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Quasistationary states in the self-gravitating sheet model

Michael Joyce1,2 and Tirawut Worrakitpoonpon1
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We study quasistationary states (QSSs) resulting from violent relaxation in the one-dimensional self-gravitating
“sheet model,” revisiting in particular the question of the adequacy of the theory of Lynden-Bell (LB) to describe
them. For “waterbag” initial conditions characterized by a single phase-space density, the prediction of this
theory is, in this model, a function of only one parameter, which can conveniently be chosen to be the ratio of the
energy to that in the degenerate limit. Studying a class of such initial conditions in which the shape of the initial
waterbag is varied, we find that the LB predictions are reasonably good always in the low-energy region, while
at higher energies (i.e., in the nondegenerate limit) they are generally not even qualitatively correct, although
certain initial conditions can still be found where they are as good as at low energy. We find notably that, in line
with what has been observed by Levin et al. in some other models, when LB theory does not work, the QSSs are
always characterized by the presence of a degenerate core, which these authors explain as the result of dynamical
resonances. In short, LB theory appears to be a good approximation only when violent relaxation is sufficiently
“gentle,” and otherwise a degenerate core-halo structure results.
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I. INTRODUCTION

The rich statistical mechanics of long-range interacting
systems has been a subject of active study in recent years
(for a recent review see, e.g., Ref. [1]). As for self-gravitating
systems, such systems have been understood to give rise
generically to nonequilibrium states that evolve only on time
scales that diverge with the number of particles. The degree to
which such “quasistationary” states (QSSs) can be understood,
and their properties predicted, by a statistical approach is a
question that is inevitably posed. In this context a theory
originally formulated by Lynden-Bell in the astrophysical
context in the sixties [2], and that has been applied also in the
study of two-dimensional (2D) vortices [3], has seen revived
interest in recent years. Study notably of a one-dimensional
(1D) toy model, the Hamiltonian Mean Field (HMF) model,
which describes particles on a ring interacting by a cosine
potential, showed that this theory can predict sometimes very
accurately the properties of these states (see, e.g., Refs. [4,5]
and references therein) and more generally manages to capture
the qualitative dependence of the QSSs on initial conditions.
While it is clear that the “LB theory” is not entirely adequate
in general, these studies suggest that the basic physical
principle behind it—maximization of an entropy subjected
to the constraints appropriate to Vlasov dynamics—is, at the
very least, a reference point for understanding the out-of-
equilibrium dynamics of these systems. This contrasts strongly
with the view of this theory in the (original) context of the
astrophysical literature, where it has simply been discarded as
a completely inadequate, and basically irrelevant, theory [6,7].
One recent study [8] of three-dimensional (3D) self-gravitating
systems concludes, however, that LB theory may indeed be
relevant also to this case. This study shows that in a certain
limited range of initial conditions the LB theory predicts well
the density profiles of QSSs and proposes an alternative theory
to explain their properties in the regime where the LB theory

no longer works well. The same authors have shown that the
same statements apply both to plasma systems [9] and to a 2D
self-gravitating system [10] and, in a very recent article [11],
have used the alternative theory to account for QSSs in the
HMF model.

In this paper we study these issues in the so-called self-
gravitating “sheet model” (SGS) of particles in one dimension
attracted by forces independent of separation. Our main goal is
to characterize more precisely than has been done previously
the degree of validity of the LB theory in this model, which is
one of the canonical toy models for the study of such systems,
and to determine whether the properties of the QSSs can be
characterized in a simple manner and perhaps understood when
the LB theory does not apply. That this theory does not provide
an adequate theory of QSSs in the SGS model is clear from
the earliest studies of this issue [12–14], which indeed used
this model to probe the possible validity of LB theory for 3D
gravitating systems. More recently a study of these questions
in the SGS model has been reported by Yamaguchi [15], who
finds reasonable agreement with LB theory in a certain range
of initial conditions, and, like in the work of Levin et al.
mentioned above, proposes a modification of it to account for
the QSSs observed in other cases. We will compare in detail
our results to these previous works.

Studies of the SGS model in the astrophysical context
go back at least as far as that of Ref. [16], and there have
been numerous studies of it also in the statistical mechanics
literature in the decades since. Many of these studies focused
on the question of relaxation to the thermal equilibrium of
the model, for which the exact expression was first derived
by Rybicki [17]. That this relaxation, like in other long-
range systems, takes place very slowly, on a time scale that
diverges with the number of particles, has been clear since
the earliest studies, but the precise time scale and parametric
dependences thereof have been the subject of considerable
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study and even some controversy (see, e.g., Refs. [18–21] and
references therein). In a recent work [21] on this question,
we have established clearly that the relaxation time from a
range of initial conditions depends linearly on the number
of particles N ,1 while also showing a strong dependence
on the intermediate QSS state (or states). Besides the early
and more recent studies cited above that consider the QSSs
attained on the shorter mean-field time scales (i.e., through
violent relaxation) and LB theory, there are also studies [24,25]
that argue that the assumption that QSSs always result from
mean-field dynamics may not be always correct: Starting from
certain initial conditions the initial phase of relaxation is
observed to lead to phase-space densities that have large holes
that rotate in phase space, which persist on the time scales
of the simulations. In our analysis below we will examine
this question carefully, as it is clearly of central importance
to understand whether the formation of a QSS is indeed a
good description of the outcome of violent relaxation if one is
comparing with a theory that, by construction, assumes such a
outcome.

The article is organized as follows. First, we will start in
Sec. II with the definition of the model, and its numerical
integration. In Sec. III we review the theory of violent
relaxation of Lynden-Bell and describe our calculations of
the predictions for the density profiles and velocity and
energy distributions. We will also introduce a simple set of
“order parameters” that we use to characterize the QSSs. In
Sec. IV we describe the specific class of initial conditions that
we investigate. In Sec. V we report our numerical results,
comparing them to the theoretical LB predictions. In the
following section we confront our results with two proposals
that have been made in the recent literature to explain the
properties of QSSs when the LB is clearly inadequate. We
also discuss our results briefly in the light of the kinetic
theory for collisionless relaxation developed in Ref. [26]
(and references therein). In our conclusions we summarize
our findings and conclusions and suggest some directions
for further investigation in both 1D and 3D self-gravitating
systems.

