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Standard reservoir evaluations are based on Archie’s law relating the average water saturation to the
average electrical resistivity by Rind = S−2

w . However, especially in the case of complex heterogeneous
carbonates, deviation from Archie’s law is observed and generally attributed to factors affecting the percolation
or disconnectedness of the different phases (wetting films, microporosity, macropores) assuring electrical
conductance. Pore-network models (PNM’s) in combination with high-resolution computed microtomography
(μ-CT) constitute a very effective tool to investigate the influence of the geometry and topology of the porous
media on the spatial distribution of the conductive phase, and therefore on the shape of the resistivity index
curve. An extended version of the classical PNM applicable to dual-porosity systems is presented. It combines
the classical pore-network modeling applied on the macroporous space with the macroscopic properties of the
microporous phase, supposing that the two pore systems act in parallel. Three-dimensional images provide
information on the connectedness of the microporous phase, which is then included in the simulations. Electrical
behavior of sandstone and two carbonates presenting distinct resistivity index curves were simulated and compared
to measurements. Both Archie and “non-Archie” behavior were correctly reproduced, and the curve shape was
explained considering percolation of the different phases.
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I. INTRODUCTION

Standard reservoir evaluations for the estimation of initial
oil in place are based on Archie’s laws relating water saturation
(Sw) to electrical resistivity Rt . One of the steps in the esti-
mation procedure is the determination of the resistivity index
curve (Rind = Rt/R0, where R0 is the resistivity at full satu-
ration) relating Rind to Sw. Conventionally, in the absence of
core measurements, Rind = S−n

w and the saturation exponent n
is taken equal to 2 based on historical measurements performed
on sandstones [1,2]. However, in some cases the saturation
exponent n can largely deviate from 2, or become nonlinear on
a log-log scale [3–6], yielding a large underestimation of oil
in place, especially at low saturation. Considerable effort has
been made to explain the physical reason for this variation
and try to predict it from direct observations of the pore
structure. However, considering a large variety of carbonate
structures, it was observed in [7,8] that deviation or non-Archie
behavior are not necessarily linked to bimodal structures,
and that simple unimodal structure can also present strong
deviation at low water saturation. In the case of unimodal
structures, Han et al. [9,10] attributed the observed bending
down on a Fontainebleau clay-free sandstone to “thick” films,
whereas in [11,12] the authors explained the observed bending
down behavior by microporosity lining the grains, yielding a
parallel path for the current. Such an interpretation has often
been used in the past for clayey sandstones [13,14]. Despite
their different origins, both films and microporosity provide
hydraulic continuity once the bulk conducting phase becomes
disconnected. In carbonates containing microporosity, perco-
lation arguments have been used to explain deviations from
Archie’s law [3,15,16]. Indeed, Archie’s law relates average
saturation to average resistivity with the underlying hypothesis
of small local porosity and saturation changes [16], which is
not the case for carbonates. Most of the studies conclude that

the shape of Rind curves depends on the geometrical and spatial
distribution of the conductive phase, emphasizing again the
percolation issue. Indeed, the shape of Rind curves reflects the
percolation or disconnectedness of the different water fractions
(wetting films, microporosity, macropores) contributing to
the electrical conductance. Montaron [17] reproduced Rind

curves with a large range of saturation exponents by simply
introducing a so-called water connectivity index into the
resistivity index equation given by percolation theories [18]. In
physical terms, introducing a water connectivity index permits
modeling of the wettability of the medium.

Nevertheless, it is relatively difficult to directly introduce
information on the geometry and topology of the medium
into percolation models. The spatial arrangement between,
e.g., micropores and macropores in addition to water films
strongly influences the shape of Rind curves. Our approach
is to combine high-resolution computed microtomography
(μ-CT) images and numerical modeling to investigate Rind

curves as they enable us to account for the complex spatial
structure as well as wetting films. Several papers in the
literature treat the problem of electrical conductivity of
porous structures. Generally, governing equations are directly
solved in the three-dimensional (3D) pore space obtained
from segmented images. For example, Bekri et al. [19] used
finite volumes to solve for the electrical potential, whereas
Knackstedt et al. [11] used a finite-element method to solve
the Laplace partial differential equation. Han et al. [10] used
a random-walk algorithm applied to the partially desaturated
system to determine Rind curves from the simulated effective
diffusivity. Particles were displaced in either the film or the
bulk phase. All approaches gave interesting insight into the
physics of electrical conductance in partially saturated rocks.
It is worthwhile, therefore, to continue these efforts and to
explore, particularly in the case of dual porosity systems, the
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influence of the correlation between the rock structure and
the type and number of conductive paths on Rind curves. This
can also be done by using a dual-porosity network approach
combined with μ-CT images. The major advantage of this
approach, which is described in the present paper, lies in the
fact that it takes into account the essential features of the
pore topology of large pores as well as the conductance of
the microporous phase and of the wetting films. In particular,
we will see that we can study the percolation effects of the
different water fractions.

