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We investigate confining mechanisms for Lévy flights under premises of the principle of detailed balance. In this
case, the master equation of the jump-type process admits a transformation to the Lévy-Schrödinger semigroup
dynamics akin to a mapping of the Fokker-Planck equation into the generalized diffusion equation. This sets
a correspondence between above two stochastic dynamical systems, within which we address a (stochastic)
targeting problem for an arbitrary stability index μ ∈ (0,2) of symmetric Lévy drivers. Namely, given a probability
density function, specify the semigroup potential, and thence the jump-type dynamics for which this PDF
is actually a long-time asymptotic (target) solution of the master equation. Here, an asymptotic behavior of
different μ-motion scenarios ceases to depend on μ. That is exemplified by considering Gaussian and Cauchy
family target PDFs. A complementary problem of the reverse engineering is analyzed: given a priori a semigroup
potential, quantify how sensitive upon the choice of the μ driver is an asymptotic behavior of solutions of the
associated master equation and thus an invariant PDF itself. This task is accomplished for so-called μ family of
Lévy oscillators.
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I. INTRODUCTION

Many complex physical systems can be satisfactorily
described in terms of the dynamics of a certain fictitious
particle under the action of random forces, originating from its
environment [1–4]. A microscopic locally defined impact of
(conservative) external forces upon noise is typically quanti-
fied within the Langevin approach as an additive deterministic
term. Whenever we can identify a Gaussian noise as an
emergent property of the environment-particle coupling, after
accounting for the presence of confining deterministic forces,
the interrelated notions of (thermal) equilibrium, Boltzmann
asymptotic probability density functions (PDFs), relaxation
rate, and detailed balance generically follow. That is the case
in the standard Brownian motion picture, based upon kinetic
theory derivations.

For quite a large number of systems exhibiting stochastic
features, experimental data show that the description based
on the concept of the Gaussian noise is insufficient, since
the involved fluctuations turn out to generate non-Gaussian
heavy-tailed distributions. This happens in a broad range of
systems of varied levels of complexity: physical, chemical,
biological [1–3], geophysical, economic [4].

We restrict further considerations to so-called Lévy flights
and specifically to a subclass of symmetric Lévy stable noises
or drivers. The Langevin formalism (additive or multiplicative)
is here a celebrated research standard and yields suitable frac-
tional versions of Fokker-Planck equations [1–3] governing
the dynamics of PDFs. Confining potentials and forces allow
for the existence of stationary (invariant, “equilibrium”) PDFs
whose number of moments in existence may exceed 1 or 2,
being finite but in principle arbitrarily large.

Contrary to the case of systems with Gaussian fluctuations,
the notion of equilibrium, although natural under confining
conditions, has no obvious thermal connotation in the context
of Lévy processes. Within the Langevin modeling of Lévy
flights one is faced with the nonexistence of the Gibbs-
Boltzmann thermal equilibrium PDF, c.f. [5] for the pertinent
no-go statement. That makes the Langevin approach to

confined Lévy flights plainly incompatible with the conceptual
framework of the Gibbs-Boltzmann thermodynamics, where
the detailed balance is a generic property and a signature of
thermal equilibrium.

Therefore, to address a thermalization of Lévy flights and
the validity of the principle of detailed balance, one needs to
resort to non-Langevin methods of quantifying an impact of
external potentials upon Lévy flights. One of possible options
is to invoke indirect (complex) implementations of the jump-
type random motion. We note in passing that a description
of subdiffusions, carried out [6,7] within the framework of a
subordination of random processes and involving an additional
fractional time-derivative in the transport equation, is known
to admit an exponential relaxation to Boltzmann equilibria, c.f.
also a discussion of the validity of the Nyquist theorem in [6].
In the present paper, we choose a direct option of dealing with
Lévy flights and stay within the limitations of the standard
theory of symmetric Lévy stable processes [1,2,8], where the
only “fractional” input refers to spatial derivatives, and never
to the time label.

It is clear that any conceivable “thermal equilibrium”
concept for non-Gaussian jump-type processes needs to be
addressed with care and should account for a number of
precautions. In particular, an issue of physically motivated
thermalization mechanisms for (confined) Lévy flights has
received only a residual attention in the literature [9–13],
mostly in connection with Tsallis statistics and kinetics issues.
The main obstacle here may be that the source of Lévy
noise is interpreted as extrinsic to the physical system under
consideration, with no reliable kinetic theory background, i.e.,
with no obvious microscopic channels of an energy exchange
with the environment.

Lévy flights are pure jump (jump-type) processes. There-
fore, it seems useful to recall that various model realizations of
standard jump processes (with jump size being bounded from
below and above) can be consistently thermalized, by means
of a locally defined scenario (through potentials affecting the
jump size and direction) of an energy exchange with the

011142-11539-3755/2011/84(1)/011142(10) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.011142


PIOTR GARBACZEWSKI AND VLADIMIR STEPHANOVICH PHYSICAL REVIEW E 84, 011142 (2011)

thermostat, see [14–17] and references therein. That involves
a suitable redefinition of, otherwise symmetric, transition rates
for the jump process. The validity of the principle of detailed
balance comes as a straightforward consequence. Inversely,
if we demand the principle of detailed balance to hold true,
this redefinition is a sufficient condition for a stationary PDF
to appear in the Gibbs-Boltzmann form. We note that there is
no known (additive or multiplicative) Langevin representation
for Lévy processes respecting the canonical form of detailed
balance of Refs. [14–17].

