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We study the first-passage-time processes of the anomalous diffusion on the self-similar curves in two
dimensions. The scaling properties of the mean-square displacement and mean first passage time of the fractional
Brownian motion and subordinated walk on the different fractal curves (loop-erased random walk, harmonic
explorer, and percolation front) are derived. We also define natural parametrized subordinated Schramm-Loewner
evolution (NS-SLE) as a mathematical tool that can model diffusion on fractal curves. The scaling properties
of the mean-square displacement and mean first passage time for NS-SLE are obtained by numerical
means.
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I. INTRODUCTION

The anomalous or non-Fickian diffusive transports have
attracted a lot of interest in the past few years. There is a wide
range of heterogeneous or pre-asymptotic systems in the fields
of physics, astronomy, biology, chemistry, and economics,
where anomalous diffusion occurs [1]. This phenomenon is
observed in diffusion on fractal structures in geophysical and
geological media [2,3], charge transport in disordered and
amorphous semiconductors [4], acceleration of particles inside
a turbulent medium [5], transport process in the biological
systems [6], and many other examples; for an extensive
collection of references see [1]. The well-known examples
of anomalous diffusion are the continuous-time random walk
(subdiffusive processes) [7] and Lévy flight [8]. In this type of
process, the mean-square displacement (MSD) obeys a power
law equation with respect to time with exponent 0 < ν < 2.
Anomalous transport, especially the continuous-time random
walk and Lévy flight, can be studied within the fractional
Fokker-Planck (FP) equation approach [9].

One of the most important characteristics in normal and
anomalous diffusions is first passage time (FPT), which is
defined as the time needed for the dynamic variable to cross a
given threshold value for the first time [10,11]. FPT has been
used to characterize diffusive processes in various systems
such as the spreading of disease [12], the passage of polymers
and DNA in subdiffusive media and membranes [13], the firing
of neurons [14], animals searching for food [15], and Lévy
stable random motion [8].

One of the interesting aspects of the diffusion problem
is the study of FPT processes in fractal geometries such as
percolating fronts, crack patterns, polymer chains, lightning
paths, etc. [16–20]. In this work we are interested in simple
fractal objects with fractal dimension 1 < df < 2 without any
branch point. Since the coordination number of all the points
on the fractal is 2, it is easy to conclude that there should be
lots of similarities between FPT processes in these systems and
one-dimensional (1D) systems. This was already discussed in
Ref. [21], and the important rule of the length of the fractal
objects in FPT processes was understood. In Ref. [21] the
connection with the Schramm-Loewner evolution (SLE) [22]
was also discussed; the important rule of the definition of the
length in the SLE studies [21,23] was especially emphasized.

In this paper we will generalize the work done in Ref. [21],
in many different directions. To have an idea of fractal objects
with fractal dimension 1 < df < 2 we will study the scaling
exponents of MSD and mean FPT (MFPT) of the diffusing
particles on loop-erased random walk (LERW), harmonic
explorer (HE), and percolation fronts (PF’s) on the upper
half-plane. We will study different random walkers such as
fractional Brownian motion and subordinated walk on the
fractal curves. The scaling properties of the MSD of the walker
and MFPT will be discussed. Finally we present a method to
study diffusion on fractal curves by using the SLE. We show
that all the scaling behaviors discussed for the discrete fractal
curves can be rederived by using the subordinated natural SLE,
which is the time-changed Schramm-Loewner evolution. The
central aim of this work is to use the subordinated natural SLE
to find a new connection between diffusion on the self-similar
traces and the SLE as a growth process. Our analyses of MSD
and MFPT are the key points of this connection. The paper
is organized as follows: In Sec. II we will fix the notation
and introduce the scaling relations for the diffusion problem
on semi-1D fractal paths, where we measure the scaling
exponents of MSD and MFPT for two-sided diffusion and
diffusion with waiting times on the self-similar curves with
fractal dimension df . In Sec. III we use the Schramm-Loewner
evolution as a mathematical model to introduce new classes
of diffusion processes (subordinated SLE). The results of
this section are compatible with the two-sided diffusion and
diffusion with waiting time on the discrete fractal paths. In
Sec. IV we conclude our findings. To be self-explanatory, we
add three appendices explaining the details of our simulation
methods.