Pore-network models (PNM’s) represent the pore space by a
three-dimensional network of interconnected pores and throats
of simple geometry (circular, elliptical, or triangular cross
section), in which the effective electrical and hydraulic con-
ductances can be determined analytically [20–22]. Although
this kind of model does not describe the exact morphology
of a porous medium, it is able to take into account essential
features of the pore-space geometry and topology, including
the converging-diverging nature of pores, the multiple connec-
tivity of the pore space, as well as the distribution of pore sizes.
PNM’s are commonly used to simulate drainage and imbibition
processes and to compute petrophysical properties of porous
media [23–28]. Single pore-network approaches have been
used extensively to calculate electrical transport properties of
partially saturated porous media. A major effort was made to
explain the influence of the pore topology and geometry as well
as wettability alterations and saturation history on RI curves. In
1984, Dicker and Bemelans [29] observed the bending-down
behavior at low water saturations if the presence of water
films remaining along the pore wall roughness is correctly
modeled. This fact has been confirmed by Sen et al. [16] and
Zhou et al. [30], pointing out that in this saturation range,
flow in corners becomes important and that simple bond
percolation models cannot correctly represent the observed
bending-down behavior. Wang and Sharma [31] and Sharma
et al. [32] observed a strong influence of the connectivity and
the aspect ratio on the saturation exponent that, in turn, strongly
depends on the considered wettability. Suman and Knight [33]
investigated the relation between the spatial correlation of
the pore size and the saturation exponent. Man et al. [34,35]
concluded that the slight non-Archie behavior of sandstones
can be reproduced when using a realistic representation of
the pore structure. Tsakiroglou and Fleury [36] included the
porosity due to the fractal roughness of the pore walls. They
stated that strong “non-Archie” behavior can be modeled
for a certain fractal dimension of this surface roughness.
This brings us to the dual network approach suitable for
bimodal pore structures, considering a microporous phase
acting electrically in parallel to the macroporous network.
Initially proposed by Ionnidis and Chatzis [37] and extended
by Bekri et al. [38,39], Moctezuma et al. [40], and Youssef
et al. [41], this model enables the investigation of the influence
of the microporous phase on the macroscopic transport. In the
present work, we pursue these efforts by combining the dual
network approach with μ-CT imaging. The development of
computational methods to analyze the 3D structure of pore
networks improved tremendously with the advent of syn-
chrotron x-ray computed microtomography [42–46]. Recent
emerging laboratory μ-CT equipment, providing resolutions

of a few microns, has given a new invigoration to 3D material
characterization.

The objective of the present work is to investigate the effect
of pore architecture obtained from μ-CT images on electrical
properties calculated with a dual-porosity pore-network model
used in drainage conditions. The structure of the paper is as
follows: In Sec. II, we describe the sample characteristics,
including mercury injection, formation factor, and resistivity
index data during drainage. Section III provides information
on the image acquisition and processing. Additionally, the
network and data extraction methodology is explained. Basic
equations of the dual-porosity pore- network approach are
given in Sec. IV. Results are then presented and discussed
in Sec. V, with Sec. V A dedicated to the validation of
the PNM on a monomodal sandstone sample. Then the
dual-porosity PNM is applied to two distinct carbonates.
A parametric study to evaluate the impact of the local
heterogeneity pattern of the microporous phase is part of that
section.

II. SAMPLE CHARACTERISTICS

The following samples were considered: a clay-free
monomodal Fontainebleau sandstone and two carbonates
(Estaillade and Lavoux limestone), characterized by a bi-
modal pore size distribution. The experimentally obtained
petrophysical properties (permeability, K; porosity, φ; mercury
intrusion interpretation (pore entry diameter) and resistivity
index–saturation curve, Rind – Sw; and formation factor, Ff ,
defined as Ff = R0/Rw = aφ−m, where Rw is the resistivity
of the saturating fluid, m is the cementation exponent, and a is
a constant) are summarized in Fig. 1. Fontainebleau sandstone
is characterized by the absence of microporous phases (clays)
and the presence of a non-negligible roughness on the pore
walls [scanning electron microscope (SEM) images]. The
associated drainage Rind – Sw curves (taken from [10]) show
two different regimes depending on the saturation range: the
data points follow a classical power law with an exponent
n close to 2 for brine saturations higher than 20%, while
a bending- down behavior is observed at low Sw. As can
be seen from the SEM images, both carbonates consist of
macropores, micropores and a relatively dense, solid phase that
might contain very small submicropores. However, samples
exhibit very different electrical behaviors. Estaillade limestone
contains individual microporous “red algae” grains, and the
associated Rind – Sw curve in drainage exhibits a non-Archie
behavior. The curve shows a positive deviation when the water
saturation is below 40%. On the contrary, the Lavoux limestone
contains an abundant microporosity, about 60% of the total
porosity. The curve Rind – Sw follows Archie’s law almost
perfectly with an exponent value nearby 1.9. More information
on Rind measurements can be found in [8].