Interestingly, an analogous idea has been followed in
Refs. [18–20], for Lévy flights in the systems with topological
complexity like polymers. A different version of the fractional
Fokker-Planck equation, suitable for systems in thermal equi-
librium and with the symmetric Lévy-stable driver in action,
has been derived and found to admit a transformation into
the fractional version of the generalized diffusion equation.
There, the above equation has been named as a fractional or
generalized Schrödinger equation

∂tψ(x,t) = −Ĥψ(x,t), (1)

where there is no imaginary unit i before the time derivative.
The latter transformation relates the fractional Fokker-

Planck dynamics with the Lévy semigroup and is specific
to non-Langevin systems with a symmetric stable-noise.
Asymmetric (e.g., one-sided) stable processes cannot be
transformed into a semigroup dynamics. The corresponding
transport equation [21] is different from standard fractional
Fokker-Planck equations known in the literature [1–3] and as
well from those considered in Refs. [18–20], see also [9,13,22].

The main subject of the present paper is an exploration of
the direct relation of the master equation governed dynamics
(with the built-in detailed balance principle) and its Lévy
semigroup transcription. The class of confined Lévy-stable
driven systems, that is compatible with that correspondence,
comprises those jump-type processes which are equilibrated
(eventually, to a Gibbs-Boltzmann thermal equilibrium state)
by a mild spatial disorder of the physical environment in
which those jumps take place [13,19,20]. The environmental
inhomogeneities may be modeled by microscopic potentials
(various periodic ones were considered in Ref. [19]). We aim
at a significant generalization of our recent findings [9,13,22]
and, with a focus on a clarity of presentation and availability of
explicit analytical and computational outcomes, we consider
slightly simpler confining potentials.

While passing to the semigroup transcription of the master
equation dynamics, an effective semigroup potential appears
instead of an explicit input of Boltzmann (microscopic)
potentials. The relation between these two types of potentials
is indirect and will be clarified below. The resultant Kac
(or Feynman-Kac) exponential weight, with that semigroup
potential in the exponent, is responsible for a large-scale
statistical (spatial) redistribution of random paths executed
in the course of the pertinent Lévy process. A thorough study
of that issue (statistics of random paths) in a simpler context
of standard jump processes can be found in Refs. [23,24].

An impact of environmental potentials can thus be quan-
tified as follows: (a) on the level of the master equation,
by means of a locally defined microscopic potential U (x)

(entering a multiplicative modification of transition rates)
which, if confining, explicitly appears in the exponent of
the Boltzmann stationary PDF ρ∗(x) ∼ exp(−U ), (b) on
the level of the associated semigroup dynamics, by means
of an effective semigroup potential V(x) in the fractional
Schrödinger-type equation; it is the positive ground state
ρ

1/2
∗ (x) � exp[−U (x)/2] of the latter which actually deter-

mines ρ∗(x) of (a).
Contrary to the approach of Refs. [18–20], where model-

study transition rates (and the involved microscopic potentials)
were heuristically introduced, we put forward, as a primary
motion picture, a semigroup version of the jump-type dynam-
ics with symmetric Lévy-stable drivers. It is a functional form
of the semigroup potential V(x), which we consider to be an
arbitrary continuous and bounded from below function, that
ultimately ensures the existence of an asymptotic invariant
PDF for the associated master equation and gives rise to
Markovian realizations of the pertinent jump-type dynam-
ics. Here we encounter the following large time behavior:
− ln ψ(x,t → ∞) → − ln[ρ1/2

∗ (x)] ∼ U (x)/2, where U (x) is
the pertinent Boltzmann potential and ψ(x,t) is a solution of
Eq. (1).

The structure of the paper is as follows. First we discuss an
issue of detailed balance for standard jump processes and next
define its immediate generalization to Lévy flights [μ-family
of Lévy-stable laws with μ ∈ (0,2)] in Secs. II and III. A
mapping of the resultant master equation to a fractional version
of the generalized diffusion equation follows in Sec. IV. For
clarity of presentation, we make a Brownian detour in Sec. V
to indicate how the semigroup framework is related to the
standard Fokker-Planck dynamics of diffusion-type processes.
Some material presented in Secs. II–V have already been
presented in our previous works. The purpose of this inclusion
is to make the paper self-contained.

Essentially new results are presented in Secs. VI–VIII;
Eqs. (18), (25), and (33) comprise the main novel results of
the paper. In Sec. VI we describe the Lévy μ targeting under
an assumption that target PDFs are selected from so-called
Cauchy α family of PDFs. For a computationally advantageous
example of α = 2 and arbitrary μ ∈ (0,2) we provide analytic
formulas for the associated semigroup potentials (they define
the semigroup dynamics which makes the considered PDFs to
be genuine asymptotic targets of the jump-type process). In
Sec. VII the Lévy targeting is considered for Gaussian target
PDFs. Section VIII presents a complete solution of the reverse
engineering problem for the μ family of Lévy oscillators,
corresponding to quadratic semigroup potential. The obtained
analytic formulas for asymptotic PDFs are depicted in Figs. 4
and 5.

Not to overburden the paper with formal arguments, a
general solution of the reverse engineering problem for
arbitrary semigroup potential has been moved to another
publication.

