walk of each
particle between neighboring sites with rate coefficient D0.

We assume that the typical population size scales as a large
parameter, K � 1. Then for ni � 1 one can write, in the
leading order [11,12],

λ(ni) = νKλ̄(qi) and μ(ni) = νKμ̄(qi), (1)

where qi = ni/K is the rescaled population size at site i,
λ̄(qi) ∼ μ̄(qi) ∼ 1, and ν is a rate coefficient. Assuming also
a fast diffusion, D0 � ν, we can use a continuous position
coordinate x instead of the discrete index i. Neglecting for

a moment the intrinsic noise, we arrive at a deterministic
reaction-diffusion equation

∂tq = f (q) + ∂2
x q , (2)

where f (q) = λ̄(q) − μ̄(q), D = D0h
2 is the diffusion co-

efficient of the random walk, and h is the lattice constant.
The position coordinate x in Eq. (2) is rescaled by the
characteristic diffusion length lD = (D/ν)1/2, and time is
rescaled by 1/ν. We will restore the dimensions in our main
results by recalling that the front velocity is measured in the
units of νlD = (νD)1/2, and the front diffusion coefficient Df

is measured in the units of D.
A (deterministic) population front corresponds to a trav-

eling wave solution (TWS) of Eq. (2), q(x,t) = q(ξ ), ξ =
x − c0t , which interpolates between two homogeneous states
described by zeros of f (q). Let one of them, q = q∗ > 0, be
located at x → −∞, whereas the other, q = 0, at x → ∞.
Each of them is linearly stable: f ′(q∗) < 0 and f ′(0) < 0.
There is also a linearly unstable state qu, so that 0 < qu < q∗.
The deterministic TWS q0(ξ ) obeys the equation

q ′′
0 + c0q

′
0 + f (q0) = 0 . (3)

This TWS is unique up to an arbitrary shift in ξ . The formal
definition of the metastable state in this work is based on the
effective potential V (q) = ∫ q

0 f (q ′) dq ′ of the deterministic
problem [1,2,8]. The state q = q∗ > 0 is advancing (c0 > 0)
when V (q∗) > 0. In this case q = 0 is called the metastable
state. For V (q∗) < 0 the state q = q∗ is retreating (c0 < 0), and
so it is metastable. Finally, for V (q∗) = 0 the front is standing,
c0 = 0, and so the two states q = q∗ and q = 0 coexist. The
typical front width is on the order of lD .

Now we go back to the discrete-lattice model and describe
stochastic dynamics of the population. Introduce the mul-
tivariate probability distribution P (n,t) = P (n1,n2, . . . ,t) =
P (n̂,ni,t), where i = 1,2, . . . and n̂ denotes the vector of
all n’s not explicitly written, see, e.g., Ref. [10]. For the
continuous-time Markov processes of on-site births and deaths
and unbiased random walk between neighboring sites, the
master equation for P (n,t) has the following form:

∂tP (n,t) =
∑

i

{λ(ni − 1)P (n̂,ni − 1,t) + μ(ni + 1)

×P (n̂,ni + 1,t) − [λ(ni) + μ(ni)]P (n,t)}
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+D0

∑
i

{(ni−1 + 1)P (n̂,ni−1 + 1,ni − 1,t)

+ (ni+1 + 1)P (n̂,ni − 1,ni+1 + 1,t)

− 2niP (n,t)}, (4)

where we have returned to dimensional units.

III. SMALL FLUCTUATIONS

Small fluctuations around the deterministic TWS can
be described by the (approximate) Fokker-Planck equation
obtained, via a truncated expansion, from Eq. (4), see, e.g.,
Ref. [13]:

∂tP (q,t) = −ν
∑

i

∂

∂qi

{
f (qi) P − 1

2K

∂

∂qi

[g(qi) P ]

}

+D0

∑
i

(
∂

∂qi

− ∂

∂qi+1

)[
(qi − qi+1) P

+ qi + qi+1

2K

(
∂

∂qi

− ∂

∂qi+1

)
P

]
. (5)

Here g(q) = λ̄(q) + μ̄(q) is a rescaled on-site diffusion co-
efficient in the space of population sizes. Instead of dealing
with the Fokker-Planck equation directly, we will consider the
Langevin equation to which it is equivalent. Reintroducing a
continuous description in space, we obtain [14]