III. IMAGE ACQUISITION, PROCESSING,
AND DATA EXTRACTION

A. Imaging setup

The μ-CT equipment is a Nanotom from PHOENIX
X-Ray. Common acquisition parameters for rock analysis
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FIG. 1. Measured petrophysical properties of the studied samples.

are the following: 5-mm-diam sample, pixel size μm (cor-
responding to the highest possible resolution for this sample
size), and 23002 field of view (for more details, see [47]). To
optimize 3D image contrast, a sample of Estaillade limestone
was imaged with three different setup conditions. Different
numbers of projections (1800 and 3600) and filters (Cu and
Al) were used. We clearly observed that increasing the number
of projections drastically reduces noise and enhances the
image contrast for a given filter without any counterpart
except a longer acquisition time. The use of an aluminum
filter enhances the contrast, but this gain is counterbalanced
by the outbreak of ring artifacts. However, ring artifacts do
not deteriorate the image quality when using a copper filter.
Following these observations, a number of projections of 3600
and a 0.5-mm-thick copper filter were chosen for further
acquisitions.

B. Sample imaging

Samples were imaged according to the optimal setup
defined above. For each scan, a volume of 10003 voxels was
reconstructed and converted in an 8-bit gray-level image.
Figure 2 shows slices extracted from the reconstructed
volumes. For the two carbonates, we can distinguish a
resolved macroporosity (pore size >3 μm), the microporous
phase (pore size < 3 μm, intermediate gray level), and the
solid phase (bright grains).

C. Image segmentation

Image segmentation is a crucial step in image analysis. It
aims to separate the different phases present in the raw image
by assigning to each voxel of the image the corresponding
phase depending on its gray level. We distinguish two cases:
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FIG. 2. X-ray density maps of Fontainebleau sandstone (a), Estaillade (b), and Lavoux limestone (c). Samples are imaged with 3-μm
resolution, sample diameter 5 mm.

two-phase and three-phase segmentation. In the first case, we
only consider the resolved porosity (pore size >μ-CT resolu-
tion). Two-phase segmentation is well adapted to monomodal
pore structures [cf. Fig. 2(a)] and is commonly done by
thresholding at the minimum interpeak of the gray level
histogram. Voxels belong then either to the solid or to the void
space. In bimodal pore structure samples, we aim to correctly
separate the solid phase, the macropores, and the microporous
phase, where the limit between micro and macropores is given

by the μ-CT image resolution [cf. Figs. 2(b) and 2(c)]. In this
case, three-phase segmentation has to be performed.

D. Three-phase segmentation

To separate the gray levels corresponding to each phase,
the images were previously filtered. The filtering operation
consisted in assigning to each voxel the average gray value of
its 53 neighbors [cf. Fig. 3(b)]. This type of filter was found to

FIG. 3. (Color online) Three-phase segmentation sequence: (a) 8-bit gray-level raw image, (b) filtered image, (c) resulting composite image
after applying th1 and th2, (d) final three-phase image after morphological operations, and (e) gray-level histogram.
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TABLE I. Porosity of the samples and phase fraction from 3D images: image porosity (φimg), macropore fraction (Fma), microporous
phase fraction (Fmi), porosity of the microphase (φmi), and fraction of the macropore surface in contact with the microporous phase (Fsurf ).

Sample ID φexp (%) φimg (%) Fma (%) Fmi (%) φmi (%) Fsurf (%)

GdF 22.0 21.6 21.5 no. no. no.
EST 1 24.7 25.7 15.3 28.6 36 47
LAV 2 28.7 29.8 11.6 62.7 28 78

be a good compromise between the elimination of noise and
the smoothing effect. It results in an enhanced contrast and
a better separation of the gray level peaks in the histograms
[cf. Fig. 3(e)]. By applying thresholds th1 and th2, a new
composite image of the 3D phase distribution can be obtained
[cf. Fig. 3(c)]. The resulting image still contains some artifacts
due to phase transition between the void space and the solid
phase (the gray level of the interface is of the same order of
magnitude as that of the microporous phase). This artifact is
corrected by morphological operations (growing, shrinking,
and smoothing) equivalent to an isotropic dilatation [48] as
shown by Fig. 3(d). Porosity can be directly deduced from
the gray level histogram. According to the Beer-Lambert law,
when an x-ray crosses a material, its attenuation is a function
of the x-ray energies, the atomic number of the material, and
its densities. The Beer-Lambert law is given by Nt = Nie