II. JUMP PROCESSES AND DETAILED BALANCE

Let K be a finite state space, with x,y ∈ K . We consider
Markovian stochastic dynamics for a finite random system,
with transition rates k(x|y) ≡ k(y → x). Given an initial
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probability distribution ρ0(x), its time evolution for times
t � 0 is governed by the master equation:

d

dt
ρt (x) =

∑
y∈K

[k(x|y)ρt (y) − k(y|x)ρt (x)] . (2)

Given a stationary solution ρeq(x) of the master equation,
ρ̇eq(x) = 0. If we have

k(x|y)ρeq(y) = k(y|x)ρeq(x) (3)

one says that the condition of detailed balance is fulfilled.
Let ρeq(x) ∝ exp[−U (x)], where U is a suitable function

on K . (The inverse temperature β can be safely absorbed in
the definition of U . As well, for clarity of discussion, we can
set β = 1.) Accordingly

k(x|y) = k(y|x) exp[U (y) − U (x)] . (4)

We note that k0(x|y) = k0(y|x), in a finite state space, yields
a uniform distribution ρeq(x) = const for all x ∈ K . Let us
consider a simple multiplicative modification of a symmetric
transition intensity k0(x|y):

k0(x|y) =⇒ kU (x|y) = k0(x|y) exp

[
U (y) − U (x)

2

]
. (5)

By inspection [simply replace k(x|y) by kU (x|y) in
Eqs. (2)–(4)] one verifies the validity of the detailed balance
condition, with ρeq(x) ∝ exp[−U (x)] as the corresponding
stationary distribution.

We assume that an equilibrium density ρeq(x) > 0 is unique
and presume the detailed balance conditions (3) and (4) to be
respected. Then, the relative entropy (negative of the Kullback-
Leibler entropy) becomes

S(ρt |ρeq) =
∑
x∈K

ρt (x) ln
ρt (x)

ρeq(x)
= F(ρt ) − F(ρeq) � 0. (6)

Here an obvious analog of the familiar Helmholtz free energy
F(ρt ) = ∑

x∈K U (x)ρt (x) − S(ρt ) has been introduced, with
S(ρt ) = −∑

x∈K ρt (x) ln ρt (x) being the Shannon entropy of
the probability distribution ρt (x). We have F(ρt ) � F(ρeq) =
− ln

∑
x∈K exp[−U (x)]. The relative entropy is monotonous

in time and converges to zero, which is accompanied by a
decrease of the free energy F(ρt ) to its minimal value F(ρeq).

It is useful to mention an interesting inverse stationary
problem of Refs. [15,16]. Namely, for an arbitrary positive
probability distribution ρeq(x) > 0 on K there exists a function
U (x) such that ρeq(x) is invariant under the jump dynamics
with the transition rate kU (x,y) of the form (5). In the original
formulation of Ref. [16], the reference transition rate k0(x,y)
needs not to be symmetric.

III. DETAILED BALANCE FOR LÉVY FLIGHTS

The above reasoning gives an immediate justification to
the strategy adopted before in the context of Lévy-stable
processes, albeit with no explicit reference to the detailed
balance principle, in a number of papers [18–20]. We also
note Refs. [9,13,22], where “stochastic targeting” and related
“inverse engineering” (terms, originally coined in Ref. [5])
have been exploited to this end.

To proceed further, we recall that a characteristic function
of a random variable X completely determines a probability
distribution of that variable. If this distribution admits a
PDF ρ(x), we can write 〈exp(ipX)〉 = ∫

R
ρ(x) exp(ipx)dx. A

classification of infinitely divisible probability laws is provided
by the Lévy-Khintchine formula for the exponent −F (p) of
〈exp(ipX)〉 = exp[−F (p)].

We restrict subsequent considerations to a subclass of
stable probability distributions with F (p) = |p|μ, with 0 <

μ � 2. The induced jump-type dynamics 〈exp(ipXt )〉 =
exp[−tF (p)] is conventionally interpreted in terms of Lévy
flights and quantified by means of a pseudodifferential (frac-
tional) analog of the heat equation for corresponding PDF

∂tρ = −|�|μ/2ρ =
∫

[wμ(x|y)ρ(y) − wμ(y|x)ρ(x)]dy,

(7)

which has been rewritten as a master equation for a random
system on real axis, with a pure jump dynamics. The jump rate
wμ(x|y) ∝ 1/|x − y|1+μ is a symmetric function, wμ(x|y) =
wμ(y|x) akin to k0(x|y) of the previous subsection. We recall
that the action of a fractional operator |�|μ/2 on a function
from its domain is defined by means of the Cauchy principal
value of an involved integral, which is singular at x = z:

−(|�|μ/2f )(x) = �(μ+1) sin(πμ/2)

π

∫ ∞

−∞

f (z) − f (x)

|z − x|1+μ
dz.

(8)

The above singularity can be consistently handled. To this end,
we change the variables in Eq. (8) to obtain

−|�|μ/2f (x) = �(1 + μ) sin πμ

2

π

∫ ∞

−∞
dy

f (x + y) − f (x)

|y|1+μ

(9)

and pay attention to the fact that the integral in (9) should
be taken as its Cauchy principal value. The existence of the
principal value for arbitrary μ can be proven by the expansion
of f (x + y) in (9) in the Taylor series at small y: f (x + y) −
f (x) ≈ yf ′(x). Substituting the above Taylor expansion into
the integral (9), we find that its behavior in the vicinity of
y = 0 is dictated by the integral∫ ε

−ε

y

|y|1+μ
dy =

∫ ε

−ε

|y|−μ sign y dy ≡ 0 (10)

as the integrand is odd at any 0 < μ < 2. The expression (10)
shows that the Cauchy principal value of the integral (8) exists
for any function f (z), the only regularity condition is that
this function should decay at infinities faster then 1/z2, which
yields f (z) ∼ |z|μ−1−δ , δ > 0 as |z| → ∞.