∂tq(x,t) = νf (q) + D∂2
x q +

√
νg(q) h

K
η(x,t)

+ ∂x

[√
2q(x,t) Dh

K
χ (x,t)

]
, (6)

where η(x,t) and χ (x,t) are independent Gaussian noises
which have zero means and are δ-correlated both in x and
in t :

〈η(x,t)η(x ′,t ′)〉 = 〈χ (x,t)χ (x ′,t ′)〉 = δ(x − x ′) δ(t − t ′).
(7)

The first two terms on the right-hand side of Eq. (6) are the
same terms as in the deterministic Eq. (2). The last two terms
describe multiplicative noises coming from the on-site birth
and death processes (the third term), and from the random walk
(the fourth term, which has the form of a flux). Importantly,
the magnitudes of the two noise terms are comparable to each
other in the front region. The flux term does not appear in
the Langevin equations used in many papers for modeling
fluctuations of the front position caused by external noise
[15,16]. In addition, for external noise the analogs of function
g(q) are chosen ad hoc [15,16], whereas g(q) in Eq. (6) is
uniquely determined by the on-site birth and death rates.

Pechenik and Levine [17] used the Doi-Peliti formalism
[18] to derive the Langevin equation for a microscopic
model which includes processes A � 2A and random walk.
This model corresponds to propagation into unstable state.
However, the derivation would hold for propagation into a
metastable state as well. The Langevin equation of Ref. [17]
describes the evolution of the system in terms of the dynamics
of a sequence of Poissonian states [10]. A possible advantage
of their description is that the random walk noise is “absorbed”

by the variables and does not appear explicitly. An advantage
of Eq. (6) is that it provides a direct description of the dynamics
of the system in terms of the (rescaled) population size q(x,t).

Rescaling the position coordinate x and time t by lD and
1/ν, respectively, we can rewrite Eq. (6) as

∂tq(x,t) = f (q) + ∂2
x q(x,t) + N−1/2R(x,t,q) , (8)

where

R(x,t,q) =
√

g(q) η(x,t) + ∂x[
√

2q χ (x,t)] , (9)

where N = KlD/h � 1 is the typical number of particles in
the front region. The smallness of N−1/2, the effective mag-
nitude of the intrinsic noise, enables one to solve Eq. (8) per-
turbatively around the deterministic TWS, see Refs. [15,16].
One looks for a perturbative solution

q(ξX,t) = q0(ξX) + q1(ξX,t) , |q1| 
 q0, (10)

where ξX = x − c0t − X(t), and X(t) describes the noise-
driven displacement of the front position with respect to the
deterministic TWS. Going over to the variables ξX and t and
linearizing Eq. (8) around q0, we obtain

∂tq1 = L̂q1 + Ẋq ′
0 + N−1/2R(x,t,q0), (11)

where

L̂ = ∂2
ξ + c0∂ξ + f ′(q0), (12)

and we kept the old variable x in the noise term.
Ẋ(t) can be found from the solvability condition of Eq. (11).

To this end let us consider the eigenmodes of the operator
L̂: L̂φn = anφn. The zero mode φ0(ξ ) = q ′

0(ξ ), for which
a0 = 0, is the Goldstone mode, coming from the translational
invariance of the deterministic TWS. Importantly, the lowest
excited mode is gapped [15,19]. We expand

q1(ξX,t) =
∑

n

bn(t)φn(ξX),

and fix the definition of X(t) by setting b0(t) = 0. Now we
multiply Eq. (11) by ec0ξ and integrate over ξ from −∞ to
∞. As the operator ec0ξ L̂ is Hermitian, the functions φn with
different n are orthogonal to each other with weight function
ec0ξ , so upon normalization∫ ∞

−∞
dξφn(ξ )φm(ξ )ec0ξ = δnm, (13)

where δnm is the Kronecker’s δ. As a result,

Ẋ = −
∫ ∞
−∞ dξ q ′

0 ec0ξR(x,t,q0)

N1/2
∫ ∞
−∞ dξ (q ′

0)2 ec0ξ
. (14)

The front diffusion coefficient Df , in the frame moving with
the velocity c0, is given by the relation

Df = lim
t→∞

∫ t

0 dt1
∫ t

0 dt2 〈Ẋ(t1)Ẋ(t2)〉
2t

. (15)