μx ,
where Nt and Ni are the initial and final x-ray intensity, μ

is the material’s linear attenuation coefficient, and x is the
length of the x-ray path. After reconstruction, the resulting 3D
images represent the map of the local attenuation coefficients
of the material. For constant energy in the photoelectric domain
(energy below 200 KeV), as is the case in the present study, the
linear attenuation coefficient and density are proportional for
a given material. This can be expressed as μ = μ0ρZ4, where
ρ is the local density of the sample, μ0 is a scale factor for the
reconstruction process, which depends on the x-ray energy and
the acquisition geometry, and Z is the material atomic number.

Fontainebleau sandstones are monomineral rocks, thus their
atomic number can be considered as constant in the sample.
As a result, the local gray level of the images, which is
proportional to the attenuation, is a linear function of the local
density and hence the local porosity. If we consider that the
gray level of the void space corresponds to a porosity of 1 and
the gray level of the solid phase corresponds to a porosity of
0, global porosity is then obtained from the 3D image by

φimg = (gs − gm)/(gs − gv). (1)

Here, gm represents the mean gray level of the image, and gv

and gs correspond to the gray levels of the maxima of the void
and solid phase in the histogram. Porosity estimations from the
images are in good agreement with the experimental ones, with
slight deviations that can be attributed to local heterogeneity
(cf. Table I).

E. Information extracted for simulations

1. Porosity data

The different phase fractions extracted from the composite
image (reported in Table I) can be expressed as Fma =
Nma/Nimg and Fmi = Nmi /Nimg, where Fma, Fmi,Nma,Nmi,

and Nimg are, respectively, the resolved porosity fraction,
the microporous phase fraction, the number of voxels of the
resolved porosity, the number of voxels of the microporous
phase, and the total number of voxels in the image. The mean
porosity (φmi) of the microporous phase can then be deduced
from

φmi = (φimg − Fma) / Fmi. (2)

Another important parameter that can be obtained at this stage
is the fraction of the surface of macropores in contact with
the microporous phase (Fsurf). To achieve this, triangulated
surfaces representing the boundaries between the different
phases are generated from the composite image (cf. Fig. 4). The
creation of surfaces with the correct topology and optimized
triangular shapes from the segmented tomographic data is
carried out automatically with the help of the marching cubes
algorithm [49].

F. Equivalent pore network

The pore-network extraction methodology validated on
sandstones and carbonates captures the resolved pore space of
the rocks to partition it into individual pore volumes separated
by throat surfaces. The extraction is processed in three
steps: skeletonization, pore space partitioning, and parameter
calculation. The skeleton algorithm applied to the binary
image is a hybrid algorithm combining thinning and distance

FIG. 4. (Color online) Surface model representing macropores
and microporous phase of the Estaillade limestone.
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FIG. 5. (Color online) (a) Enlarged view of the partitioned volume; six pores are represented with different colors. (b) Throat surfaces and
their corresponding maximal inscribed sphere.

map-based techniques called distance ordered homotopic
thinning [50]. Pores are individualized and characterized by
their volumes V k

P . The pore volume intersections define the
throat surfaces Ascan. Despite having a defined length, which
will be used for the conductance calculation, throats have zero
volume. Thus, the total pore volume is given by VP = ∑

k V k
P .

For further information on pore-network extraction, we refer
to [47]. Figure 5(a) shows an enlarged view of the partitioned
volume to illustrate the quality of partitioning, while Fig. 5(b)
illustrates the shape complexity of throat cross sections. The
last step of the network extraction consists in attributing
geometrical parameters to the pore bodies and throats that
are used later for the PNM calculations.

G. Geometrical pore and throat parameters

A pore body is defined as a porous volume closed by
restrictions. Its volume is measured from the partitioned 3D
image of the pore space. We defined its radius as the radius of
the equivalent sphere having the same volume.

Pore throats are defined as the pore restrictions given in
Fig. 5(b). On the 3D images, each pore throat is characterized
by its area Ascan and its minimum radius rmin. The minimum
radius rmin corresponds to the radius of the maximal sphere

inscribed in the throat cross section [cf. Fig. 5(b)]. In the PNM
simulation, throats have a length that should also be determined
from the images. To this end, channels of the segmented image
[cf. Fig. 6(b)] can be represented by a series of elementary
cylinders of variable and known radii ri and of equal (one
voxel) thickness. ri radii are measured on the 3D image and
stored as gray levels in the skeleton image, as shown in color
in Fig. 6(a). The objective is then to define the length lff

of an equivalent cylindrical tube of radius rmin having the
same electrical conductance geq as the series of elementary
cylinders.