II. THE SELF-GRAVITATING SHEET MODEL

We consider identical particles of mass m in one dimension
that are mutually attracted by a force independent of their
separation; i.e., the force on a particle i due to a particle j is

Fij = −gm2 xi − xj

|xi − xj | ≡ −gm2sgn(xi − xj ),

where g is a coupling constant. If the particles in one
dimension are considered as infinitely thin parallel sheets
in three dimensions interacting by 3D Newtonian gravity, it
is simple to show that gm ≡ 2π�G, where G is Newton’s

1This result is consistent, notably, with the analysis of Ref. [22],
which argues that a time scale linear in N arises because of “reso-
nances” present in spatially inhomogeneous QSSs in 1D systems, but
not in spatially homogeneous QSSs that occur in 1D systems such as
the HMF model, where a faster scaling with N is indeed observed
(see, e.g., Ref. [23]).

constant and � is the mass per unit surface area of the sheets.
In a system of a finite number of such particles the total force
acting on the ith particle at any time may be expressed as

Fi = gm2[Ni
+ − Ni

−], (1)

where Ni
+ denotes the number of particles on the right of ith

particle and Ni
− for the left.

The fact that the force is thus constant other than when
particles cross leads to one of the very nice features of
this toy model: Its numerical integration requires only the
solution of algebraic (quadratic) equations to determine the
time of the next particle crossing. This means that the only
limit on the precision of integration is that of the machine
in solving such equations, and that no numerical parameters
need be introduced. Another simplification comes from the fact
that, in one dimension, the crossing of two particles without
discontinuity in the velocities is, up to labeling of the particles,
equivalent to an elastic collision in which particles exchange
velocities. If we are not interested in following the trajectories
of individual particles, we can thus consider the system as
consisting of particles on which the forces are constant in time
[and given by the initial value of (1)], and that undergo elastic
collisions when they collide. The optimal way to treat this
kind of problem is, as has been pointed out and discussed in
detail in Ref. [27], by using a so-called heap-based algorithm,
which uses an object called a “heap” to store in an ordered way
the next crossing times of the pairs. This algorithm requires
a number of operations of order log(N ) to determine which
of the N − 1 pairs crosses next. Given that the number of
crossings per particle per unit time grows in proportion to N ,
the simulation time thus grows in proportion to N2 log(N ).
As is common practice we will use the total energy (which is
conserved in the continuum model) as a control parameter. For
the longest simulations we report the error in total energy of
the order of 10−9%.

III. PREDICTIONS OF LYNDEN-BELL THEORY

In this section we very briefly recall the basics of the
theory of Lynden-Bell and describe how we calculate its
predictions for different quantities, in the case of waterbag
initial conditions.

A statistical theory to describe the stationary states arising
from violent relaxation through mean-field forces was pro-
posed by Lynden-Bell in 1967 [2]. Such states were proposed
to arise from the relaxation of the coarse-grained phase-space
density to that derived by maximizing the entropy derived for
the latter by “counting” the (fine-grained or “microscopic”)
phase-space configurations states consistent with the conser-
vation laws imposed by the collisionless (Vlasov) dynamics.
For the case of an initial “waterbag” phase-space density,
i.e., in which the microscopic phase-space density has the
same value everywhere it is nonzero, these conservation laws
simply require the conservation of the phase-space volume
“occupied” by this constant density, e.g.,f0. The calculation
of the entropy is then equivalent to that for identical particles
with a “fermionic” exclusion and gives (in one dimension)

S[n̄] =
∫∫

[n̄ ln n̄ + (1 − n̄)ln(1 − n̄)] dx dv, (2)
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where n̄ ≡ f̄ /f0, and f̄ is the coarse-grained phase-space
distribution in the macrocell at (x,v). Maximization of (2)
gives

f̄ (x,v) = f0

1 + eβ(ε(x,v)−μ)
, (3)

where ε(x,v) = v2

2 + ϕ(x) denotes the energy density of
phase-space element at (x,v). The constants β and μ are
Lagrange multipliers associated with the conservation of the
total mass M and total energy E of the system:

M =
∫∫

f̄ (x,v) dx dv. (4)

E =
∫∫ (

v2

2
+ ϕ

2

)
f̄ (x,v) dx d, (5)

where ϕ(x) is the mean field potential generated by the mass
density ρ(x). Except in the degenerate and nondegenerate lim-
its, corresponding to β → ∞ and β → 0, respectively, it is not
possible to solve these equations analytically to derive (β,μ)
for any given M , E, and f0. It is, however, straightforward
to do so numerically, as described in Appendix A (see also
Ref. [14]).

We note that, although the prediction of LB theory for
a waterbag initial condition depends in general on the three
parameters M , E, and f0, for the SGS model there is only
one additional dimensional quantity relevant in the continuum
limit, the coupling g. Thus units can always be chosen so that
two of M , E, and f0 are fixed, and the LB prediction can
therefore depend nontrivially (up to a rescaling) only on one
parameter. A convenient choice of this parameter, which we
will use here, is

ξD ≡ E − ED

ED

, (6)

where ED(M,f0) is the energy of the system with mass M and
phase-space density f0 in the degenerate limit; i.e., ξD is the
energy of the system above the degenerate limit normalized to
the lowest energy possible for the same mass and phase-space
density. The expression for ED is given in Appendix B (see
also Ref. [14]).

We next describe how we derive, once β and μ are known,
the LB predictions for the various quantities we will measure
in our simulations.

A. Spatial distribution

Using (3), the Poisson equation gives

∂2ϕ(x)

∂x
= 2gρ(x) ≡ 2g

∫ ∞

−∞

f0

1 + e
β

[
v2
2 +ϕ(x)−μ

] dv, (7)

where ρ(x) is the mass density profile (which we will refer
to simply as the “density profile”). It is simple numerically to
solve this (second-order differential) equation for ϕ(x), and
then to determine the mass density profile, using the boundary
conditions dϕ

dx
|x=0 = 0 and ϕ|x=0 = 0.

B. Velocity distribution

The velocity distribution may be written

θ (v) = 2
∫ ∞

0

f0

1 + e
β

(
v2
2 +ϕ−μ

) 1

a(ϕ)
dϕ, (8)

where

a(x) = ∂ϕ(x)

∂x
(9)

is, up to a sign, the gravitational acceleration. Using the
Poisson equation we have

d2ϕ(x)

dx2
= 1

2

∂[a2(ϕ)]

∂ϕ
= 2gρ, (10)

and therefore

a(ϕ) =
√

4g

∫ ϕ

0
ρ(ϕ′) dϕ′. (11)

Using the previously determined ρ(ϕ) we obtain θ (v)
using (8).