II. FIRST PASSAGE TIME IN LATTICE
FRACTAL INTERFACES

We begin by considering the diffusion problem on semi-
1D random curves. For our purposes we restrict ourselves
to the fractal curves with Hausdorff dimensions 1 < df < 2
[16] that start from the origin and remain in the upper half-
plane. To understand statistical properties of diffusion along
such inhomogeneous paths it is important to first introduce the
diffusion problem in the 1D case.
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A. First-passage-time statistics in the one-dimensional domain

Consider a one-dimensional diffusion Xt with dynamics

dXt = a(Xt )dt + σdWt, (1)

where Wt is a one-dimensional stochastic process. The interval
for the solution of Eq. (1) is defined as closed on the left-hand
side xa = 0 and open on the right-hand side xb = R. These
special choices force the diffusing particle to move only in
x � 0.

An interesting problem in the theory of stochastic processes
is finding the time that a particle takes to reach a certain level.
The problem of finding this time is called first passage time
[10,11]. The first passage time is the time τr taken for the
process, having started from x = 0, to be reached in x = r

[11]:

τr = inf{t > 0|Xt = r}, (2)

where the infimum for every subset S of real numbers is
denoted by inf{S} and defined to be the biggest real number
that is smaller than or equal to every number in S.

Clearly FPT is a random variable that varies from one
sample of Xt to another. In general we are interested in those
processes where the two statistical variables 〈X2

t 〉 and 〈τr〉
have scaling behavior,〈

X2
t

〉 ∝ tν, 〈τr〉 ∝ rβ. (3)

One example of Eq. (1) is a = 0, σ = 1, and Wt = |BH
t |,

where BH
t is the fractional Brownian motion (fBm) process.

Note that fBm with Hurst index 0 < H < 1 is the only self-
similar Gaussian process with stationary increments [24]. The
correlation function of fBm is

〈BH (t)BH (s)〉 ∼ [|t |2H + |s|2H − |t − s|2H ]. (4)

The absolute value of BH
t is used to force the diffusing particle

to move only in the region x � 0. The particle’s position Xt =
|BH

t | is a stochastic variable with〈
X2

t

〉 = 〈∣∣BH
t

∣∣2〉 ∼ t2H . (5)

The scaling relation in Eq. (5) is in agreement with Eq. (3) and
shows that ν = 2H [25]. Diffusion is said to be anomalous if
ν �= 1, where 0 < ν < 1 (1 < ν < 2) indicates the subdiffu-
sive (superdiffusive) behavior.

It is easy to determine the exponent β = 1/H analytically
for the mentioned boundary condition. To find the scaling
parameter β, consider a random process Xt as Xt/λ1/H = 1

λ
Xt .

Now one can replace r → λr in Eq. (2) to find τλr . It is
straightforward to show that τλr is the same as λ1/H τr in the
distributional sense. By this scaling argument, one can observe
that MFPT is given by

〈τr〉 ∝ r1/H . (6)

It is worth mentioning that by choosing Wt = |Bt |, where
Bt is a Brownian motion (fBm with H = 1

2 ), one can use
the Fokker-Planck equation, which describes the space-time
evolution of the probability density function (PDF) of Xt , to
find FPT distribution. More details can be found in [26].

Although studying diffusion in one-dimensional systems
is interesting for its own sake, there are many examples of

diffusion in self-similar interfaces with fractal dimensions 1 <

df < 2. We will generalize the above arguments to self-similar
interfaces with arbitrary fractal dimension, and we will study
the statistical properties of the diffusion on the fractal curves.

To motivate our method of measurement of the scaling
parameters ν, β for diffusing particle on the fractal curves, we
first consider models on a lattice domain, e.g., the loop-erased
random walk, harmonic explorer, and percolation explorer
processes.

1. The loop-erased random walk

The LERW on the square lattice domain is a random walk
with erased loops when they appear. This process is stopped
when it reaches a given length. To produce LERW curves
started from the origin and conditioned to be in the upper
half-plane, one can use the reflecting boundary condition on
the real axis for the random walker. The fractal dimension of
LERW is 5/4 [27].

2. Explorer processes

Explorer processes (EP’s) on honeycomb lattice, such as
the percolation front process with df = 7

4 and the harmonic
explorer process with df = 3

2 , are used as other classes of
fractal interface [28,29]. To construct an EP path with a fixed
number of steps N , we used a process from a class of explorer
processes on the honeycomb lattice. This process is called
the overruled harmonic explorer process [30]. For numerical
analysis, we simulated this process on the extremely large
rectangular domain, where it can approximate the upper half-
plane (see Appendix A).