Using Eqs. (15), (14), and (9) we obtain, after some algebra
(see Appendix),

Df = D

s0N
, (16)
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where

s0 =
[ ∫ ∞

−∞ dξ (q ′
0)2ec0ξ

]2∫ ∞
−∞ dξ

{
1
2 (q ′

0e
c0ξ )2 g(q0) + q0[(q ′

0e
c0ξ )′]2

} . (17)

That is, in order to calculate the front diffusion coefficient
one only needs two ingredients: the deterministic TWS q0(ξ )
and the function g(q) = λ̄(q) + μ̄(q) evaluated on q0(ξ ). As
expected [5,6], Df /D scales as N−1, in stark contrast with the
propagation into an unstable state where Df /D ∼ (ln N )−3

[7]. The first and second terms in the denominator of Eq. (17)
come from the birth-death noise and random walk noise,
respectively. We note that the numerator and the first term in the
denominator appeared in the calculations of the front diffusion
coefficient for the case of external fluctuations [15,16]. In
that case, however, g(q) is unrelated to the on-site birth and
death rates. Importantly, for f ′(q∗) < 0 and f ′(0) < 0, all the
integrals entering Eq. (17) converge.

IV. WENTZEL-KRAMERS-BRILLOUIN (WKB)
APPROXIMATION

Large fluctuations of the front position render the Fokker-
Planck approximation (5) and the ensuing Langevin Eq. (6)
inapplicable. However, one can still exploit the small param-
eter 1/N via a WKB approximation, see, e.g., [13,20,21],
by making the ansatz P (n,t) = exp[−KS(q,t)] in the master
Eq. (4). In the leading order in 1/K , this brings about a
Hamilton-Jacobi equation ∂tS + H (q,∂qS) = 0. In the con-
tinuum limit in x, the Hamiltonian functional H = ν

∫
dx w.

Here

w = H0(q,p) − ∂xq ∂xp + q (∂xp)2 (18)

is the rescaled Hamiltonian density, x is rescaled by lD , and

H0(q,p) = λ̄(q)(ep − 1) + μ̄(q)(e−p − 1) (19)

is the rescaled on-site Hamiltonian [13,20]. The last term in
Eq. (18) comes from the random walk noise. Note the identi-
ties H0(q,0) = 0, ∂pH0(q,0) = f (q), ∂qpH0(q,0) = f ′(q) and
∂ppH0(q,0) = g(q).

Instead of directly solving the Hamilton-Jacobi equation
for S(q,t), consider the Hamilton’s equations of motion

∂tq = ∂pH0(q,p) + ∂2
x q − 2∂x (q∂xp) , (20)

∂tp = −∂qH0(q,p) − ∂2
xp − (∂xp)2 (21)

for the population size q(x,t) and effective momentum
p(x,t) = h δS/δq. Deterministic dynamics take place in the
invariant hyperplane p = 0, where Eq. (20) reduces to Eq. (2).
Fluctuations involve a non-zero p(x,t), and this is the case
of our interest. To have a well-defined problem for Eqs. (20)
and (21) one needs to specify the boundary conditions, both
in space and in time. The boundary conditions in space
correspond to zero-energy fixed points of the on-site Hamilto-
nian: {q(−∞,t),p(−∞,t)} = {q∗,0} and {q(∞,t),p(∞,t)} =
{0,0}. The boundary conditions in time involve, in general,
specifying kink-like population size profiles q1(x) and q2(x)
at t = 0 and t = τ , respectively. After having solved the
Hamilton’s equations, one can calculate the action along the

trajectory of the system in the functional phase space q,p:

KS = N

∫ ∞

−∞
dx

∫ ντ

0
dt [p(x,t)∂tq − w] . (22)

We are interested in the probability of observing, in the frame
moving with the velocity c0, a front displacement X during a
time interval which is much longer than the front relaxation
time: ντ � 1. Our crucial assumption is that this probability is
described, in the leading order of 1/(ντ ) 
 1, by a traveling
wave solution (TWS) of Eqs. (20) and (21). This leads to
two coupled ordinary differential equations for q(ξ ) and p(ξ ),
where ξ = x − ct and c = X/τ is the average front velocity
during time τ :

q ′′ − 2(qp′)′ + cq ′ + ∂pH0(q,p) = 0 , (23)

p′′ + (p′)2 − cp′ + ∂qH0(q,p) = 0 . (24)