C. Energy distribution

The distribution of particle energies is defined by

F (ε) =
∫

δ

{
ε −

[
v2

2
− ϕ(x)

]}
f̄ (x,v) dx dv (12)

with ∫
F (ε) dε = 1. (13)

Integrating we obtain

F (ε) = D(ε)f̄ (ε), (14)

where

D(ε) =
∫ ε

0

1

a(ϕ)

2
√

2√
ε − ϕ

dϕ (15)

is the density of states at energy ε.
While the results for ρ(x) and θ (v) do not depend on the

choice of the zero point of the potential, this latter result
does. It is straightforward, numerically, to use, rather than
ϕ|x=0 = 0,

ϕ0 ≡ ϕ|x=0 = g

∫ ∞

−∞
|x|ρ(x) dx, (16)

i.e., that corresponding to a pair potential strictly propor-
tional to the separation between particles. Given that a(x)
defined in (9) is necessarily positive for all x �= 0, this
is the minimum value of the potential (and of the energy
particle energy). Adapting this definition the energy distri-
bution is still given by (14), but with D(ε) = 0 for ε < ϕ0

and

D(ε) =
∫ ε

ϕ0

1

a(ϕ)

2
√

2√
ε − ϕ

dϕ. (17)
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D. Order parameters

In order to characterize and compare the macroscopic prop-
erties of QSSs it is convenient to calculate specific moments
of the phase-space distribution (rather than to study always
the full distribution). As discussed in Ref. [21] a particularly
relevant choice can be normalized “crossed moments” which
give a measure of the “entanglement” of the distribution in
space and velocity coordinates, by considering

φαβ = 〈|x|α|v|β〉
〈|x|α〉〈|v|β〉 − 1 (18)

for nonzero α and β, where

〈u〉 ≡
∫∫

uf (x,v) dx dv∫∫
f (x,v) dx dv

(19)

estimated in the discrete system with N particles as

〈u〉 ≡ 1

N

N∑
i=1

ui, (20)

where ui is the value measured for the particle i. In thermal
equilibrium the distribution function is separable, and so
φαβ = 0. Further it can be shown easily [21] that the thermal
equilibrium solution at any energy is the unique separable sta-
tionary state; i.e., all QSSs are nonseparable. Thus generically
we expect these moments to be nonzero in a QSS (although any
finite number of them can in principle vanish without implying
separability).

Here we will use specifically the two moments φ11 and
φ22 to characterize and compare the QSSs we obtain in
our numerical simulations, complemented when necessary
by examination of the functions derived above and in some
cases of the full phase-space density. Given the LB solutions
determined above (for waterbag initial conditions) it is
straightforward to calculate numerically the values of φ11 and
φ22 predicted by LB for this case. These are shown in Fig. 1
as a function of the parameter ξD (which, as discussed above,
can be taken as the single parameter on which the LB result
depends). We note that both parameters are always negative
but increase toward zero as we go to the nondegenerate limit.
Indeed in this limit the LB prediction tends to the (separable)
thermal equilibrium solution.

-0.3

-0.2

-0.1

 0

 1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6

φ α
β

ξD

φ22
φ11

FIG. 1. The “order parameters” φ11 and φ22 of the QSSs predicted
by LB theory for waterbag initial conditions, plotted as a function of
the normalized energy ξD .

IV. INITIAL CONDITIONS

In our numerical study we consider particles distributed
initially by randomly sampling different classes of waterbag
initial conditions, i.e., in which the phase-space density takes
the same value f0 everywhere it is nonzero. Specifically we
consider, in order:

(1) Single rectangular waterbags (SRWs), in which the
support of the initial phase-space density is a rectangle
centered on the origin, i.e.,

f (x,v) = f0�(x0 − x)�(x0 + x)�(v0 − v)�(v0 + v), (21)

where � is the Heaviside function. As, in the continuum limit,
the only parameters in the problem are then four—f0, x0,
v0, and the coupling g—there is in fact only one relevant
parameter characterizing the system once units are chosen. A
natural physical choice of this parameter is the initial virial
ratio R0, which a simple calculation shows is given by

R0 ≡ 2T0

U0
= v2

0

gMx0
, (22)

where T0 and U0 are the initial kinetic and potential energies
given by

T0 = 1
6Mv2

0, U0 = 1
3gM2x0. (23)

An example of such a configuration with R0 = 0.5 is given in
the left panel of Fig. 2. As discussed above the LB prediction
also depends on only one parameter, which we can take to
be ξD , the ratio of the energy of the configuration to that of
the degenerate limit of LB (i.e., the minimum allowed energy
of the given mass at phase-space density f0). The energy and
mass in the limit of a degenerate system are given as functions
of μ by (B5) and (B4). Eliminating μ we obtain

ED = B
(

3
2 , 2

3

)
12

1
3

gx0M
2R

1
3
0 , (24)

and thus

ξD = E

ED

= 12
1
3

3B
(

3
2 , 2

3

)
⎛
⎝ 1

R
1
3
0

+ R
2
3
0

2

⎞
⎠=0.688

⎛
⎝ 1

R
1
3
0

+ R
2
3
0

2

⎞
⎠−1,

(25)

where B( 3
2 , 2

3 ) is a beta function. This expression is is plotted
in Fig. 3. The SRW with R0 = 1 is thus the lowest energy
configuration, and there are otherwise two values of R0 for
each value of ξD .

-0.8

-0.4

 0

 0.4

 0.8

-0.8 -0.4  0  0.4  0.8

v

x

2x0

2v0

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

v

x

2x1

2x2

2v12v2

FIG. 2. Realizations with N = 5000 particles of an SRW initial
condition (left panel) and DRW initial condition (right panel). The two
configurations have the same value of ξD (up to finite N corrections).
The units used here are specified at the beginning of Sec. V.
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 0
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ξ D
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FIG. 3. ξD as a function of R0 for an SRW initial condition.

(2) Double rectangular waterbags (DRWs), in which the
support of the initial continuum phase-space density is like
that shown in the right panel of Fig. 2:

f (x,v) = f0�(x + x1)�(x1 − x)�(v + v1)�(v1 − v)

+ f0�(x + x2)�(−x1 − x)�(v + v2)�(v2 − v)

+ f0�(x − x2)�(x1 − x)�(v + v2)�(v2 − v).

As this has two additional parameters compared to the SRW, it
is effectively a three parameter family of initial conditions,
which coincides with the SRW when v1 = v2, x1 = 0 or
x1 = x2. When they differ from the SRWs, they are spatially
inhomogeneous, with a ratio of densities δ = v1

v2
in the two

different regions. We will choose to characterize them by this
parameter, together with ξD and the initial virial ratio R0. LB
theory thus predicts that the final state should be independent
of R0 and δ at given ξD . The relevant expressions for the kinetic
and potential energies of the DRW configuration are given in
Appendix C.