Although other studies such as [21] have also used self-
similar traces to study the FPT problem, they have not
characterized the scaling relations in measurable quantities
such as the MSD and MFPT for the general diffusion
processes, e.g., two-sided diffusion and diffusion with the
waiting time, which we have studied in our simulations.

B. Two-sided diffusion on the fractal paths

In this subsection we study the statistical properties of the
diffusing particles along self-similar curves. An interesting
problem in this direction is the determination of the scaling
exponents of the random displacement.

For a one-dimensional domain with reflecting boundary
condition, we mentioned in Sec. II A that the MSD and
the MFPT, according to Eqs. (5) and (6), respectively, obey
scaling laws with the exponents ν = 2H and β = 1/H . In
the following we explain how to use the discrete random
walk model to simulate the stochastic process Xt on the 1D
domain with reflecting boundary condition on x = 0, and we
then favorably apply this model to the random process on the
discrete fractal curves.

First we consider the random walker on the one-
dimensional discrete lattice. This random walker started from
the position x = 0 at t0 = 0 and at time tn = nδt moves one
step to the right (left) when {|BH

t+δt | − |BH
t |} > 0 ({|BH

t+δt | −
|BH

t |} < 0). The normal random walk (discrete version of
Brownian motion) corresponds to H = 1/2. This random
process corresponds to two-sided diffusion on the 1D domain.
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Following the idea presented in one dimension, we obtain the
statistics of two-sided diffusion on the fractal curves. To this
aim we consider a random walker with position coordinates
Xn and Yn for the nth walk where (X0,Y0) = (0,0) is the
start position and it moves back and forth along the discrete
self-similar curve. In order to simulate a random walker on
the curve that started from the origin and remains in the
upper half-plane, we used, from the fBm process, |BH

t |. Using
this correlated stochastic process we define another stochastic
process SH

n so that SH
n+1 = SH

n + 1 (SH
n+1 = SH

n − 1) when
{|BH

t+δt | − |BH
t |} > 0 ({|BH

t+δt | − |BH
t |} < 0) with the initial

value SH
0 = 0. The random walk position can be defined by

Xn = x(SH
n ) and Yn = y(SH

n ) where x(i) and y(i) are the
position components of the ith point of the curve.

We now study numerically the scaling dependence of
〈R2

n〉 = 〈X2
n + Y 2

n 〉 and 〈τr〉 to n and r for many random
walkers moving along such self-similar one-dimensional
objects. In particular, we study the scaling forms of 〈R2

n〉
and 〈τr〉.

To study the scaling laws in two-sided diffusion, it should
be mentioned here that the scaling exponents ν(H,df ) and
β(H,df ) in two-sided diffusion on the fractal curves are in
general a function of the Hurst parameter H and geometrical
dimension df . Within the FPT statistics of the one-dimensional
diffusing particle approach, one can consider the self-similar
curve as a one-dimensional nonstraight line with length l.
For this semi-1D object using Eq. (6) one can observe that
〈τl〉 ∝ l1/H . On the other hand, for a fractal curve (with length
l) inside a circle there is a scaling law l ∝ rdf where r is the
radius of the circle. Under these assumptions, the MFPT reads
as 〈τr〉 ∝ rdf /H .

The very same method can be applied to the scaling law of
MSD. In the same manner as before we consider the fractal
curve a semi-1D object. There is a scaling relation 〈l2

n〉 ∝ n2H

[similar to Eq. (5)] for the position of the diffusing particle
ln after n walks along such a semi-1D curve. In addition, the
scaling relation ln ∼ R

df

n for the fractal curve is well-known,
where Rn is the radius of the semicircle-enclosed lnth walks.
We therefore obtain a universal law 〈R2

n〉 ∝ n2H/df for MSD
of two-sided diffusing particles on the fractal curves. Using
these arguments we expect

ν(H,df ) = 2H/df , β(H,df ) = df /H. (7)

These equations are in agreement with the scaling exponents
in Eqs. (5) and (6) in the df → 1 limit. The above results for
H = 1

2 recover the predictions in Ref. [21]. Table I summarizes
our numerical results for the two scaling exponents ν and β,
where it can be seen that our results are quite compatible with
the predictions in Eq. (7) for two-sided diffusion on the fractal

curves. In our measurements we used from 50 000 fractal
curves and 10 independent realizations of random process SH

n

per curve for each numerical test.