The boundary conditions are q(−∞) = q∗ and q(∞) =
p(−∞) = p(∞) = 0. As ∂tq = −cq ′(ξ ) for a TWS, Eq. (22)
reduces to

KS(c) = −Nντ

∫ ∞

−∞
dξ [cp(ξ )q ′(ξ ) + w] . (25)

Remarkably, Eqs. (23) and (24) possess a conservation law:

H0[q(ξ ),p(ξ )] + q ′p′ − q(p′)2 = C = const, (26)

where, by virtue of the boundary conditions, C = 0.
Although especially suitable for dealing with large fluc-

tuations of the front position, the WKB theory also captures
typical, small fluctuations. To see it, let us linearize Eqs. (23)
and (24) around the deterministic TWS (3):

q(ξ ) = q0(ξ ) + u(ξ ) and c = c0 + δc , (27)

where |u| ∼ |p| ∼ |δc| 
 1. We obtain

L̂u = −δc q ′
0 − g(q0)p + 2(q0p

′)′ , (28)

L̂∗p = 0 (29)

with zero boundary conditions at ±∞. The operator L̂ was
defined in Eq. (12), whereas the operator L̂∗ = d2

ξ − c0dξ +
f ′(q0) is adjoint to L̂.

For the small deviations, the action (25) can be expanded
to second order. The linear terms cancel out, whereas the
quadratic terms yield, after some algebra,

KS(δc) = Nντ

∫ ∞

−∞
dξ

[
1

2
g(q0)p2 + q0(p′)2

]
. (30)

As one can see, the knowledge of p(ξ ) alone is sufficient
for evaluating the action (and the front diffusion coefficient,
see below) for small fluctuations. Therefore, let us consider
Eq. (29). One independent solution of this equation, p1(ξ ) =
ec0ξ q ′

0(ξ ), obeys the zero boundary conditions at ±∞ [22].
Therefore, p(ξ ) = p0p1(ξ ) with an a priori unknown constant
p0. To determine this constant, we turn to Eq. (28) for u(ξ ),
where p(ξ ) enters the effective forcing term

F (ξ ) = −δc q ′
0(ξ ) − p0g[q0(ξ )]p1(ξ ) + 2p0[q0(ξ )p′

1(ξ )]′ .
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Demanding zero boundary conditions at ±∞, one can obtain a
solvability condition:

∫ ∞
−∞ dξ ec0ξ q ′

0(ξ )F (ξ ) = 0. This yields

p0

δc
= −

∫ ∞
−∞ dξ (q ′

0)2 ec0ξ∫ ∞
−∞ dξ{(q ′

0e
c0ξ )2g(q0) + 2q0[(ec0ξ q ′

0)′]2} . (31)

Then, from Eq. (30), KS = (1/4)s0Nντ (δc)2, where s0 is
defined in Eq. (17), and δc is still dimensionless. Recalling
that δc = X/τ − c0, we see that the probability distribution
P (X,τ ) is a Gaussian in the frame moving with the determin-
istic front velocity c0. Normalizing this distribution to unity
we obtain, already in the dimensional variables,

P (X,τ ) �
(

s0N

4πDτ

)1/2

exp

(
− s0NX2

4Dτ

)
, (32)

where |X/τ − c0| 
 (νD)1/2. Equation (32) coincides with
the Green function of a diffusion equation, so the front
diffusion coefficient Df = D/(s0N ), in a perfect agreement
with Eq. (16), derived from the Langevin equation.

Rare large fluctuations of the front position correspond
to |p| � 1 in the WKB formalism. This demands a full
nonlinear solution of Eqs. (23) and (24) which in general is
only accessible numerically. Examples of such calculations
are presented in the next section.

We should emphasize that our results on fluctuating
extinction fronts are conditional on the absence of attempted
extinction events in the region to the left of the front. This
conditioning is especially important for c0 < 0. Here an
extinction front appears already in deterministic description,
and formation of critical nuclei of the state q = 0 is possible
[8,13].