(3) Disjoint waterbags (DWs), in which the initial phase-
space density is made of two disjoint regions with simple
shapes, either rectangular or elliptical. We will use such
configurations to further explore some of the conclusions draw
from the study of the SRW and DRW configurations.

V. NUMERICAL RESULTS

A. Choice of units

Unless otherwise indicated our results will be given in units
fixed by taking g = 1, M = 1, and L0 = 1 where L0 the initial
linear size of the system, i.e., the distance between the outer
extremities of the theoretical waterbag initial condition. This
implies that the unit of time is

tc = 1√
gρ0

, (26)

where ρ0 = M/L0 is the initial mean mass density. This is
simply a characteristic time scale for a particle to cross the
system. In the cold limit (i.e., with zero initial velocity, with
R0 → 0) of the SRW initial conditions, it corresponds exactly
to the time in which all the mass falls to the center of the
system.

B. Attainment of QSSs and their characterization: generalities

That the SGS model with a large number of particles—just
as such 3D self-gravitating and other long-range interacting
systems which have been studied in the literature—give rise
typically to QSSs starting from initial conditions such as those
above has been discussed elsewhere in many studies (see
references given in the introduction). The attainment of a QSS
should be tested, in theory, by considering the full phase-space
density coarse-grained at some chosen scale. One would then
verify whether its evolution after some initial period (of violent
relaxation) tends to

f̄ (x,v,t) = f̄QSS(x,v) + δf̄ (x,v,t), (27)

where the amplitude of the fluctuations |δf̄ (x,v,t)| decreases
as N increases. For our study here, in which we consider how
the properties of these QSSs depend on the initial conditions,
what is of importance is that we evolve the corresponding
system to a time at which the approximation (27) indeed holds
well, for N sufficiently large so that the fluctuations δf̄ (x,v,t)
introduce a negligible uncertainty into the quantities used to
characterize the QSSs.

In practice numerical limitations on N make a direct analy-
sis extremely difficult, and one typically considers the behavior
of single macroscopic parameters, such as the virial ratio, or the
magnetization in models (e.g., the HMF model) where it is de-
fined. This is then complemented by a visual inspection of the
system represented in phase space. To describe the properties
of the QSS one then considers typically the density profiles,
velocity and/or energy distribution. We have shown in Ref.
[21], where we studied the very long time behavior of QSSs
resulting from SRW initial conditions, that the parameters φ11

and φ22 defined above are very useful macroscopic “order
parameters,” which can be used to diagnose both the attainment
of a QSS and to characterize this state. We will use them here
for the same purpose, supplementing their calculation where
necessary, or interesting, by a fuller analysis of the distribution
functions.

To determine whether a QSS is reached, and on what
time scale, we thus study first the evolution of the
virial ratio and of φ11 and φ22. While the characteristic
time for the mean-field dynamics is of order tc defined
above, the completion of relaxation to QSSs (in the sense
defined above) takes typically of order several tens to
one hundred tc for SRW initial conditions. Further, this
time depends, unsurprisingly, on the nature of the initial
condition, with very cold initial conditions—further from
virial equilibrium initially—taking significantly longer to
relax.

For DRW and DW initial conditions we observe even
greater variation in the time for full relaxation to a QSS
than for SRW, with, in some cases, significant persistent
fluctuations in the macroscopic parameters. An example of
such a case is shown in Fig. 4, in which the upper panel
shows the evolution of the virial ratio and the lower panel
that of the parameters φ11 and φ22, for a DW initial condition
sampled with N = 104 particles. The full phase-space plot
is shown in Fig. 5. This reveals that it is a persistent
“rotating hole” feature in the phase space, which gives rise
to the (small but clearly visible) coherent fluctuations in the
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FIG. 4. Temporal evolution of virial ratio (top) and φ11 and φ22

(lower) starting from a realization with N = 104 particles of a DW
initial condition (shown in first panel of Fig. 5). The time units here
are such that tc = √

3/2, i.e., t = 10 ≈ 8.2tc.

averaged parameters in Fig. 4. This is precisely the kind of
effect that has been documented in the two studies [24,25]
mentioned in the introduction, and that has been argued
in this context to show that LB theory is incorrect (as it
predicts, by construction, the attainment of a time-independent
phase-space density). While the hole we observe is clearly
visible at t = 500 and indeed rotates in phase space, the
subsequent two panels show that it slowly disappears on
a time scale of order a few thousand dynamical times.
Thus it appears that the relaxation of these holes simply
represents a prolongation of the collisionless relaxation to a
well-defined QSS, as no tendency of the system to evolve
toward thermal equilibrium (corresponding to φ11 and φ22

equal to zero) is evidenced on this time scale. Further study,
however, would be required to establish this conclusion more
definitively for a broader range of initial conditions, and to
exclude notably that collisional relaxation may play some
role.

C. SRW initial conditions

The density profiles, velocity distributions, and energy
distributions in the QSSs obtained starting from SRW con-
figurations with R0 = 0.1,0.5,1 are shown in Figs. 6, 7,
and 8. These correspond to averages over 30 realizations
of each initial condition sampled with N = 5000 particles,
taken at t = 200tc, by which time the QSS is well estab-
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FIG. 5. Phase-space plot of particle trajectories evolved from the
DW initial condition shown in the first panel (with N = 104 particles).
The time units are those indicated in the previous figure.

lished. In each case the LB predictions given in Sec. III
are shown also, corresponding to ξD = 0.56,0.08,and 0.03,

respectively. As observed already in early studies [13,14] the
qualitatively most striking deviation from the prediction of
LB theory is marked by the appearance of a “core-halo”
structure, most clearly evident in the energy distribution
obtained from the R0 = 0.1 initial condition. On the other
hand, as underlined in the more recent study of Ref. [15]
for these same initial conditions, the agreement of the LB
theory with the observed QSS is in fact quite good for the
case R0 = 1, while the discrepancy progressively increases
as R0 deviates from unity and a core-halo-type structure
appears.
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FIG. 6. The density profile (top left), velocity distribution
(top right), and energy distribution (bottom) for the QSSs obtained
starting from SRW with R0 = 0.1. The solid lines are the correspond-
ing LB predictions.