The electrical fluid conductance of an elementary
cylinder i is defined by

gi = c
r2
i

li
, (3)

where c is a constant proportional to the bulk water conduc-
tivity. The inverse of the conductance geq of the equivalent
cylindrical tube is given by

1

geq
= 1

c

lff

r2
min

, (4)

FIG. 6. (Color online) Schematic representation of a real channel connecting two pores.
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which is supposed to be equal to

1

geq
= �

1

gi

(5)

and

1

geq
= 1

c

n

�
i=1

li

r2
i

. (6)

Thus by combining Eqs. (4) and (6), the length of the
equivalent cylindrical tube with radius rmin becomes

lff = nmax

�
i=1

li

(
rmin

ri

)2

, (7)

where nmax is the number of elements in the real channel line.
This length lff may be very different from the actual channel
length from one pore to the other.

IV. PORE-NETWORK MODELING

In this subsection, we present the classical PNM approach
commonly used for monomodal porosity rocks. Then, we
explain the dual network approach suitable for bimodal pore
structures.

A. Network invasion methodology

The capillary-pressure–saturation curve is obtained by
simulating a quasistatic displacement. To this end, increasing
pressure is applied to the injected fluid, whereas the pressure
of the fluid in place is kept constant. During a quasistatic
displacement, viscous pressure gradients are negligible, and
the pressure of each phase is constant everywhere within
the network. Expressions to evaluate the saturations in each
unit element can be found elsewhere [51]. The presence of
surface angularities is of high importance to model the flow
of the wetting phase. Pore shapes are considered to be angular
(triangular and square radius for pore throats and pore bodies,
respectively), allowing the wetting phase to flow along the
corners.

B. Wetting films

The area of the wetting phase occupying the corners of the
pores and throats is given by [52]

Aw = ncρ
2[cos θ (cot α cos θ − sin θ ) + θ + α − π/2], (8)

where nc represents the number of corners, α is the half-angle
of the polygon, θ is the contact angle, and ρ is the radius of the
curvature of the oil-water interface, depending on the applied
pressure. Thus, the wetting phase cross section decreases with
increasing pressure. The ratio Aw/Ascan defines the surface
ratio occupied by the wetting phase in the throat cross-sectional
area.

C. Formation factor and resistivity index calculation

The electrical conductance of the water phase in a pore
segment is given by

ge = σw Aw,s/ lff , (9)

where Aw,s represents the cross-sectional area occupied by the
water phase (bulk: Aw,s = Ascan or film: Aw,s = Aw), lff is the
segment length, and σw is the electrical conductivity of bulk
water. The calculation of the effective conductance between
two neighboring pores takes into account the water phase
occupancy in the different pore segments (pores and throats).
The electrical current Iij in each segment then becomes

Iij = ge,ij (Ui − Uj ), (10)

where Ui and Uj denote the electrical potential in the
neighboring pores i and j.

D. Dual-porosity structure

The dual network model combines transport properties of
the microporosity with the single pore network modeling
approach applied to the interconnected macroporosity net-
work. Both porosity types are supposed to act electrically and
hydrodynamically in parallel. Thus, we consider two parallel
networks, connected at the nodes, where the fluid exchange

FIG. 7. (Color online) Description of the matrix surrounding the throats corresponding to the macroporosity [(a) Macropores surrounded
by either microporous or solid phase, (b) corresponding microporosity distribution in the PNM].

011133-7



D. BAUER et al. PHYSICAL REVIEW E 84, 011133 (2011)

takes place. The first one corresponds to the macropores,
whereas the second one represents the macroscopic transport
properties of the microporous phase (see Fig. 7). In the present
work, pore-throat radii larger than the μ-CT resolution are
used to build a three-dimensional interconnected network
of pores and throats representing the macroporosity. Pores
smaller than the μ-CT resolution are supposed to belong to
the microporosity. Considering this fact, the capillary pressure
Pc necessary to invade the microporous phase is always higher
than the one required for the invasion of the macropores. Thus,
during drainage, the nonwetting phase invades the macropores
before invading the microporous phase.

The volume of the microporosity acting in parallel to the
macropore segments is assumed to be the same for each
segment. It is given by

Vseg = Fmi Vimg /Nseg = Aconlcon, (11)

where Nseg is the number of segments and Vimg is the volume
of the 3D images (FmiVimg corresponds to the entire volume
of the microporous phase). Supposing that the microporosity
volume has a cuboid shape, we define Acon as the cross section
of the cuboid perpendicular to the flow direction, whereas
lcon corresponds to its length along the flow direction [see
Fig. 7(b)].