Mimicking the previous step (5), we open a possibility of
a locally controlled energy exchange with an environment, by
modifying the jump rate wμ(x|y) of the free (neither external
forces nor potentials) fractional dynamics to the nonsymmetric
form wU

μ (x|y) �= wU
μ (y|x): wU

μ (x|y) = wμ(x|y) exp([U (y) −
U (x)]/2). With wU

μ (x|y) replacing wμ(x|y), the master
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equation (7) ultimately takes a slightly discouraging form,
known from a number of previous publications:

∂tρ = −|�|μ/2
U ρ =

∫ [
wU

μ (x|y)ρ(y) − wU
μ (y|x)ρ(x)

]
dy

= −[exp(−U/2)] |�|μ/2[exp(U/2)ρ]

+ ρ exp(U/2)|�|μ/2 exp(−U/2). (11)

The above transport equation cannot be transformed to any
known form of the fractional Fokker-Planck dynamics, based
on the standard (Lévy-stable) Langevin modeling (c.f. [26–30]
for literature sample). These two dynamical patterns of
behavior are inequivalent [9,22].

For a suitable (to secure normalization) choice of U (x),
ρeq(x) ∝ exp[−U (x)] is a stationary solution of Eq. (11). The
detailed balance principle of the form (3) and (4) holds true.

For the record, let us mention that the free fractional
Fokker-Plack equation (7) has no stationary solutions. Thus,
the jump-type dynamics with properly modified jump rates
clearly may give rise to confined Lévy flights. Their asymptotic
PDFs in principle may have an arbitrary, not necessarily finite
and/or small, number of moments. The reference stable laws
generically have no moments of order higher than one.

IV. LÉVY SEMIGROUP MODELING

The master equation (11) cannot be derived within the stan-
dard Langevin modeling of confined Lévy flights [13,22,25].
The latter motion scenario (with an ample coverage in the
literature [26–28]) is incompatible with that based on the
detailed balance principle (3), (4) and the resultant Eq. (11),
c.f. [9,22].

The form of Eq. (11) is not handy. However, there exists an
equivalent description of the pertinent dynamics in terms of
a Lévy-stable semigroup or a fractional (Lévy-)Schrödinger-
type equation [13,19,20,25]. The difference with the standard
time-dependent Schrödinger equation is the absence of an
imaginary unit i before time derivative [e.g., in Eq. (11)].

To this end let us consider the Lévy-Schrödinger Hamilto-
nian operator with an external potential

Ĥμ ≡ |�|μ/2 + V(x). (12)

Suitable properties of V need to be assumed, so that −Ĥμ is a
legitimate generator of a dynamical semigroup exp(−tĤμ) and
∂t� = −Ĥμ� holds true for real functions �(x,0) → �(x,t).

Let us a priori select an invariant probability density
ρeq(x)

.= ρ∗(x) ∝ exp[−U (x)] of Eq. (11). To make it an
asymptotic PDF of a well-defined jump-type process we
address an issue of the existence of a suitable semigroup
dynamics.

Looking for stationary solutions of the affiliated semigroup
equation ∂t� = −Ĥμ�, we realize that if a square root of a
positive invariant PDF ρ∗(x) is asymptotically to come out
via the semigroup dynamics � → ρ

1/2
∗ , then the resulting

fractional Sturm-Liouville equation Ĥμρ
1/2
∗ = 0 imposes a

compatibility condition upon the functional form of V(x),

that needs to be respected. Namely, the potential function and
invariant PDF ρ

1/2
∗ should be related as

V = −|�|μ/2ρ
1/2
∗

ρ
1/2
∗

. (13)

The resulting semigroup dynamics provides a solution for the
Lévy stable targeting problem, with a predefined invariant
PDF.

Inversely, if we predefine a concrete potential functionV(x),
then the functional form of an asymptotic invariant PDF ρ∗(x)
[actually ρ

1/2
∗ (x)] comes out from the above compatibility

condition. We call the problem of derivation of ρ∗ from a
predefined semigroup potential V(x) as reverse engineering
problem, see Ref. [5] where this idea had been put forward.

For V = V(x) bounded from below, the integral kernel
k(y,s,x,t) = {exp[−(t − s)Ĥ ]}(y,x), s < t , of the dynamical
semigroup exp(−tĤ ) is positive. The semigroup dynamics
reads �(x,t) = ∫

�(y,s) k(y,s,x,t) dy, so that for all 0 �
s < t we can reproduce the dynamical pattern of behavior,
actually set by Eq. (11), but now in terms of Markovian PDFs
p(x,s,y,t):

ρ(x,t) = ρ1/2
∗ (x)�(x,t) =

∫
p(y,s,x,t)ρ(y,s) dy, (14)

where

p(y,s,x,t) = k(y,s,x,t)
ρ

1/2
∗ (x)

ρ
1/2
∗ (y)

.

An asymptotic behavior of �(x,t) → ρ
1/2
∗ (x) implies

ρ(x,t) → ρ∗(x).
A remark is in place here. The spectral theory of fractional

operators of the form (12) has received a broad coverage in the
mathematical [8,31–34] and mathematical physics literature
[35,36]. An explicit functional form of asymptotic invariant
PDFs of confined Lévy flights ρ∗ (ρ1/2

∗ in the semigroup
notations) is seldom accessible, with a notable exception of
those for Cauchy flights [22,28]. Therefore it is wise to rely on
accumulated data that are available, about the near-equilibrium
behavior and the decay of PDFs as |x| → ∞, under very
general circumstances. Various rigorous estimates pertaining
to the decay at infinities of the eigenfunctions, quantify the
number of moments of the associated PDFs for different
classes of potential functionsV(x). As well, fractional versions
of Feynman-Kac formula determining an integral kernel of
the semigroup operator, and thence the transition probability
which generates [by virtue of Eq. (14)] the PDF ρ(x,t)
dynamics consistent with Eq. (11), have an ample coverage
therein.