Shown in Fig. 9 are the values of the parameter φ11 and
φ22 in the QSS and the values predicted by LB theory. This
plot summarizes in a simple manner the conclusions above:
the theory works quite well quantitatively at the lowest energy
state corresponding to R0 = 1, but deviates greatly as we go
toward the less degenerate initial states. Further, the plot shows
that the theory gives very qualitatively the correct behavior of
the parameters—they increase monotonically with the initial
ξD . At low degeneracy the sign of these parameters is a
result of the formation of a core that is colder than predicted:
There is in this case an excess of low-velocity particles at
small x.
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FIG. 7. The density profile (top left), velocity distribution
(top right), and energy distribution (bottom) for the QSS obtained
starting from SRW with R0 = 0.5. The solid lines are the corre-
sponding LB predictions.
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FIG. 8. The density profile (top left), velocity distribution
(top right), and energy distribution (bottom) for the QSS obtained
starting from SRW with R0 = 1. The solid lines are the corresponding
LB predictions.

We note that these single parameters, φ11 and φ22, actually
allow a better diagnosis of the closeness to LB theory than
the examination of the full density or velocity distribution
functions. Indeed, comparing just these two latter functions
with the LB predictions, we might conclude that the agreement
is almost perfect. The energy distribution, on the other hand,
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FIG. 9. φ11 (top) and φ22 (bottom) in QSSs as the function of R0.
The line indicates φαβ calculated by LB stationary state, and the circle
is the value obtained by numerical simulation.

011139-7



MICHAEL JOYCE AND TIRAWUT WORRAKITPOONPON PHYSICAL REVIEW E 84, 011139 (2011)

 0.01

 0.1

 1

 10

 100

 0  1  2  3  4  5  6

δ

R0

-0.2

-0.1

 0

 0.1

 0.2

-0.3  0  0.3  0.6  0.9

φ 1
1

φ22

FIG. 10. The upper plot represents the 20 different DRW initial
conditions with ξD = 0.56 (i.e., equal to that of SRW with R0 = 0.1)
according to their values of R0 and δ. The lower plot represents the
values of (φ22,φ11) measured in the resulting QSS. The LB prediction
lies at the center of the small circle. The unfilled points in the upper
plot correspond to the four initial conditions that give QSSs closest
to the LB prediction.

allows one to see clearly the discrepancies, which are then
reflected well in φ11 and φ22.2 When considering a larger space
of initial conditions, as we do now, it is very convenient to
use these parameters as diagnostics of the validity of the LB
theory.

D. DRW initial conditions

As described above the DRW initial conditions allow us
to test further a basic prediction of LB theory: The same
QSS should result starting from any initial configuration
in the range of accessible “microstates” at given mass and
energy. For 1D gravity and waterbag initial conditions, this
means the QSS obtained should be the same at a given ξD

independently of the shape of the waterbag. As discussed, the
DRW gives us a 2D space of such configurations, which we
choose to parametrize by the initial virial ratio R0 and density
contrast δ.

2This “efficiency” of these parameters as diagnostic tools was noted
in Ref. [21], where it was shown, notably, that they could identify
clearly stationary states arising from certain initial conditions as QSSs
rather than the thermal equilibrium states, which previous studies [28]
had mistakenly inferred them to be based on an analysis using ρ(x)
and θ (v).
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FIG. 11. Same as in Fig. 10, but for DRW initial conditions with
ξD = 0.08, i.e., equal to that of SRW with R0 = 0.5. Scale is as in
the previous figure for easier comparison.

For each of the three values of ξD corresponding to the SRW
initial conditions above, we have simulated 20 different initial
conditions chosen to explore the available (R0, δ) space. In
each of Figs. 10, 11, and 12 are shown two plots: One shows
the initial conditions in the (R0, δ) plane at the given value
of ξD , the other QSSs obtained from them as represented in
the plane (φ11, φ22). The results are, as for the SRW above,
averages over 30 realizations of each initial condition sampled
with N = 5000 particles, taken at t ≈ 200tc. The fact that
the spread in values of (R0, δ) is much smaller at smaller
ξD is simply a reflection of the fact that as one goes toward
the degenerate limit ξD = 0 the constraints limit the possible
deformations more and more.

In continuity with what we observed for the SRW, the
results show that LB theory works reasonably well at the
two lower values of ξD—the QSS varies only very little over
the range of different initial conditions— and it is grossly
violated as we go toward the nondegenerate limit. Indeed, the
order parameters for QSSs obtained starting from the same ξD

can differ in sign. Direct analysis of the distribution functions
confirms that this corresponds to QSSs that are completely
different. On the other hand, certain initial conditions at
ξD = 0.56—those corresponding to the unfilled points in
the upper plot of Fig. 10—do appear to give QSSs close
to the LB prediction. To assess whether this is really the
case, the density profiles, velocity, and energy distribution
functions for two of these are shown in Figs. 13 and 14.
While the agreement with the theoretical curves is not
perfect, it is comparable with that obtained for the initial
conditions with ξD = 0.03—indeed, the discrepancy between
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FIG. 12. Same as in Fig. 11, but for DRW initial conditions with
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Fig. 10 for ease of comparison.

the LB prediction and the observed distributions is no more
than observed above for the SRW initial conditions with
ξD = 0.03.

The strong deviations from the LB prediction, just as in
the SRW, manifest themselves in the shift toward positive
values of φ11 and φ22. Direct inspection of the distribution
function of energy shows that this reflects again in all cases
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FIG. 13. Density profile (top left), velocity (top right), and energy
distribution (bottom) for DRW initial conditions with ξD = 0.56
(i.e., the same energy as the SRW with R0 = 0.1), R0 = 1.39, and
δ = 0.054.
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FIG. 14. Density profile (top left), velocity (top right), and energy
distribution (bottom) for DRW initial conditions with ξD = 0.56
(i.e., the same energy as the SRW with R0 = 0.1), R0 = 1.017, and
δ = 9.861.

the appearance of a pronounced core-halo-type structure.
Inspection of the plot of the initial conditions in the (R0, δ)
space for ξD = 0.56 shows that all the cases that approach
LB (unfilled points) are characterized by an initial virial
ratio near unity, while the density contrast parameter δ

appears to be irrelevant. On the other hand, R0 ≈ 1 is
clearly not a sufficient condition to guarantee agreement with
LB.

These results suggest therefore that LB theory works
reasonably well always near the degenerate limit, and
for much higher energies for very specific initial condi-
tions. In these cases, which seem to correlate strongly
with an initial virial ratio near unity, the formation of
a core-halo structure, not predicted by LB theory, is
avoided.