The electrical conductance of the microporous phase
ge,mi[Sw,mi (Pc)], depending on the water saturation of the
microporous phase, is then given by

ge,mi
[
Sw,mi(Pc)

] = σw{Ff,miRind,mi[Sw,mi(Pc)]}−1Acon/lcon,

(12)

with Ff,mi = aϕ−mmi
mi and Rind,mi[Sw,mi(Pc)] = S−nmi

w,mi (Pc),
where nmi denotes the matrix saturation exponent and mmi

denotes the matrix cementation exponent. Obviously, the
ratio Acon /lcon strongly influences the conductance of the
microporous phase. Electrical conductance of the solid phase
was set to zero, as conductivity due to the small amount of
submicropores in the solid phase is negligible in comparison to
that of the macro- and micropores. Calcite itself, the principal
component of carbonates, is not conductive.

E. Parameter determination for the dual network approach

Parameter determination of the dual network approach con-
sists of two steps. In the first step, the microporosity properties
are determined (microporosity fraction, mean porosity of the
microporous phase, and fraction Fsurf of the macroporosity
surface in contact with microporosity). In the second step,
the equivalent network of the macroporosity is built. The
macroscopic properties of the microporosity are then added
to this network, assuming that the micro- and macroporosity
systems act in parallel.

The contact surface Fsurf given in Table I is converted into a
discrete number of macropore segments whose microporosity
conductance is given by ge,mi.. ge,mi of the remaining pore
segments are set equal to zero, representing the solid phase
(cf. Fig. 7). Pore segments with microporosity acting in
parallel are randomly chosen. The percentage pseg of these
pore segments is then varied taking into account that the
total volume of microporosity is constant. Vseg becomes then
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FIG. 8. (a) Resistivity index curves of the Fontainebleau sand-
stone: simulations and corresponding measurements, RI dimension-
less, Sw percentage. (b) Rind curves of the Fontainebleau sandstone
for the following cases: no films, films of constant thickness, and
films with pressure-dependent thickness, Rind dimensionless, Sw

percentage. (c) Ratio Aw/Ascan as a function of the water saturation,
Sw percentage.

Vseg = Fmi Vimg /(pseg Nseg). The porosity of the microporous
phase is deduced from the μ-CT measurement. If we assume
that the microporosity consists mainly of packed calcite
micrite, the cementation exponent mmi can be set to mmi =
1.5 [53,54].
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FIG. 9. (a) Estaillade carbonate: Ff as a function of the per-
centage of throats pseg surrounded by microporosity for lcon,i = lff,i
and lcon = V 1/3

seg , Ff dimensionless. (b) Estaillade carbonate: Rind as a
function of the percentage of throats pseg surrounded by microporosity
[(a) lcon,i = lff,i , (b) lcon = V 1/3

seg ], RI dimensionless, Sw percentage.

The microporous phase saturation exponent was set to
nmi = 2 corresponding to the Archie exponent commonly used
for homogeneous structures. The oil-water capillary pressure
of the microporous phase Pc,oil−water,mi was calculated from

the mercury injection curve assuming that all pores that are
smaller than the μ-CT resolution belong to the microporous
phase.

V. RESULTS

In a first step, we show the numerical results (Ff , Rind) of
a monomodal porous medium (Fontainebleau sandstone) and
compare them to experimental results. Then, the dual network
approach is applied to an Estaillade and a Lavoux carbonate,
and electrical properties are simulated.

A. Monomodal pore structure

Calculations were done using no-flow boundary conditions
for the three spatial directions. Ff simulation results are
compared to the experiment in Table II. Results are in
good agreement with the experimental values, confirming
the fact that geometrical network properties obtained from
the segmented images enable the simulation of the correct
transport behavior.

Figure 8(a) shows the resistivity index curve simulations
as well as the experimental results. As can be seen, the
numerically obtained saturation exponent decreases similarly
to the experimental data, from 2 at high water saturation to a
smaller value at low water saturation. Nevertheless, for low
water saturation, Rind values are slightly smaller than the
experimental ones. In this range, as was already mentioned, the
shape of the Rind curve depends principally on the presence
of water films. Thus, in the present work, the introduction
of film conductance in the PNM simulations is critical
for reproducing the experimentally observed bending-down
deviation. Figure 8(b) shows Rind curves for the following
cases: no films, films of constant thickness, and films with
pressure-dependent thickness. The strong increase in Rind if
no films are used is due to the gradual loss of continuity of the
wetting phase. Identical results have been observed by Han
et al. [10], Wang et al. [55], and Montaron [17]; to overcome
this deficiency, Han et al. [10] proposed to use constant thick
films with the size of a fraction of a micron given the fact
that the average pore entry diameter is about 50 μm. Good
results were obtained. The constant film size used for the
PNM calculations shown in Fig. 8(b) is obtained from Eq. (8),
where the radius ρ is taken as constant corresponding to the
inverse of the lowest pressure necessary to invade at least one
throat. As can be seen, the divergence of the Rind curve is
eliminated; however, the values are too low. Thus, the Rind