V. BROWNIAN DETOUR

The aim of this section is to describe the relation between
above Lévy-Schrödinger semigroup framework and standard
Fokker-Planck dynamics of diffusion-type processes. To make
this description clear, here we put explicit relations, translating
things from the language of partial differential equations
(like the Fokker-Planck one) and dealing explicitly with
PDFs into the operator language, inherent in (both normal
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and fractional) quantum mechanics and ultimately in Lévy-
Schrödinger semigroup.

In the theory of standard Brownian motion, the Langevin
equation or the like (stochastic differential equation with
the Wiener noise input) allows to infer a corresponding
Fokker-Planck equation. This in turn can be transformed into a
Hermitian (strictly speaking, self-adjoint) spectral problem
[29]. Contrary to the Lévy-stable case, for diffusion-type pro-
cesses both these descriptions (e.g., semigroup and Langevin-
based Fokker-Planck approaches) are similar descriptions of
the dynamics of ρ(x,t).

Given the spectral solution for the operator Ĥ = −� +
V , the integral kernel of exp(−tĤ ) reads k(y,x,t) =∑

j exp(−εj t) �j (y)�∗
j (x). Here, the sum may be replaced by

an integral in case of a continuous spectrum and (generalized)
eigenfunctions may be complex-valued.

If we set V(x) = 0 identically, a purely continuous spectral
problem arises. Then, one arrives at the familiar heat kernel

k(y,x,t) = [exp(t�)](y,x)

= (2π )−1/2
∫

exp(−p2t) exp(ip(y − x)) dp

= (4πt)−1/2 exp

[
− (y − x)2

4t

]
,

which is a well-known transition probability density of the
Wiener process [actually, upon setting t → (t − s)].

When confining potentials are present, either entire spec-
trum or its part turns out to be discrete, the corresponding
eigenfunctions being real-valued. A standard example is the
harmonic oscillator, i.e., the Ornstein-Uhlenbeck process in its
original stochastic version. Consider

Ĥ = (1/2)(−� + x2 − 1).

The integral kernel of exp(−tĤ ) is given by the classic Mehler
formula [37]:

k(y,x,t) = k(x,y,t) = exp(−tĤ )(y,x)

= 1

π
√

1 − e−2t
exp

[
− x2 − y2

2
− (xe−t − y)2

1 − e−2t

]
.

The normalization condition

∫
k(y,x,t) exp[(y2 − x2)/2] dy = 1

directly employs [and defines upon setting t → (t − s)]
the transition probability density of the Ornstein-Uhlenbeck
process,

p(y,x,t) = k(y,x,t)
ρ

1/2
∗ (x)

ρ
1/2
∗ (y)

with ρ∗(x) = π−1/2 exp(−x2) being its (Gaussian) invariant
PDF.

VI. CAUCHY FAMILY OF PDFS AND LÉVY μ TARGETING

Here we describe in some detail the Lévy stable (with
stability index μ) targeting strategy with the predetermined
one-parameter family of Cauchy target PDFs:

ρ∗(x)≡ρα(x)= �(α)√
π�(α−1/2)

1

(1+x2)α
, α > 1/2. (15)

We consider functions (15) as asymptotic invariant PDFs for
the stochastic jump-type process of Eq. (11). We wish to
demonstrate that any μ-stable driver can be employed to this
end.

Instead of addressing directly Eq. (11), we use the
semigroup dynamics exp(−tĤμ) generated by the fractional
operator (12), i.e., the integrodifferential equation

∂t� = −|�|μ/2� − Vμ�, (16)

where �(x,t) ≡ ρ(x,t)/ρ1/2
∗ (x) and Vμ(x) = −(|�|μ/2ρ

1/2
∗ )/

ρ
1/2
∗ , 0 < μ � 2.

We note that the Cauchy family (15) has been chosen
for computational convenience only. In principle, there is no
restriction on the choice of any other target PDF ρ∗(x). The
qualitative outcome will be the same as that provided in terms
of family (15). Hereafter we call such general procedure “μ
targeting.”

Let us add, as a side comment, that the Cauchy family
of PDFs has played an important role in the previously
mentioned search for “thermodynamic equilibria,” that may
possibly be associated with confined Lévy flights [10–12].
It is known [9,10] that an exponent α in principle can be
directly related to the thermal equilibrium label α ∝ 1/kBT .
An analogous observation has been reported in Refs. [9,13],
after transforming PDFs (15) into an “exponential form,”
which resembles Boltzmann one ρ∗ ∝ exp(−U ), with U (x) =
α ln(1 + x2).

To pass over to the semigroup description we need to infer
Vμ(x), given ρ∗. This can be done analytically by means of
the Fourier transform, specifically because Fourier images of
functions (15) for arbitrary α > 0.5 exist in a closed analytical
form of MacDonald functions Kν [38].

The Fourier image g(k) = 1√
2π

∫ ∞
−∞ g(x)eıkxdx of a func-

tion g(x), when adopted to g(x) = |�|μ/2f (x) reads |k|μf (k).
Fourier images of the square roots of PDFs (15) read

ρ1/2
α (k) =

√
2�

(
1+α

2

)
π� (α − 1/2) �(α/2)

|k| α−1
2 Kα−1

2
(|k|). (17)

An explicit expression for the α family of “μ potentials”
Vμ,α(x) = −(|�|μ/2ρ

1/2
α )/ρ1/2

α readily follows:

Vμ,α(x) = − 2μ

√
π

(1 + x2)α/2 �
( 1+μ

2

)
�

(
α+μ

2

)
�

(
α
2

)
× 2F1

(
1 + μ

2
,
α + μ

2
,
1

2
, − x2

)
, (18)

where 2F1(a,b; c,x) is a hypergeometric function [38].
The expression (18) gives the general form of the semigroup

potentialsVμ,α(x) for arbitrary α and μ. To have a better feeling
about the properties of the function (18), we should explore
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FIG. 1. (Color online) Dependence Vμ,2(x) for ρ2 terminating
PDF. Figures near curves correspond to μ values. The potentials for
μ = 1 and 2 are given by Eqs. (21) and (22), respectively.