E. DW initial conditions

To further explore these findings, and in particular to
investigate the relevance of the initial virial ratio as a parameter,
we consider finally a few other “disjoint” waterbag initial
conditions as described above. We report results for the four
cases shown in Fig. 15. Each of the initial conditions has been
adjusted to have R0 = 1, and the values of the normalized
energy are ξD = 1.59,0.58,0.49, and 0.23 for DW1 to DW4,
respectively. We take in each case a single realization with
N = 104 particles and calculate a time average by sampling on
100 equally spaced time slices in the time window [4000,5000]
(in the time units of our simulation, which differ in each case
from units with tc = 1 by a numerical factor of order unity).
Shown in Fig. 16 are the QSSs obtained as represented in
the (φ11,φ22) plane. In each case the filled symbol represents
the corresponding LB predictions. Compared to the results
for SRW and DRW initial conditions, the QSSs appear in all
cases much closer to the LB predictions. This is confirmed by
inspection of the distribution functions, which are shown for
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FIG. 15. Four disjoint waterbag initial conditions with the number
of case indicated in the panel. The corresponding ξD are equal to
1.59,0.58,0.49, and 0.23 for cases 1–4, respectively.

DW2 in Fig. 17 and for DR1 in Fig. 18. For the former case
the results are as close to the LB predictions as for the SRW
and DRW cases that gave best agreement with LB, with the
small deviation being visible again in the energy distribution
but very difficult to discern in ρ(x) or θ (v). The results for the
cases DR3 and DR4 are similar. For DR1, on the other hand,
the deviation from LB is much more marked, and we see in the
energy space that this deviation is associated to the formation
of a (in this case very small) core. Very much in line with the
results for SRW and DRW initial conditions, the agreement
with LB thus deteriorates as one goes away from the degenerate
limit.

In summary these results confirm the conclusion drawn
from the analysis of the SRW and DRW waterbags: The LB
predictions are always reasonably good—and excellent for
the spatial and velocity distributions—for (waterbag) initial
conditions with low ξD , but even at higher values good
agreement can be obtained in cases characterized by an initial
virial ratio of order unity. Further deviation from LB is
always characterized by the appearance of a core-halo-type
structure.
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FIG. 16. φ22 and φ11 of the QSSs obtained from the initial
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to the values obtained from numerical simulations, and the filled
symbols are the LB predictions.

 0

 0.3

 0.6

 0.9

 1.2

-1.5 -1 -0.5  0  0.5  1  1.5

ρ(
x)

x

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1.5 -1 -0.5  0  0.5  1  1.5

θ(
v)

v

 0

 1

 2

 3

 0  0.5  1  1.5

F
(ε

)

ε

FIG. 17. The density profile (top left), velocity distribution
(top right), and energy distribution (bottom) for the QSSs obtained
starting from the DW2 initial conditions (ξD = 0.58). The solid curves
lines are the LB predictions.

VI. COMPARISON WITH THEORETICAL
PROPOSALS BEYOND LB: DIRECT

ANALYSIS OF PHASE-SPACE DENSITY

Let us consider how well two recent proposals in the
literature can account for the properties of the QSSs we
observe:

(1) Yamaguchi [15] studies the SGS model for SRW initial
conditions and notes (as was remarked also in early studies
[13,14]) that the breakdown of LB theory is associated
with the apperance of a core-halo structure. He proposes a
phenomenological adaptation of LB theory which he uses to
fit the resultant core, in which the LB theory is applied only
to the mass and energy associated to the core. In practice this
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FIG. 18. The density profile (top left), velocity distribution
(top right), and energy distribution (bottom) for the QSSs obtained
starting from the DW1 initial conditions (ξD = 1.59). The solid curves
lines are the LB predictions.
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means that one parameter is measured a posteriori from the
observed QSSs.

(2) Levin et al. in a series of works on other models—
plasmas [9], 3D gravity [8], 2D gravity [10], and, most recently,
the HMF model [11]—have proposed that, when LB theory
breaks down, QSSs correspond to the phase-space density:

f (x,v) = f0[�(eF − e) + χ �(e − eF )�(eh − e)]. (28)

As in the case of Ref. [15], this involves the addition of
one parameter compared to LB theory. However, a physical
explanation is proposed for the core-halo form of (28), and a
prediction for this additional parameter is derived from the
initial conditions: An analysis of particle dynamics in the
coherent oscillating field associated with the relaxation shows
that there are dynamical resonances that allow particles to
gain energy, with eh corresponding to the maximal energy that
can be attained in this way. Assuming that resonance effect is
“shut off” only by the upper bound on the phase-space density
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FIG. 19. Phase-space density as a function of energy f̄ (ε) for
eight representative cases of DRW initial conditions with ξD =
0.56 (corresponding to R0 = 0.1 for SRW). The two upper panels
correspond to the two cases for which the distribution functions are
shown in Figs. 13 and 14 where the QSS is close to LB. The dashed
horizontal line indicates the initial phase-space density, f0, and the
continuous lines correspond to the LB prediction.
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FIG. 20. Exactly the same data as in the previous figure, but
now with the logarithm of the absolute value of f̄ /(f0 − f̄ ) plotted
as a function of particle energy ε. The dashed lines represent the
predictions of LB theory (which become straight lines of slope β in
this representation).

imposed by the collisionless dynamics, the ansatz (28) is the
simplest one possible for the QSSs that will result.

To evaluate the validity of these approaches in this model,
we consider directly the measured phase-space density, f̄ (ε),
as a function of particle energy. To do so we measure the
(averaged) values of the potential φ(x) and a(ϕ) in the QSSs,
and then use (17) to calculate the phase-space density D(ε).
Shown in Fig. 19 are the results for eight chosen cases from
the DRW initial conditions with ξD = 0.56 considered in Sec.
V D. In Fig. 20 a plot of exactly the same data is given, but now
displaying the logarithm of the absolute value of f̄ /(f0 − f̄ )
as a function of ε (which in LB theory gives a straight line
with slope β). Our choice is representative of the whole batch
of initial conditions, in that (1) most QSSs have a clear core-
halo structure and (2) those that do not agree reasonably well
with the LB prediction. Indeed the two configurations in the
uppermost panel of Fig. 19 are the same two cases for which
the full distribution functions were shown in Figs. 13 and 14.