V. EXAMPLE

Consider three on-site reactions: A → 0, 2A → 3A, and
3A → 2A, with rate coefficients μ0, λ0, and σ0, respectively
[12,13,23,24]. It is convenient to perform the rescaling so
that λ̄(q) = 2q2 and μ̄(q) = γ q + q3, where ν = 3λ2

0/(8σ0),
K = 3λ0/(2σ0), and γ = 8μ0σ0/(3λ2

0). The on-site dynamics
exhibits bistability at δ2 ≡ 1 − γ > 0. In this case the zeros
of function f (q) = −q (q − qu)(q − q∗) describe two stable
fixed points of deterministic theory, 0 and q∗ = 1 + δ, and an
unstable fixed point qu = 1 − δ such that 0 < qu < q∗. The
deterministic TWS q0(x − c0t) is [1,2,8]

q0(ξ ) = δ + 1

1 + e(1+δ) ξ/
√

2
, c0 = 3δ − 1√

2
, (33)

so the deterministic front is advancing at 1/3 < δ < 1, retreat-
ing at 0 < δ < 1/3 and stationary at δ = 1/3. The function
g(q) = λ̄(q) + μ̄(q) = γ q + 2q2 + q3.

A. Small fluctuations

Within theory of small fluctuations, one only needs to
calculate s0 = s0(δ) from Eq. (17) which enters the front
diffusion coefficient Df = D/(s0N ). All the integrals can
be evaluated analytically. The result is a bit cumbersome,
however, so we only present it graphically, see Fig. 1, and

extinction colonization

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

s 0

δ

FIG. 1. (Color online) Function s0, defined in Eq. (17), versus
δ for processes A → 0, 2A � 3A, and random walk. The solid and
dashed segments distinguish between the colonization and extinction
fronts, respectively.

give its asymptotes:

s0(δ) =
⎧⎨
⎩

2
√

2 δ
9 + 178

√
2 δ2

135 , 0 < δ 
 1 ,

5
√

2
6 − 95

√
2 (1−δ)
72 , 0 < 1 − δ 
 1 .

(34)

The latter asymptote corresponds to μ0σ0 
 λ2
0. For δ = 1/3

(when the deterministic front is stationary) we obtain
s0 = √

2/6.
As one can see from Fig. 1, the front diffusion Df =

D/(sN ) for the extinction fronts is stronger than for the
colonization fronts. Furthermore, Df diverges as 1/δ when
δ → 0. This happens because, in this case, the integral in the
denominator of Eq. (17) diverges at ξ = −∞. The divergence
comes from the first term of the integrand, describing the
birth-death noise. Notice that δ = 0 is the (saddle-node)
bifurcation point of this model, and it is hardly surprising that
fluctuations are enhanced in the vicinity of this bifurcation.
Actually, very close to the bifurcation point our perturbation
theory breaks down. Indeed, it is only valid when the typical
value of Ẋ is much less than the deterministic front velocity
∼ (νD)1/2. By virtue of Eqs. (14) and (9), this boils down to a
strong inequality Nδ � 1.

On the other hand, Df behaves regularly at δ = 1, that
is when the reaction A → 0 is absent. Here s0 takes its
maximum value 5

√
2/6, so Df reaches its minimum for this

model. Notice that, for the reactions 2A � 3A the state q = 0
is marginally stable, but unstable with respect to any finite
perturbation q > 0.

B. Large fluctuations

Now consider large deviations of the front position. We
solved nonlinear Eq. (23) and (24) for the TWS by the shooting
method [25]. For given δ and c we first establish analytically, by
linearization, the asymptotic behavior of the solutions at large
negative ξ , where |q − q∗| 
 1 and |p| 
 1. This leaves us
with two arbitrary constants instead of four. By fixing one of
them, we fix the location of the solution in ξ , and are therefore
left with a single shooting parameter. The conservation law
(26) is used for accuracy control.

Figure 2 which shows the numerically found q(ξ ) profile for
δ = 1/3 and c = 2

√
2/3 (a) and c = −√

2/3 (b). Recall that
the deterministic front is stationary in this case, so such high
front velocities demand large fluctuations. The q(ξ ) profile–the
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FIG. 2. (Color online) Solid lines: the most probable population
size profiles for rescaled front velocities c = 2

√
2/3 (a) and c =

−√
2/3 (b). Parameter δ = 1/3, so that the deterministic front (dashed

line) does not move.

most probable population size profile for this front velocity–is
steeper than the deterministic profile in Fig. 2(a), and less steep
than the deterministic profile in Fig. 2(b).