C. Diffusion with waiting times on the fractal curves

In this subsection we study anomalous motion of a free
particle with waiting time on the self-similar curve. In the
preceding section, we obtained statistics of walkers moving
back and forth randomly along self-similar discrete curves.
The physical time between two consecutive steps of walks in
the previous examples is equal to a constant �t .

We can also consider the random time elapsing between
two consecutive jumps of a diffusing particle. The particle
starts from the origin and is trapped in site n for some random
time. These positive random waiting times τn are identically
distributed random variables, each having the same probability
density function ψ(τ ) [3,7]. The role of the waiting time forces
us to identify operational time Sα

tn
= ∑

n τn and physical time
tn = n�t . The physical time n is always accelerated against
the strictly increasing random time Sα

tn
. The random time Sα

tn
is called subordinator. As mentioned in Refs. [31–33] it is
described as

Sα
tn

= inf{τm : U (τm) > tn}, (8)

where U (τm) is an α-stable subordinator (0 < α < 1) and τm =
m�τ . The random process Sα

tn
is called the inverse-time α-

stable subordinator. The above process has neither stationary
nor independent increments, but it is easy to show that we
have distributional scaling Sα

λt = λαSα
t , which leads us to the

following symmetry for the subordinated Brownian motion:

B
(
Sα

ct

) = B
(
cαSα

t

) = cα/2B
(
Sα

t

)
. (9)

Although B(Sα
t ) is self-similar with a Hurst exponent α/2,

it is not fractional Brownian motion because it does not
have a Gaussian distribution and it does not have stationary
increments. The process Sα

t is strictly increasing and it tends
to infinity for t → ∞ so it is a good process to consider as
the time, whereas in the α → 1 limit the subordinated time
converges to the physical time. In our study we generated the
subordinator Sα

tn
following Ref. [32] (see Appendix B).

We study statistical properties of position coordinates
Xn = x(Sα

tn
) and Yn = y(Sα

tn
) for a subordinated walker with

operational time Sα
tn

that moves on the discrete self-similar
curve with fractal dimension df and position components x(i)
and y(i). For this class of particle diffusion in the fractal path,
we again expect universal scaling dependence of the MSD
(〈R2

n〉 = 〈X2
n + Y 2

n 〉) and the MFPT (〈τr〉) to the geometrical
parameters n and r as

ν(α,df ) = 2α/df , β(α,df ) = df /α. (10)

TABLE I. Numerical values of the scaling exponents ν and β for the two-sided diffusion on the fractal curves. To measure these exponents
we used from correlated process SH

n with H = 0.8 and 0.9.

Model ν (H = 0.8) β (H = 0.8) ν (H = 0.9) β (H = 0.9)

LERW 1.280 ± 0.001 1.56 ± 0.01 1.437 ± 0.005 1.385 ± 0.005
HE 1.066 ± 0.001 1.88 ± 0.01 1.195 ± 0.005 1.670 ± 0.003
PF 0.92 ± 0.01 2.17 ± 0.01 1.029 ± 0.003 1.945 ± 0.005
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TABLE II. Numerical values of the scaling exponents ν and β

for subordinated diffusion on the fractal curves. To measure these
exponents we used from subordination Sα

tn
with α = 0.8 and 0.9.

Model ν (α = 0.8) β (α = 0.8) ν (α = 0.9) β (α = 0.9)

LERW 1.280 ± 0.001 1.56 ± 0.01 1.440 ± 0.001 1.39 ± 0.01
HE 1.065 ± 0.005 1.88 ± 0.01 1.200 ± 0.001 1.67 ± 0.01
PF 0.920 ± 0.005 2.18 ± 0.01 1.030 ± 0.005 1.95 ± 0.01

Our numerical results for α = 0.8 and α = 0.9 (see Table II)
are in good agreement with the scaling exponents in Eq. (10).

III. FIRST PASSAGE TIME AND SCHRAMM-LOEWNER
EVOLUTION

In the preceding section we studied scaling exponents of
MSD and MFPT for some important examples of two-sided
and subordinated diffusion on the discrete self-similar curves
in the upper half-plane. In our study we used three statistical
models: loop-erased random walk, harmonic explorer, and
percolation interfaces on the lattice.