In Fig. 19 a vertical line indicates the initial phase phase
density f0, so that it is clear that whenever a core appears
it is indeed degenerate. While the measured phase-space
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distributions are clearly more structured than (28), in most
cases this simple ansatz gives a reasonably good fit (i.e., about
as close to the phase-space density as the LB profile is to
the observed one in the cases where it has been considered
to work well above). The slightly greater structuration of the
phase-space density compared to the ansatz of (28) can also
be seen in Fig. 20, which shows in particular that the diffuse
halo, when present, although close to flat, appears clearly
more consistent with a Maxwell-Boltzmann form (i.e., the
nondegenerate limit of LB theory). In this respect we note that
Levin et al. have not tested their ansatz directly against the
phase-space density, but have used it to derive predictions for
ρ(x) and θ (v), which have been compared with those observed.
As we have seen in comparing numerical results with LB
predictions above, these quantities typically wash out structure
in energy space and make it difficult to see discrepancies
that are localized in this space. We note further that our
finding that it is initial conditions with R0 ≈ 1 that suppress
the core-halo formation—and lead to QSSs in reasonable
agreement with LB—appears completely coherent with the
mechanism described by Levin et al.: When the system starts
close to virial equilibrium, the relaxation is typically indeed
much “gentler,” simply because the system does not undergo
the large contractions and expansions that result necessarily
if there is a large imbalance between the initial potential and
kinetic energy. It is precisely such macroscopic oscillations of
the system that drive the resonances analyzed by Levin et al.

We consider finally comparison of our results with an
analytical treatment of collisionless relaxation developed in
Ref. [26] (see also references therein). This work develops, un-
der certain approximations and hypotheses, a kinetic equation
for collisionless relaxation—similar to the Lenard-Balescu
equation for collisional relaxation—with a term describing
relaxation toward the LB equilibrium. One feature of this
term is that it involves an effective space and time-dependent
diffusion coefficient, which is proportional to the product
f̄ (f0 − f̄ ). Thus the theory suggests that relaxation should be
expected to be most inefficient when f̄ is close to degenerate
(f̄ � f0) or very small (f̄ � 0). In regions of energy where
relaxation is more complete, the distribution is expected to
approach the LB form, but with values of the parameters β

and μ different from those in the global LB equilbrium. Our
results in Figs. 19 and 20 do appear to be quite consistent
with these qualitative predictions: Indeed, this theory would
appear to account for why it is core-halo-type states, whose
dynamical origin is explained by Levin et al., that do not relax
to the (global) LB equilibrium. In all cases the results in Fig.
20 show a region where the halo distribution is very consistent
with a Maxwell-Boltzmann form with an inverse temperature
lower than that of the global LB prediction (dashed line). This
can be interpreted, following Ref. [26], as a “mixing region”
where the (in this case, nondegenerate) LB distribution applies
locally, while the deviation from the (local) LB form at higher
and lower energies is considered as due to incompleteness of
relaxation in these regions. Further, the fact that the observed
distributions are, compared to the extrapolated straight line
(“local” LB) fit in the“mixing region,” sensibly higher at
lower energies and lower at the highest energies is also
in apparent agreement with the kinetic theory described
in Ref. [26].

VII. CONCLUSION AND DISCUSSION

We summarize now our principal conclusions:
(1) Attainment of QSSs in the SGS model: In all cases we

have considered QSSs do appear to be attained, but the time
scales for relaxation to them can vary very considerably. In
some cases rotating “holes” formed in the phase-space density
during the initial phase of violent relaxation (∼102tc) survive
for quite a long time, disappearing only on times scales of
order (∼103tc). As on these latter time scales the system
shows no apparent tendency to relax toward its thermodynamic
equilibrium, we conclude that this is simply a manifestation
of slow collisional relaxation and does not imply that QSSs
are not attained as argued by Refs. [24,25]. A fuller study
of the possible N dependence of such relaxation would be
useful to establish this conclusion more firmly (but would be
numerically challenging).

(2) LB theory in the SGS model: As was clear already
from early studies [13,14], and confirmed by more recent
ones such as Ref. [15], LB theory is not an adequate theory
for understanding fully, or even approximately, the properties
of QSSs arising from violent relaxation in the SGS model
for arbitrary initial conditions. However, it is by no means
an irrelevant theory to understanding these QSSs. Our study
of a quite broad range of initial conditions shows that the
space of QSSs in this model divides quite neatly into two:
those for which LB works to quite a good approximation,
and those for which the phase-space density is characterized
by a degenerate core, taking a form generally quite close to
the simple ansatz (28) proposed by Levin et al. The initial
conditions in the former class are either close to the degenerate
limit, or in other cases characterized by initial virial ratio
of order unity. These conditions are precisely those, in line
with what has been described by Levin et al., that suppress
resonances that otherwise act very efficiently to produce the
degenerate core-halo structure.

(3) Accuracy of predictions of QSSs in the SGS model:
While, as just described, the QSSs that result from violent
relaxation divide into those that are close to the LB theory,
on the one hand, or to the ansatz of Levin et al., on the
other, the accuracy of the associated predictions is at best
approximate: In no case do we see a perfect agreement with
either LB theory or the ansatz (28). We underline that in
this respect the spatial distribution of mass ρ(x) and velocity
distribution θ (v) are rather poor tools for diagnosing the
agreement between observations and theory, as they wash
out deviations that are most pronounced in energy space. We
have also noted the apparent coherence of our results with the
qualitative predictions of the kinetic theory approach described
in Ref. [26].

Numerous results in the literature on various other models
(see references in introduction) for specific ranges of initial
conditions suggest that these latter two conclusions, and
probably the first also, might apply much more generally
to long-range systems. Further detailed investigation of such
models, and in particular of broader classes of waterbag
initial conditions like those considered here, or, for example,
“multilevel” waterbag initial conditions would be required to
establish if this is the case.

For the SGS it would be interesting to apply the analysis
described by Levin et al. to determine a prediction of the form
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(28) for different initial conditions, and see how well it does in
approaching the observed QSSs. In this respect it is interesting
perhaps to note that, at given value of ξD this is a one parameter
family of solutions, so that it predicts QSSs lying on a curve in
the (φ11,φ22) plane. In Fig. 10, we see that the QSSs obtained
from the two-parameter family of initial conditions at a fixed
ξD = 0.56 do approximately collapse onto a curve. We would
expect the degree to which the simple ansatz (28) can fit the
QSSs to be well characterized by determining the prediction
it gives in this plane.

Of particular interest is of course the original context of 3D
self-gravitating systems, to which the initial study of Ref. [8]
for SRW suggests these conclusions may indeed apply. As
mentioned, however, the results reported have been based, in
this case, on examination of the density profile ρ(x) alone,
while the energy distribution is probably a finer diagnostic
tool as we have seen here. In forthcoming work we will study
this case and discuss the possible relevance of our findings
in the astrophysical context. In this respect we note one of
the reasons why LB theory has not played—at least for what
concerns it detailed predictions—a role in astrophysics is that
these predictions depend on unobservable initial phase-space
densities. In contrast the prediction of a degenerate core in
many cases would give a simple link between observations
and initial conditions, which may be of practical relevance
notably in constraining the parameters in theories of structure
formation in the universe.
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APPENDIX A: DETERMINATION OF β AND μ

In general β and μ cannot be calculated analytically, so we
solve for them numerically as follows. The mass normalization
(4) condition is

M =
∫ ∞

−∞

∫ ∞

−∞
f̄ (x,v) dx dv.