Figure 3 shows the numerically found rescaled “action
accumulation rate”

ds

dt
= −

∫
dξ (cpq ′ + w) (35)

[see Eq. (25)] versus c for δ = 1/3. For small |c| the numerical
results agree with the linear theory prediction ds/dt =√

2 (δc)2/24. The tails of the distribution ∼exp[−KS(c)] =
exp(−Nντds/dt), however, are strongly non-Gaussian: un-
derpopulated for fluctuations pushing the front to the right
(toward colonization), and overpopulated for fluctuations
pushing the front to the left (toward population extinction).
That is, there is a much higher probability, at c0 = 0, to
observe an unusually fast extinction front, than an unusually
fast colonization front. This feature, however, can be model
dependent.

VI. IMPLICATIONS FOR POPULATION EXTINCTION

Now let the spatial system size be large but finite: L � lD ,
with impenetrable (reflecting) boundaries at x = 0 and x = L.
We still assume bistability, with q = q∗ and q = 0 being two
linearly stable fixed points of the deterministic description. The
zero population size throughout the system is an absorbing
state of the stochastic dynamics and, in the absence of
immigration, the population ultimately reaches this state with
probability one.

Let at t = 0 a population front be located at x = x0, where
0 < x0 < L and not too close to the boundaries. As before,
we assume that the populated state q = q∗ is on the left. The
mean time to extinction, T̄ can be very different depending
on whether the deterministic front is retreating, c0 < 0, or
advancing, c0 > 0. For c0 < 0, the population goes extinct

− 1.0 − 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

c

ds
/d

t

FIG. 3. (Color online) Symbols: numerically found “action
accumulation rate” ds/dt , see Eq. (35), as a function of the rescaled
front velocity for δ = 1/3. Dashed line: the prediction of linear theory,
ds/dt = √

2 (δc)2/24.

essentially deterministically, and T̄ � x0/|c0| scales as the
system size L. For c0 > 0 the front first populates the whole
system, around q = q∗, with probability close to 1. This
happens on a time scale (L − x0)/c0. Then the probability
that the population goes extinct by time t grows with t very
slowly, as T̄ is expected to be exponentially long [13,20].

Now, what happens in the special case of c0 = 0 [26]? Here
the front position wanders because of the intrinsic noise. As a
result, there are two routes to extinction. In the first route the
wandering front first reaches the left boundary x = 0 where the
population gets extinct rapidly. In the second route, the front
first reaches x = L. Here the population develops a long-lived
quasistationary distribution around q = q∗, and the probability
to go extinct by time t grows with time very slowly [13,20].

The probabilities pl and pr of each of the two routes
to occur, and the corresponding conditional mean times to
extinction T̄l and T̄r are described, in the leading order, by
a classical first passage problem for random walk (of the
front) in an interval [10,27]. Therefore, we immediately obtain
pl = 1 − x0/L and pr = x0/L. For the extinction via the left
boundary, T̄l coincides, in the leading order, with the average
first-passage time. The latter,

T̄l � Lx0

Df

(
2 − x0

L

)
, (36)

is well known, see, e.g., Ref. [27], p. 47. Typically, T̄l ∼
L2/Df in this case. For the extinction via the right boundary,
the conditional mean time to extinction T̄r is expected to be
exponentially long: much longer than the first-passage time
for that boundary.

VII. SUMMARY

We have developed a systematic theory of velocity fluc-
tuations of a population front propagating into a metastable
state. These fluctuations result from the intrinsic noises of
reactions (births, deaths, etc.) and random walk, and we have
identified the contributions of each of these noises to the
velocity fluctuations. For typical, small fluctuations we have
derived, from the underlying microscopic model, the Fokker-
Planck equation and the effective Langevin equation. We have
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calculated the front diffusion coefficient using two different
methods. The first method involved a perturbative solution
of the Langevin equation in the weak-noise-limit, 1/N 
 1.
The second method employed a perturbative solution of WKB
equations in the form of a traveling front which involves
both the rescaled population size q(x,t) and the effective
momentum p(x,t). As expected, the front diffusion coefficient
scales with N as 1/N . We have also evaluated, with a WKB
theory, the probability of rare large fluctuations of the front.
Here the probability distribution of the front position, in the
frame moving with the deterministic front velocity, turns out
to be non-Gaussian and strongly asymmetric. We have also
considered some implications of the theory for evaluating the
population extinction risk. Our approach is readily extendable
to multiple-step on-site processes such as nA → (n + k)A,
where n and k are integers, and k is not too large [13,20,23].
Finally, most of our results (one notable exception being the

extinction aspects considered in Sec. VI) remain valid when
both of the two linearly stable fixed points of f (q) describe
populated states, as in the spruce budworm model, see, e.g.,
Ref. [1], p. 7.
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APPENDIX