this expression for some specific values of parameter α. Further
discussion is limited to the case of α = 2, i.e.,

ρ
1/2
2 (x) =

√
2

π

1

1 + x2
→ ρ

1/2
2 (k) = e−|k|. (19)

We note that the Fourier image ρ
1/2
2 (k) directly comes from the

general expression (17), if we use K1/2(x) = (π/2x)1/2 e−x .
Then for all 0 < μ < 2 we have

Vμ,2(x)=−(1 + x2)
1−μ

2 �(1+μ) cos[(1+μ) arctan x]. (20)

For μ = 1 from (20) we recover our elder result, originally
obtained in the context of Cauchy flights [22]:

V1,2(x) = x2 − 1

1 + x2
. (21)

The plots of the μ dependence of (20) are reported in Fig. 1.
The stability index μ is constrained to stay within an interval

0 < μ � 2. The boundary value μ = 2 takes us beyond the
jump-type “territory” to continuous (Wiener noise) stochastic
processes. It is interesting to observe that on the level of “μ
potentials,” the transition from μ < 2 to μ = 2 is actually
smooth.

Analytically, recalling the fractional derivative transcription
(−�)μ/2 ≡ −∂μ/∂|x|μ and then setting “blindly” μ = 2 in
(13), we arrive at the semigroup potential for the operator
Ĥ = −� + V2,2:

V2,2(x) = VFP (x) =
d2

dx2 ρ
1/2
2 (x)

ρ
1/2
2 (x)

= 2(3x2 − 1)

(1 + x2)2
. (22)

The notationVFP (x) refers to the fact that this potential appears
in the semigroup (self-adjoint) version (c.f. Ref. [29]) of the
standard Fokker-Planck equation for a diffusion-type process.
The same result (22) can be obtained from Eq. (20) at μ = 2.

The expression (20) permits us to expand the potential
Vμ,2(x) near μ = 2 to obtain

Vμ→2,2(x) ≈ 2(3x2 − 1)

(1 + x2)2
− μ − 2

(1 + x2)2

×{2x(x2 − 3) arctan x

+ (3x2 − 1)[2γ − 3 + ln(1 + x2)]}, (23)

where γ ≈ 0.577216 is Euler constant. This (along with
numerical curves from Fig. 1) demonstrates the continuous
transition from μ < 2 to μ = 2 in Vμ,2(x).

VII. GAUSSIAN μ TARGETING FOR LÉVY FLIGHTS

In the previous publications [9,13,22] we have investigated
various patterns of jump-type and diffusive behavior that
would produce a priori selected, basically heavy-tailed PDFs
in the large time asymptotics. While an association of jump
type-processes with PDFs possessing a finite number of
moments is rather natural, an observation of Ref. [13] that
diffusion-type processes may as well admit such asymptotic
PDFs, may be classified as “unnatural.”

Here we proceed in the very same “unnatural” vein, asking
for a Lévy-stable jump-type dynamics, whose asymptotic PDF
would have a definite Gaussian form. Let us select the Gaussian
target PDF

ρ∗ = 1

σ
√

2π
e
− x2

2σ2 , (24)

whose square root ρ
1/2
∗ (x) ≡ f (x) = (2πσ 2)−1/4

exp(−x2/4σ 2) has the Fourier image (ρ∗)1/2(k) ≡ f (k) =
(2σ 2/π )1/4 exp(−k2σ 2). That gives

VμG(x) = −σ−μ

√
π

e
x2

4σ2 �

(
1 + μ

2

)
1F1

[
1 + μ

2
,
1

2
, − x2

4σ 2

]
,

(25)

where 1F1(a,b,x) is a hypergeometric function [38]. This μ

family of semigroup potentials sets solution to the Lévy stable
targeting problem, if the desired target has the Gaussian form.

Minor comments are necessary for a qualitative assessment
of the above analytic result. The potentialVμG(x) (25) depends
on two parameters: order of fractional derivative μ and
variance σ . It can be seen from Eqs. (24) and (25) that the
variance σ simply alters the width of the potential curve and
does not influence its shape. The same is true for the factor
σ−μ in front of Eq. (25). That is why in Fig. 2 we report the
shape of the potential (25) in normalized variables z = x/(2σ )
and yμ = σμVμG(x). These universal curves are the same for
any σ and depend on the single parameter μ. Note, that in
these variables the μ = 2 parabola assumes the form y2 =
z2 − 1/2.

It is also seen from Fig. 2 that at small μ the potential yμ is
around −1 [we recollect that at μ = 0 VμG(x) ≡ −1], while
at larger x it has very steep growth like exp(z2). These steep
tails flatten as μ grows and around μ = 1.5 the exponential
growth of the potential is replaced by power-law zμ so that at
μ = 2 we have the correct asymptotics z2.

VIII. REVERSE ENGINEERING: ASYMPTOTIC
μ TARGETS FOR LÉVY OSCILLATORS

Now we pass to a detailed discussion of a particular class
of solvable examples of the reverse engineering problem
which well illustrates the following general strategy (its full
description is moved to another publication): given a priori a

011142-6
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FIG. 2. (Color online) The potential (25) in normalized variables.
Figures near curves correspond to μ values.

concrete semigroup with Lévy driver, infer an asymptotic PDF
for the associated master equation (11).

Our main idea is to adopt an approach we have developed
before [9] (see also [34,40]) to the Lévy oscillator with V(x) =
x2/2 and arbitrary stability index μ.