The scaling limit of the lattice models as the lattice spacing
goes to zero corresponds to Schramm-Loewner evolution. This
mathematical model is defined in the complex plane and it was
introduced by Schramm [22]. SLE is based on the Loewner
equation,

∂tgt (z) = 2

gt (z) − ξt

, (11)

where the real-valued function ξt is called the driving (or
forcing) function, which determines all the properties of
SLE. Loewner showed that for any nonintersecting curve
parametrized by a complex function γ (t) in the upper half-
plane H, there exists a conformal map gt (z), which maps
the upper half-plane minus the curve and the region that is
separated from infinity by the curve (hull: Kt ) H \ Kt to
the upper half plane H [34]. Ordinary SLE is the Loewner
evolution with ξt = √

κBt , where Bt is the Brownian motion
with mean zero and E[BtBs] = min(t,s) and also with the
diffusion constant κ > 0 [22]. These properties ensure that the
curve is conformally invariant.

SLEκ is a random conformally invariant curve with the
fractal dimension df = 1 + κ/8 (0 < κ < 8) [28,35]. The
scaling limits of LERW, HE, and PF are SLEκ with κ = 2,
4, and 6, respectively [27,36,37].

The SLEκ curve [γ (t)] is parametrized with time t . On the
other hand the lattice models (LERW, HE, and PF) usually have
a natural parametrization given by the number of steps with
equal length along the curve. In general, the scaling limits
of the lattice models are not the same as SLEκ , where this
difference comes from parametrization of each model [38].
We will use from an appropriate method to reparametrize the
SLEκ curve.

A. Natural parametrized SLE

The first step in simulating SLE is time-step discretization.
Let us consider a partition of the time interval [0,t], where
it is discretized into 0 = t0 < t1 < t2 < · · · < tn = t . One

method to simulate SLE is the foregoing approximation with
the equally spaced discrete time points ti = idt . In this
method the points zi on the curve γ (t) are given by an
iteration process zi = f1 ◦ f2 ◦ · · · ◦ fj (ξj ), where fj (z) =√

(z − ξj )2 − 4dt + ξj is the inverse conformal map and ξj

is the discretized drift, where it will be approximated by
a piecewise constant function in the uniform partition of
the time interval [(i − 1)dt,idt]. Notice that the conformal
map fi(ξi) can produce a small slit at ξj with length Li =
Im[fi(ξi)] = 2

√
ti+1 − ti on the upper half-plane. In this

method the two-dimensional distances li = |γ (ti) − γ (ti−1) |
are extremely nonuniform [23,38,39].

We hereby, require the natural parametrized SLEκ (N-
SLEκ ) curve, where it is the discrete SLEκ curve {γi} with an
approximately equal step length |γ (ti) − γ (ti−1) | ≈ λ. There
are some mathematical and numerical procedures used to find
a sensible definition of N-SLEκ [23,39,40] (see Appendix C).

B. Subordinated SLE

In order to understand the scaling relations for the models
of diffusion with waiting time on the self-similar traces as well
as two-sided diffusion on the fractal curves, we present here
the subordinated version of SLEκ .

The motivation of our approach comes from the idea that
the probability distribution of the point at the tip of the SLEκ

trace satisfies the Fokker-Planck equation (FPE) [41], which
basically can be thought of as the FPE of the position of
a particle in the fractal interface. In a similar manner one
may think about the FPE for the probability distribution of
the tip of the N-SLE and also the subordinated N-SLE (NS-
SLE) curve in the continuum limit and study diffusion. In
principle it should be possible to calculate analytically MSD
and MFPT for these semi-1D interfaces by using the FPE in
two dimensions. Unfortunately we do not know how to write
the FPE of the N-SLE and NS-SLE; therefore we just calculate
numerically the scaling properties of the tip of the NS-SLE as
the diffusion process on the fractal paths. We will show that
the scaling behaviors of the subordinated N-SLE are similar
to the lattice models.

For normal SLE given by Eq. (11) the time variable
is deterministic, but we would like to set this variable as
an internal parameter τ that is also stochastic and strictly
nondecreasing; this is called subordinating the process by the
inverse-time α-stable subordinator Sα

t (see Appendix B).
Using the above definition one can consider Loewner’s map

with the new time as gSα
t
(z), which is still scale invariant in the

following sense: the conformal map g̃Sα
t
(z) = 1

λα/2 gSα
λt

(λα/2z)
with B̃(Sα

t ) := 1
λα/2 B(Sα

λt ) satisfies the same Loewner equation
as gt (z). The above scale invariance enforces the scale
invariance of the curve.