Integrating over v, and changing the coordinate x to ϕ(x) just
as in (8), we obtain

M = 4
∫ ∞

0

∫ ∞

0

f̄ (ϕ,v)

a(ϕ)
dv dϕ. (A1)

The total energy constraint (5), i.e.,

E =
∫ ∞

−∞

∫ ∞

−∞

[
v2

2
+ ϕ(x)

2

]
f̄ (x,v) dx dv,

can likewise be rewritten as

E = 2
∫ ∞

0

∫ ∞

0

v2f̄ (ϕ,v)

a(ϕ)
dv dϕ

+ 2
∫ ∞

0

∫ ∞

0

ϕf̄ (ϕ,v)

a(ϕ)
dv dϕ

= T + U, (A2)

where T is total kinetic energy and U is total potential energy.
We can then use the virialization condition, 2T = U , to obtain

E = 6
∫ ∞

0

∫ ∞

0

v2f̄ (ϕ,v)

a(ϕ)
dv dϕ. (A3)

The determination of the parameters β and μ in the LB solution
(3) can then be cast as the problem of finding the solutions of
the equations

F (β,μ) = 0,

G(β,μ) = 0,

where

F (β,μ) = M − 4
∫ ∞

0

∫ ∞

0

f0

1 + e
β

(
v2
2 +ϕ−μ

) 1

a(ϕ)
dv dϕ,

(A4)

G(β,μ) = E − 6
∫ ∞

0

∫ ∞

0

v2f0

1 + e
β

(
v2
2 +ϕ−μ

) 1

a(ϕ)
dv dϕ.

(A5)

Following a standard method we write the matrix equation(
dF (β,μ)

dG(β,μ)

)
=

(
∂F
∂β

∂F
∂μ

∂G
∂β

∂G
∂μ

)(
dβ

dμ

)
, (A6)

where dF and dG denote the infinitesimal changes of F and G

when (β,μ) change to (β + dβ,μ + dμ), we start by guessing
a pair of (β,μ) and then determining the new (β ′,μ′) = (β +
�β,μ + �μ) using

(
�β

�μ

)
=

(
∂F
∂β

∂F
∂μ

∂G
∂β

∂G
∂μ

)−1 (
�F (β,μ)

�G(β,μ)

)
, (A7)

where (�F,�G) = [−F (β,μ), − G(β,μ)]. We then iterate
until �F and �G converge to 0. With a reasonable guess for
the starting values of β and μ, good convergence is attained
within a few iterations, as illustrated in Fig. 21 for a typical
case.

APPENDIX B: DEGENERATE LIMIT OF LB THEORY

For completeness we reproduce here the analytic results
of [14] (see also Ref. [29]) for the degenerate limit of the
LB distribution function (3). This corresponds to β → ∞, in
which

f (x,v) =
{

f0, ε(x,v) < μ

0, otherwise.
(B1)
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FIG. 21. The values of β and μ obtained in the successive steps
of our iterative numerical calculation, for a typical case. The units
here are those used in our numerical calculation (M = N , g = 1 and
L0 = N ), different from those in which our results in the main text
are given.

The density profile is then

ρ(ϕ) = 2
∫ √

2(μ−ϕ)

0
f0 dv

= 2
√

2f0(μ − ϕ)
1
2 , (B2)

and therefore, using (11),

a(ϕ) = 4 × 2
1
4 ×

(
gf0

3

) 1
2 [

μ
3
2 − (μ − ϕ)

3
2
] 1

2 . (B3)

The mass normalization then yields

M = 2
∫ μ

0

ρ(ϕ)

a(ϕ)
dϕ

= 4
√

2f0√
16

√
2gf0

3

∫ μ

0

(μ − ϕ)
1
2 dϕ[

μ
3
2 − (μ − ϕ)

3
2
] 1

2

= 2
5
4 (

f0

3g
)

1
2

∫ ϕ=μ

ϕ=0

d
[
μ

3
2 − (μ − ϕ)

3
2
]

[
μ

3
2 − (μ − ϕ)

3
2
] 1

2

,

which can be integrated to give

M = 2
9
4

(
f0

3g

) 1
2

μ
3
4 . (B4)

Using the expression (A3) for the total energy we have

ED = 6f0

∫ μ

0

∫ √
2(μ−ϕ)

0

v2

a(ϕ)
dv dϕ.

Integration first over v gives

ED = 2
1
4

(
3f0

g

) 1
2
∫ μ

0

(μ − ϕ)
3
2[

μ
3
2 − (μ − ϕ)

3
2
] 1

2

dϕ,

and then, on integrating by parts, we obtain

ED = 2
13
4

3

(
f0

3g

) 1
2

μ
7
4

∫ 1

0
(1 − ϕ′)

1
2 ϕ′− 1

3 dϕ′,

where ϕ′ = (μ−ϕ

μ
)

3
2 . The integral can be expressed as a beta

function, and the result can thus be written

ED = 2
13
4

3

(
f0

3g

) 1
2

B

(
3

2
,
2

3

)
μ

7
4 . (B5)

It is simple to show from (A2) that ∂E
∂β

< 0 in general, tending
asymptotically to 0 as β → ∞. This is thus, indeed, the
minimal possible energy corresponding to given M and f0.

APPENDIX C: GENERATION OF DRW
INITIAL CONDITIONS

For the DRW phase-space density defined in Sec. II a direct
calculation gives immediately that the initial kinetic energy is

T0 = f0

[
2(x2 − x1)v3

2

3
+ 2x1v

3
1

3

]
,

and the initial potential energy

U0 = 4f 2
0 v2

2g

[
4x3

2

3
+ 2x3

1

3
− 2x2

2x1

]

+ 8f 2
0 v1v2g

[
x1

(
x2

2 − x2
1

)] + 16

3
f 2

0 v2
1gx3

1 .

These indeed reduce to the corresponding expressions (23)
for the SRW (when we set x1 = 0, x1 = x2 or v1 = v2). To
generate the specific initial condition reported in Sec. V D,
we do a random sampling in in x1,x2,v1, and v2 at fixed f0,
E and M fixed (which implies that ξD is fixed). We then
choose configurations with R0 = 2T0/U0 and δ as various as
possible.
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