We begin with the equation for a terminal PDF ρ∗, inferred
from the μ-Lévy semigroup with a predefined harmonic
potential

Vμ(x)ρ1/2
∗ ≡ x2

2
ρ1/2

∗ = −|�|μ/2ρ1/2
∗ , 0 < μ � 2. (26)

We take Fourier images of both sides of Eq. (26) to obtain

uk = 1√
2π

∫ ∞

−∞

x2

2
f (x)eıkxdx = −1

2

∂2f (k)

∂k2
. (27)

The right-hand side of Eq. (26) has the form −|k|μf (k) so that

∂2f (k)

∂k2
≡ d2f (k)

dk2
= 2|k|μf (k). (28)

The idea to solve the Eq. (28) for arbitrary 0 < μ � 2
is borrowed from Ref. [40], where the solution for μ = 1
had been obtained in terms of Airy functions. The method
of Ref. [40] is based on the consideration of 1D Schrödinger
problem with a potential being even function of the coordinate,
which implies that the corresponding eigenfunctions should
be either even or odd (see, e.g., [41,42]). In particular, the
ground-state wave function should be even as it does not
have nodes [41]. It can be shown that solution f (k), defining
the Fourier image of desired terminal PDF, corresponds to
the ground-state wave function of the above Schrödinger
problem. Generalizing the method of Ref. [40] for arbitrary
μ, we can show that to obtain this function for even potential
like |k|μ we should consider instead of (28) the equation
d2f (k)

dk2 = 2 signk |k|μf (k) or{
d2f (k)

dk2 = 2kμf (k), k > 0
d2f (k)

dk2 = −2(−k)μf (k), k < 0.
(29)

Now the scenario of obtaining the desired f (k) is as follows.
After finding the exponentially decaying solution of Eq. (29)

-6 -4 -2 0 2 4
k

-3

-2

-1

0

1

2

3

4

R
aw

 s
ol

ut
io

n,
 f

(k
)/

C

-1 0 1
-1

0

1

P
ot

en
ti

al

μ=0.3
1

2

k
m

k

FIG. 3. (Color online) Raw solutions of Eq. (33) (main panel)
and potential sign k |k|μ (inset). Curves are μ-labeled. Arrows show
the correspondence between potential and raw solution for given μ.
Thick black line on the inset shows the potential for μ = 0.01, which
has almost rectangular shape. Solution for μ = 1 corresponds to Airy
function (35).

for k > 0 and oscillatory one at k < 0, we should require the
continuity of the function f (k) and its derivative at k = 0. This
is because the Eq. (29) is of the second order. After that we
should find the position km of the first maximum of oscillating
part and shift the solution to the right by km so that the first
maximum of oscillatory part is at k = 0. Then “chopping” the
rest of oscillating part and reflecting the obtained piece about
the vertical axis to obtain the even “bell-shaped” function. The
resultant solution in the k space should be Fourier-inverted
and squared to yield the desired terminal PDFD in the x

space.
To fulfill this scenario, we observe the following form

of solutions of Eq. (29) for k > 0 and k < 0 [39]. Namely,
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FIG. 4. (Color online) Normalized solutions for Fourier images
of square roots of terminal PDFs in k space. Curves are μ-labeled.
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for k � 0

f (k) =
√

k

[
C11I 1

2q

(√
2

q
kq

)
+ C12K 1

2q

(√
2

q
kq

)]
, (30)

while for k < 0

f (k) =
√

|k|
[
C21J 1

2q

(√
2

q
|k|q

)
+ C22N 1

2q

(√
2

q
|k|q

)]
,

(31)

where q = (μ + 2)/2. Here Jν(x) and Nν(x) are Bessel
functions and Iν(x) and Kν(x) are modified Bessel functions,
see Ref. [38]. At x → ∞ Iν(x) is exponentially growing
function [38] while Kν(x) is exponentially decaying [38]. On
the other hand, as x → −∞ the functions Jν(x) and Nν(x)
have “needed” oscillatory asymptotics [38]. This means that
to have a localized PDF, we should leave the term with K 1

2q
in

(30) only. Then f (k) assumes the following form:

f (k)=
⎧⎨
⎩
C12

√
kK 1

2q

(√
2

q
kq

)
, k � 0

√|k|[C21J 1
2q

(√
2

q
|k|q) + C22N 1

2q

(√
2

q
|k|q)], k < 0.

(32)

Now we join (glue) the obtained solutions at k = 0 to secure
a continuity of a function and its first derivative.

The gluing procedure yields

f (k) = C
√

|k|
{

Kν(u), k � 0
π
2

[
cot πν

2 Jν(u) − Nν(u)
]
, k < 0,

(33)

where C ≡ C12,

ν = 1

2q
≡ 1

μ + 2
, u =

√
2

q
|k|q ≡ 2

√
2

μ + 2
|k|1+ μ

2 . (34)

We note here that for the Cauchy driver, i.e., μ = 1 we obtain
from (33) the result

f (k) = C
√

kK 1
3

(
2
√

2

3
k

3
2

)
= C

π
√

3

2
1
6

Ai(2
1
3 k), (35)

known from our earlier publication [9].
The “raw” solutions (33) are plotted in the main panel of

Fig. 3 for different values of μ. It is seen from the inset that for
μ → 0 (thick black line corresponding to μ = 0.01) the poten-
tial has the shape of almost rectangular barrier, corresponding
to decaying solution (localized particle inside the barrier) at
k > 0 and oscillating one (free particle) at k < 0 [41,42]. We
note here that for potentials depicted in the inset to Fig. 3 the
above kind of solution exist only if its eigenenergy lies between
the limiting values of a barrier at |x| → ∞ [41,42]. In this case
the zeroth eigenenergy, which is the case for Eqs. (28) and (29),
perfectly suits the problem under consideration not only for
μ → 0, where the barrier is almost rectangular, but also at
higher μ. This explains the fact that as the shape of barrier
deviates from rectangular one at μ increase, the oscillations at
k < 0 start to decay, the strongest one being at μ = 2. Also,
with the growth of μ, the period of the oscillations lowers, the
minimum being achieved at μ = 2 also.