We discussed the simulation of SLE and N-SLE in
the preceding section. The simulation of subordinated SLE
(S-SLE) and natural parametrized subordinated SLE (NS-
SLE) are similar. The only difference is the conformal

map fj (z) =
√

[z − ξ (Sα
tj )]2 − 4dSα

tj + ξ (Sα
tj

),a where dSα
tn

=
Sα

tn
− Sα

tn−1
and 0 = t0 < t1 < t2 < · · · < tn = t . The time

steps �j = dt (ti = ∑i
j=1 �j ) in the case of S-SLEα

κ are
selected uniformly and in the NS-SLEα

κ the non-uniform time
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TABLE III. Numerical values of the scaling exponents ν and β

for the tip of the NS-SLEα
κ curves with κ = 2.0, 4.0, and 6.0 and

α = 0.8 and 0.9.

NS-SLEα
κ ν (α = 0.8) β (α = 0.8) ν (α = 0.9) β (α = 0.9)

κ = 2.0 1.28 ± 0.02 1.52 ± 0.05 1.42 ± 0.04 1.35 ± 0.05
κ = 4.0 1.02 ± 0.05 1.84 ± 0.04 1.16 ± 0.05 1.63 ± 0.05
κ = 6.0 0.92 ± 0.03 2.15 ± 0.05 1.00 ± 0.03 1.90 ± 0.06

steps �i are computed by using Jacobian scheme. The only
difference between S-SLEα

κ (NS-SLEα
κ ) and normal SLEκ

(N-SLEκ ) is in the growth process of each of them. In the
first case the tip of the curve has waiting time according to the
α-stable Levy process.

As discussed earlier, the scaling exponents ν and β for
a subordinated walk along discrete fractal interfaces are
defined explicitly in Eq. (10), where they are in agreement
with numerical simulations. We will consider the tip of
NS-SLEα

κ as a subordinated growth process, where it is a
mathematical model for a subordinated walk along fractal
curves. The scaling exponents of this subordinated process are
collected in Table III, where they are in good agreement with
Eq. (10) and also with the numerical simulation of the sub-
ordinated random walk along the self-similar discrete curves
(see Table II).

We also notice that another way to subordinate the forcing
function in Eq. (11) is based on the iterated Brownian motion
[42]. Consider two stochastic processes, Bt and YH

t , where
the first one is the Brownian motion and the second one is the
fractional Brownian process. The iterated Brownian process
is defined as B(|YH

t |), where |YH
t | corresponds to the non-

negative random time. It is easy to verify that the fractional
Brownian time Brownian motion B(|YH

t |) is a self-similar
process of index H/2, that is, for any λ,

B
(∣∣YH

λt

∣∣) = B
(
λH

∣∣YH
t

∣∣) = λH/2B
(∣∣YH

t

∣∣). (12)

Simulation of the the natural parametrized version of
fractional Brownian time SLE (NF-SLEH

κ ) is similar to
the NS-SLE case. First consider discrete times 0 = t0 <

t1 < t2 < · · · < tn = t and the conformal map fj (z) =√
[z − ξ (|YH

tj |)]2 − 4d|YH
tj | + ξ (|YH

tj
|), where the infinitesi-

mal values of the local time d|YH
tj

| = |YH
tj

| − |YH
tj−1

| can get

positive and negative values. The length of NF-SLEH
κ curves

increases for d|YH
tj

| > 0 and decreases for d|YH
tj

| < 0. This
dynamical process is very similar to the two-sided diffusion on
the lattice fractal models. Our estimations for the two scaling
parameters ν and β for MSD and MFPT, Table IV, are in a

TABLE IV. Numerical values of the scaling exponents ν and β

for the tip of the NF-SLEH
κ curves with κ = 2.0, 4.0, and 6.0 and

H = 0.8 and 0.9.

NF-SLEH
κ ν (H = 0.8) β (H = 0.8) ν (H = 0.9) β (H = 0.9)

κ = 2.0 1.28 ± 0.01 1.57 ± 0.01 1.44 ± 0.01 1.40 ± 0.02
κ = 4.0 1.05 ± 0.03 1.90 ± 0.02 1.16 ± 0.05 1.70 ± 0.04
κ = 6.0 0.90 ± 0.03 2.20 ± 0.02 1.01 ± 0.03 2.00 ± 0.05

good agreement with the predicted values in Eq. (7) and also
numerical results coming from the lattice models (see Table I).