behavior depends strongly on the definition of a physically
correct film thickness. This is done in PNM calculations by
means of Eq. (8), directly introducing films with pressure-
dependent thickness. In this case, we obtain results in good
accordance with the experimental data. Figure 8(c) shows
the ratio Aw/Ascan as a function of water saturation. Values

TABLE II. Ff values of the Fontainebleau sandstone, Ff

dimensionless.

lff , Ascan no-flow boundary condition measured Ff

10.16 (x), 9.65 (y), 10.71 (z) 11.5 ± 0.9
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are slightly higher than those proposed by Han et al. [10],
which explains the minor difference between the numerical and
experimental values of Rind for low water saturation. Thus, for
low water saturation, Eq. (8) might be improved when using
the numerical model for networks based on μ-CT imaging.
However, in the following section on dual-porosity systems,
we are principally interested in the high water saturation range.
Thus, model equations will be used without modifications, as
very good results were obtained in this saturation range.

B. Bimodal pore structure

As mentioned above, two distinct carbonates (Estaillade
and Lavoux) were studied. The main objective of this section
is to investigate the influence of the spatial distribution of the
microporous and the solid phase on the macroscopic transport
properties.

1. Estaillade carbonate

Figure 9(a) shows the results of the Ff calculation as a
function of the percentage of throats surrounded by micro-
porosity pseg. Calculations were done for lcon = V

1/3
seg (lcon =

56.25 μm if pseg = 1) assuming that the microporosity volume
has a cubic structure, and for lcon,i = lff,i (〈lff,i 〉 = 11.0 μm),
where lff,i stands for the equivalent electrical length of a
throat. As lcon,i = lff,i < lcon = V

1/3
seg , we have ge,mi (lcon,i =

lff,i) > ge,mi (lcon = V
1/3

seg ). The resulting formation factors are
relatively close to the experimental value Ff =24. However,
they become too high by using lcon = V

1/3
seg and too low by

using lcon,i = lff,i . This means that by correctly adapting the
conductivity length of the microporosity lcon, the experimental
value can be obtained. All values decrease with increasing pseg

as the number of percolating paths of microporosity volumes,
and therefore the overall conductivity of the microporosity,
increases.

Figure 9(b) shows the Rind values as a function of pseg

for lcon,i = lff,i and lcon = V
1/3

seg . Rind values increase with
decreasing pseg, and for pseg < pdc, the formation of a double
curvature can be seen. In both cases, the double curvature can
be explained as follows. For high wetting phase saturation
(Sw � 0.4), a percolating path in the macroporous phase

still exists. For intermediate wetting phase saturation (0.3 <

Sw < 0.4), the percolation of the wetting phase is either mostly
provided by the microporous phase (pseg > pdc) or by the
remaining water films lining the macropores (pseg < pdc).
In the first case, the change in Rind for a given change in
wetting phase saturation (∂RI/∂Sw) is given by the electrical
properties of the microporous phase. In the second case, the
important change in the Rind curvature results from the fact that
there is no more percolating path in the microporous phase and
the resistivity is dominated by the remaining water films in the
macropores.

To illustrate this process, we investigated the percola-
tion threshold of the macropore network more thoroughly.
Figure 10 shows a small part of the studied volume in which
only the macropore segments associated with microporosity
have been represented for different pseg [Fig. 10(a), pseg = 1;
Fig. 10(b), pseg = 0.5; Fig. 10(c), pseg = 0.4]. Whereas for
pseg = 0.5 a percolating microporosity path still exists, there
is no more microporosity percolation for pseg = 0.4. Thus,
the wetting phase conduction is only assured by the remaining
water films, in this case leading to the experimentally observed
double curvature in the Rind curves.

As can be seen in Fig. 9(b), the numerical results for
lcon = V

1/3
seg for pseg = 0.56 are in relatively good agreement

with the experimental results (black dots). We would also like
to point out that pseg = 0.56 is very close to the measured
contact surface Fsurf obtained by the three-phase segmentation
(Fsurf = 47%, see Table I) corresponding to the percolation
threshold of the microporosity, and therefore justifying by
itself the experimentally observed double curvature.