Now we find the position km of the first maximum of
oscillating part. Equating to zero the first derivative of an
oscillating part of (33) we arrive at

Nν−1(u) − cot
πν

2
Jν−1(u) = 0, (36)

where ν and u are defined by (34). The roots of Eq. (36) can
easily be obtained numerically for different μ.

The normalization of the obtained function can be achieved
through the condition C2

∫ ∞
−∞ f 2(k)dk = 1 or

2C2

[∫ −km

0
f 2

1 (k) dk +
∫ ∞

−km

f 2
2 (k)dk

]
= 1, (37)

where f1 and f2 denote oscillatory and decaying parts of
Eq. (33), respectively. Normalized solutions in the k space
for different μ’s are reported in Fig. 4. It is seen that for small
k and on the tails, the distribution functions for higher μ’s run
below those for smaller μ’s, while in the intermediate k range
the situation is opposite.

The final step of the procedure is to invert the k-space
solutions to the x space and square them to obtain the
desired terminal PDF. For general μ this procedure can be
accomplished only numerically.

Figure 5 displays both the inverted functions f (k), corre-
sponding to square roots of the inferred terminal PDFs (a) and
those PDFs themselves (b). The opposite (if compared to this
in the k space) tendency is seen in the x space, where the curve
corresponding to lowest μ lies below all other curves in the
small x region and has slowest decay. As μ grows, the central
part of the curve rises and tails become steeper.

Panel (c) shows the microscopic Boltzmann potential
U (x) = − ln[ρ∗(x)], corresponding to terminal PDFs from
(b). This visualizes the microscopic potentials discussed in
the Introduction.

Panel (d) of Fig. 5 reports a comparison between the shapes
of functions f (k) and f (x). The situation here is the same
as that for the Airy function, as discussed in [25]. Namely,
the function in k space decays quicker then in x space and
its value at the center is larger then that in x space. We plot
here the exemplary case of μ = 0.5, the situation for other μ

is qualitatively the same.

IX. OUTLOOK

The next natural step in our μ-targeting procedure is to
obtain (numerically) the dynamics of a function ρ(x,t) for
Lévy oscillators with different values of μ. This can be done
both for the semigroup process (16) and for the Langevin-
driven one (e.g., fractional Fokker-Planck dynamics). Those
patterns of temporal behavior are inequivalent, although both
processes may terminate at common PDFs with a predefined
decay at infinities. The latter PDFs may have heavy tails,
but generically admit an arbitrary (finite, eventually infinite)
number of moments. A more general problem would be that
of the existence of terminal PDFs, after passing from the
master equation to the (fractional) Hamiltonian dynamics (12)
with an arbitrary potential V , in one, two, or three spatial
dimensions.
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FIG. 5. (Color online) (a) Inverted Fourier images [ρ∗(x)]1/2. (b) Desired terminal PDFs at different μ (figures near curves). (c) Shows the
Boltzmann potential U (x) obtained as a negative logarithm of the terminal PDF. (d) Compares the behavior of the functions in k and x spaces
for μ = 0.5.

In the case of μ = 2, c.f. Eq. (22), the fractional Hamilto-
nian (12) may be formally replaced by an ordinary quantum-
mechanical Hamiltonian operator. In the standard quantum
mechanical setting (see, e.g., Refs. [41,42]) the above PDF
existence problem is equivalent to the existence of bound
states of a particle in a given potential. The quantum me-
chanical language is appropriate, because we can convert the
parabolic equation of the Fokker-Planck type to the generalized
Schrödinger equation.

The wave function of a bound state should be localized
to ensure a normalization of its squared expression, i.e., the
corresponding stationary PDF of the Fokker-Planck equation.
It is known (see, e.g., Ref. [41]) that in the 1D case the bound
state exists in the potential well U (x) of not only finite but
an infinitesimal depth. The only restriction is that the integral∫ ∞
−∞ U (x)dx should exist. The latter condition is equivalent to

the requirement that U (x) should have the same asymptotics at
infinities and potential zero point U (±∞) = 0. In the 2D case,
when the potential U = U (x,y), the situation is similar to that
in 1D one, while in 3D [U = U (x,y,z)] the situation is to some
extent opposite—if the potential well is not sufficiently deep

(see Ref. [41] for details), the particle cannot be “captured,”
so that bound state does not exist. Confining potentials in 3D,
where bound states exist, form the so-called Kato class of
potentials.

The presence of fractional derivatives with 0 < μ � 2
alters the picture both in 1D (2D) and in 3D. In 1D they
definitely “spoil” the bound states. It is not only that the PDFs
(if in existence) may have heavier tails if compared to the
conventional (μ = 2) case. The PDFs in question may not exist
at all, if a normalizability of the bound state is lost. In 3D and
in equations with fractional derivatives there may typically
be no normalizable bound states (and thus terminal PDFs),
except for a carefully selected (Kato-)subclass of conceivable
potentials.

Some peculiarities pertaining to the (non)existence of
invariant PDFs in the case of Lévy drivers (Langevin-
driven fractional dynamics) were discussed for the 1D case
in Ref. [30]. We have encountered the same problem in
connection with the Cauchy family of PDFs [9,13], see also
Ref. [43] for a discussion of so-called infinite covariant
densities.
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