IV. CONCLUSIONS

To conclude, we studied the diffusive dynamics of the
random processes on the self-similar curves and measured the
scaling exponents of mean-squared displacement and mean
first passage time expressed in Eq. (3). The various scaling
exponents for MSD and MFPT are obtained numerically for
two-sided diffusion and diffusion with waiting time on three
discrete fractal curves, i.e., the loop-erased random walk,
harmonic explorer, and percolation front. It appears that the
exponents only depend on the fractal dimension df of the
curves and the scaling exponent H for the two-sided diffusion
and α for the subordinated diffusion.

Finally, we rederived the properties of the anomalous
diffusion (FPT, MSD) on the discrete fractal curves with a
subordinated version of the natural parametrized SLE. Our
results offer a method to investigate diffusion in the fractal
interfaces. We believe that these results are a starting point for
the development of the subordinated version of SLE.
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APPENDIX A

To find the harmonic explorer and percolation fronts, we
used the overruled harmonic explorer process on a very large
rectangular domain. This domain on the upper half-plane as
shown in Fig. 1 is splitting into three parts: a left boundary
with yellow (light gray) condition, a right boundary with blue
(dark gray), and also an uncolored inner part. This boundary
condition is used to limit the EP path to this part of half-plane
to start from r0 and stop when it reaches r∗ or length N . The
explorer process is the unique path from the origin. In each
step, there is a yellow (light gray) hexagon on the left and a
blue (dark gray) one on the right [29].

To generate this path dynamically, a growth process starts
from the point r0 on the lower boundary. In the first step
the color of face f1 in front of r0 is chosen to make it blue
(dark gray) or yellow (light gray) and the explorer is forced
to turn left or right, respectively. To choose the color of face
f1, a random walker starts from f1 and stops when it crosses
the rectangle’s boundary for the first time. Now, the color of
f1 with probability 0 < p < 1 is yellow (light gray) if the
touch boundary is yellow (light gray). Note that two stochastic
operations are used to color one hexagon: a random walker to
find the boundary color and flip of a coin to accept or not accept
the boundary color. The new tip of explorer path is located in
the position r1 and a new face (f2) should be colored with the
same restriction. In particular, the outcomes of the explorer
process with p = 1

2 ,1 as shown in Fig. 2 are percolation front
and harmonic explorer, respectively. The fractal dimension of
the overruled harmonic explorers has a linear relationship with
p and it is conjectured to be df = 2 − p

2 [30].
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r0

r∗

f1 =?

p
1 − p

FIG. 1. (Color online) A rectangular domain with appropriate
boundary conditions is used to build an explorer path. Top: Three parts
of the domain, which consists of a left boundary with yellow (light
gray) hexagons, a right boundary with blue (dark gray) hexagons, and
uncolored hexagons. Middle: First step to identify color of face f1.
A random walker moves around uncolored sites to hit the boundary. In
this example, the color of face f1 with probability p will be blue (dark
gray) or with probability 1 − p will be yellow (light gray). Notice
that the walker turns to right when yellow (light gray) is selected and
turns to left when blue (dark gray) is selected. Bottom: A complete
exploration process in a rectangle.

APPENDIX B

The celebrated subordinated random time Sα
t is given by

Eq. (8), where it can be efficiently generated by the algorithm
proposed in Ref. [32]. As mentioned earlier the α-stable
subordinator U (τ ) denotes the strictly increasing Levy motion
with the Laplace transform 〈e−kU (τ )〉 = e−τkβ

[33]. The first
step in simulating Sα

t begins with approximating of the strictly
increasing α-stable Levy motion U (τ ) on the discrete times

(z)

(z
)

p = 1.0 p = 1
2

Im

Re

FIG. 2. (Color online) The overruled harmonic explorer path with
length N = 3 × 104. Left: harmonic explorer with p = 1.0 and fractal
dimension df = 3/2. Right: percolation explorer with p = 1/2 and
fractal dimension df = 7/4.