In contrast, for lcon,i = lff,i , although the double curvature
exists, numerical Rind values in the range of the experimental
data do not show this behavior. Even though the system is
close to the percolation threshold, Rind curves for pseg = 0.52
and 0.56 are relatively straight. This can be explained by the
large value of ge,mi (lcon,i = lff,i). In this case, a small number
of macropores surrounded by microporosity is sufficient to
maintain water conductance, and the formation of the double
curvature is only observed for lower pseg. However, once
reaching a certain value of pseg,∂RI/∂Sw becomes very large
and only Rind values higher than the experimental ones are
observed. This is in agreement with the fact, already observed

FIG. 10. (Color online) Estaillade carbonate: 3D representation of the segments associated with microporosity for different pseg [(a) pseg =
1, (b) pseg = 0.5, (c) pseg = 0.4].
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FIG. 11. Lavoux carbonate: Ff (a) and Rind (b) as a function
of lcon for pseg = 0.78. Ff , dimensionless; Rind, dimensionless; Sw ,
percentage; lcon, in microns.

for Ff , that the correct definition of lcon plays an important
role.

2. Lavoux carbonate

The volume fraction of the microporous phase in the Lavoux
sample is much higher than that of the Estaillade sample
(about 60%), and the contact surface between macro and
microporosity is Fsurf = 78% (see Table I). As mentioned in
Sec. II B, the Rind curve does not show a double curvature;
it follows Archie’s law. This is due to the fact that the
microporous phase is largely connected, which can be deduced
from the high value of Fsurf . As the microporosity fraction is
very high in this sample, the important parameter to study
is lcon rather than pseg. Thus, the conductivity length lcon of
the microporous volume of the Lavoux carbonate lcon was
varied and pseg fixed to 0.78. Figure 11 shows the Ff and Rind

calculations for different conductivity length lcon. As shown
in this figure, by correctly describing lcon, the Rind values
fit well to the experimental results. However, with regard
to Ff , calculated values shown in Fig. 11 are higher than
the experimental value Ff = 13 (Fig. 1). On the one hand,
this might be attributed to the heterogeneity of the Lavoux
carbonate being relatively high in comparison to the sample
size. On the other hand, it could probably be explained by

the large range of throat sizes just below the μ-CT resolution,
particularly in the range 1–3 μm (see the pore size distribution
in Fig. 1). The conductivities of these pores are underestimated
because they are taken into account as part of the microporous
matrix assumed to be homogeneous. Indeed, as the present
approach uses a homogeneous microporous matrix, it is
best suited for bimodal structures where the throat size
of the local minimum separating micro- and macroporosity
(Fig. 1, mercury intrusion) is smaller than the μ-CT resolution
(as in the Estaillade sample). Further improvements of the
microporosity description are currently being considered.

VI. CONCLUSION

We present a general methodology to reproduce the elec-
trical responses of monomodal and bimodal porous structures
combining high-resolution μ-CT images with pore-network
modeling. An equivalent pore network is built from 3D images,
and the network parameters are extracted. For bimodal pore
structures, a separate description of macroporosity and mi-
croporosity is given and the amount of macropore surfaces in
contact with the microporous phase is determined, a useful
quantity characterizing the link between these two pore
systems. In the dual pore-network model, the microporosity
is modeled as a parallel circuit located along the macropore
throats and characterized by a conductivity length lcon and the
fraction of throats (segments) pseg in which microporosity is
present.

Formation factors and resistivity indices of Fontainbleau
sandstone and two very distinct carbonates were simulated
and compared to measurements. The experimentally observed
Archie behavior of the Lavoux carbonate, as well as the
non-Archie behavior of the Fontainebleau sandstone and the
Estaillade carbonate, was correctly reproduced, indicating that
the model has the appropriate flexibility to reproduce different
physical phenomena.

The experimentally obtained double curvature in the Rind

curves of Estaillade carbonate is often attributed to the
heterogeneity of the sample. More deeply, by combining image
analysis and pore-network modeling, we could show that
the double curvature appears once the percolation threshold
of the microporosity is reached. This percolation threshold is
of the same order of magnitude as the contact surface between
macro and microporosity Fsurf measured on 3D images. It
might, therefore, be interesting to verify this correlation
between the double curvature and the value of Fsurf in other
carbonates.

Additionally, we have shown that simulation results depend
on the parameter lcon, and we will focus in future work on its
determination directly from μ-CT images.

Simulated Ff values of the Lavoux limestone are slightly
higher than the experimental ones. This has been attributed
either to the fact that the model is based on the hypothesis of
a homogeneous microporous phase (not being the case for the
Lavoux carbonate) or to the heterogeneity of the carbonate in
comparison to the sample size. To confirm these assumptions,
it would be interesting in future work to include the heterogene-
ity of the microporous phase into the model and to evaluate
the influence of the sample size on the numerical results.
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