Here we give some detail on the algebra leading to Eq. (16).
Substituting Eq. (14) in Eq. (15), we obtain

Df = lim
t→∞

∫ ∞
−∞ dξ1

∫ ∞
−∞ dξ2

∫ t

0 dt1
∫ t

0 dt2 q ′
0(ξ1)q ′

0(ξ2)ec0(ξ1+ξ2)〈R(x1,t1,q0)R(x2,t2,q0)〉
2Nt

[ ∫ ∞
−∞ dξ (q ′

0)2ec0ξ
]2 . (A1)

Now we perform the ensemble averaging using Eq. (9). As η and χ are uncorrelated, we are left with two terms: Df = Df 1 + Df 2.
The first term comes from the intrinsic noise of births and deaths:

Df 1 = lim
t→∞

∫ ∞
−∞ dξ1

∫ ∞
−∞ dξ2

∫ t

0 dt1
∫ t

0 dt2 q ′
0(ξ1)q ′

0(ξ2)ec0(ξ1+ξ2)√g[q0(ξ1)]g[q0(ξ2)]δ(ξ1 − ξ2)δ(t1 − t2)

2Nt
[ ∫ ∞

−∞ dξ (q ′
0)2ec0ξ

]2 (A2)

which yields

Df 1 =
∫ ∞
−∞ dξ (q ′

0e
c0ξ )2g(q0)

2N
[ ∫ ∞

−∞ dξ (q ′
0)2ec0ξ

]2 . (A3)

Now we calculate the second term, coming from the random walk noise:

Df 2 = lim
t→∞

∫ ∞
−∞ dξ1

∫ ∞
−∞ dξ2

∫ t

0 dt1
∫ t

0 dt2 q ′
0(ξ1)q ′

0(ξ2)ec0(ξ1+ξ2)〈∂ξ1 [
√

2q0(ξ1) χ (ξ1,t1)]∂ξ2 [
√

2q0(ξ2) χ (ξ2,t2)]〉
2Nt

[ ∫ ∞
−∞ dξ (q ′

0)2ec0ξ
]2 . (A4)

We have

〈∂ξ1 [
√

2q0(ξ1) χ (ξ1,t1)]∂ξ2 [
√

2q0(ξ2) χ (ξ2,t2)]〉
= 2∂2

ξ1,ξ2
[
√

q0(ξ1) q0(ξ2) 〈χ (ξ1,t1)χ (ξ2,t2)〉]
= 2∂2

ξ1,ξ2
[
√

q0(ξ1) q0(ξ2) δ(ξ1 − ξ2)δ(t1 − t2)]

= 2δ(t1 − t2) ∂2
ξ1,ξ2

[q0(ξ1) δ(ξ1 − ξ2)]

= −2δ(t1 − t2) ∂ξ1 [q0(ξ1) δ′(ξ1 − ξ2)] . (A5)

The double integration over time of δ(t1 − t2) yields t

which cancels with t in the denominator. Integration over ξ2

gives

−2
∫ ∞

−∞
dξ2 q ′

0(ξ2)ec0ξ2δ′(ξ1 − ξ2) = −2[q ′
0(ξ1)ec0ξ1 ]′. (A6)

Now we calculate the integral over ξ1:

− 2
∫ ∞

−∞
dξ1 q ′

0(ξ1)ec0ξ1{q0(ξ1)[q ′
0(ξ1)ec0ξ1 ]′}′ . (A7)

Integrating by parts, we can rewrite this integral as
2
∫ ∞
−∞ dξ q0(ξ )[(q ′

0e
c0ξ )′]2. Therefore,

Df 2 =
∫ ∞
−∞ dξ q0[(q ′

0e
c0ξ )′]2

N
[ ∫ ∞

−∞ dξ (q ′
0)2ec0ξ

]2 . (A8)

Summing up the contributions (A3) and (A8), we obtain Df =
D/(s0N ), where s0 is defined in Eq. (17), and we have restored
dimensions by reintroducing D.
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