τi = i�τ (i = 0,1, . . . ,M). The numerical integration of the
process U (τ ) for 0 < α � 1 yields

U (τj+1) = U (τj ) + �τ 1/αLα(β), (B1)

where Lα(β) is a Levy stable random variable with parameter β

and U (0) = 0. We use skewed Levy-stable distribution (β = 1)
to ensure that U (τ ) gets an almost increasing random process
[33]. It can be generated by

Lα(1.0) = sin
[
α
(
V + π

2

)]
[cos(V )]1/α

×
{

cos
[
V − α

(
V + π

2

)]
W

}(1−α)/α

, (B2)

where V is a random variable with uniform distribution
between (−π

2 , π
2 ) and W has exponential distribution with

mean 1. For the time horizon T , the summation process in
Eq. (B1) ends when we get U (τM−1) � T < U (τM ). One
can observe that U (τ ) is strictly increasing and M always
exists [32].

Now, for every ti ∈ (0 = t0 < t1 < t2 . . . < tN = T ), we
find τj such that U (τj−1) < ti � U (τj ), and from the definition
in Eq. (8) we can define Sα

ti
= τj . From Eqs. (B1) and (B2)

it is clear that Lα(1) = 1 and Sα
ti

= ti in the α → 1 limit,
where at this limit subordinated time converges to the normal
time.

APPENDIX C

A standard procedure [39] to find the half plane N-SLEκ

trace is based on a change in the size of the ith slit length
Li (it is a function of time-step parameter �i = ti − ti−1 as
Li = 2

√
�i) by the Jacobian. The Jacobian |Ji−1| ≈ |(ξi −

ξi−1)G
′′
i−1(ξi−1)| of the conformal map Gi = f1 ◦ f2 ◦ · · · ◦ fi

acts on the corresponding segment to rescale the length Li for
the ith slit by

Li ≈ λ

|Jn−1| , (C1)

where λ > 0 is the step length. For a piecewise constant
Brownian process ξi = ξi−1 ± √

κ�i (the sign of
√

κ�i

011134-6
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(z)

(z
)

κ = 2.0 κ = 4.0 κ = 6.0
Im

Re

FIG. 3. (Color online) The N-SLEκ curves with length N =
1 × 104, λ = 0.001, and κ = 2.0, 4.0, and 6.0 from left to right.

is chosen randomly according to the uniform probability
distribution), the above approximation yields

�i = λ

2
√

κ|G′′
i−1(ξi−1)| . (C2)

Note that computing points along the N-SLEκ curve requires
this adaptive choice of �i , and that the total time with these
nonuniform time steps will be equal to ti = ∑i

n=1 �i . In this
procedure the distances between two sequential points li ≈ λ

approximately remain constant.
In our study we followed one straightforward motivation

for computing the Jacobian. If one considers hi(z) = fi(z +
ξi) − ξi−1, the conformal map maps the upper half-plane
onto the upper half-plane plus a slit. The length of this slit
equals 2

√
�i and the position on the real line equals δi =

ξi − ξi−1. Following a simpler strategy one can decompose
the incremental map hi(z) to hi(z) = Tδi

◦ φH
i , where φH

i =

√
z2 − 4�i is the slit map and Tδi

(z) = z + δi is a translation
map by the real value δi . The ith points of the SLE or N-SLE
curve computed from γ (ti) = gn(0), where

gn(z) = Tδ1 ◦ φH
1 ◦ Tδ2 ◦ φH

2 ◦ · · · ◦ Tδi
◦ φH

i (z). (C3)

We now consider a new format of Eq. (C2) as

�i = λ

2
√

κ |g′′
i−1(0) | , (C4)

where

g′′
i (0) =|φ′′

n(0) |
n−2∏
j=0

|φ′
n−1−j (�j ) | . (C5)

In the above equation, �j is defined as

�j = Tδn−j
◦ φH

n−j ◦ Tδn−j+1 ◦ φH
n−j+1 ◦ · · · ◦ Tδn

◦ φH
n (0).

(C6)

Following [39] the proposed method of approximating sample
paths of N-SLEκ consists of six steps: (1) Set the constants
λ, κ, and N . (2) Set n = 1 and �1 = 1. (3) Compute

√
κ�n

according to steps 1 and 2 with a random sign (±) with equal
probability. (4) Calculate γ (tn) = gn(0) using the iteration map
as shown in Eq. (C3). (5) Compute �n+1 using Eqs. (C2), (C5),
and (C6). (6) If n < N increase n by 1 and repeat steps 3 to
6. The typical curves of the N-SLEκ for κ = 2, 4, and 6 are
presented in Fig. 3.
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