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Two-dimensional optical thermal ratchets based on Fibonacci spirals
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An ensemble of symmetric potential energy wells arranged at the vertices of a Fibonacci spiral can serve as
the basis for an irreducibly two-dimensional thermal ratchet. Periodic rotation of the potential energy landscape
through a three-step cycle drives trapped Brownian particles along spiral trajectories through the pattern. Which
spiral is selected depends on the angular displacement at each step, with transitions between selected spirals
arising at rational proportions of the golden angle. Fibonacci spiral ratchets therefore display an exceptionally
rich range of transport properties, including inhomogeneous states in which different parts of the pattern induce
motion in different directions. Both the radial and angular components of these trajectories can undergo flux
reversal as a function of the scale of the pattern or the rate of rotation.
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I. INTRODUCTION

Systems that rely on time-dependent forces to rectify
thermal noise are called “thermal ratchets” [1–6]. Introduced
with James Clerk Maxwell’s thought experiments in the 1860s,
thermal ratchets recently have enjoyed a resurgence of interest
because of their relevance to biological molecular motors,
and have been realized experimentally for molecular [7,8],
micrometer-scaled [9–21], and quantum objects [22]. Virtually
all of these studies, however, have focused on one-dimensional
systems [8–22], or on systems that can be projected onto one
dimension [7,21]. Comparatively little attention has been paid
to thermal ratchets in two or higher dimensions.

The present study introduces an irreducibly two-
dimensional thermal ratchet based on rotational symmetries
of the Fibonacci spiral [23]. Section II presents the rich
phenomenology of Fibonacci spiral ratchets comprised of dis-
crete symmetric potential energy wells. This system features a
deterministic regime in which the ratchet-induced flux spirals
through the pattern of traps, and a stochastic regime in which
diffusion-assisted transport admits flux reversals in both the
radial and azimuthal degrees of freedom. These predictions
are tested in Sec. III through experiments on colloidal spheres
diffusing in water through rotating arrays of holographic
optical traps arranged on the vertices of Fibonacci spirals.

II. FIBONACCI SPIRAL RATCHET

A. Fibonacci spiral

The Fibonacci spiral [23] is a set of points in the plane
whose nth member falls at polar coordinates

rn = R0 n1/2 (1)

θn = n θ0 (2)

for n = 0,1,2, . . .. It differs from a more general Archimedean
spiral both in the square-root increase in radius and in the
choice of the golden angle

θ0 = 2π

φ2
(3)

for the internode angular separation, where

φ =
√

5 + 1

2
= 1.618 033 9 . . . (4)

is the irrational number known as the golden mean. A typical
example is plotted in Fig. 1. The overall scale factor R0 does
not enter into the definition of a Fibonacci spiral but plays a
crucial role in its operation as a thermal ratchet.

This particular set of points is the densest packing of
identical circles within a circular region [24]. As a result, it
appears with great regularity in natural systems, most famously
in the distribution of seeds within the seedheads of sunflowers
[25,26].

The dense packing of nodes in a Fibonacci spiral gives rise
to a host of intriguing symmetries not found in other space-
filling two-dimensional patterns. The principal Fibonacci
spiral is defined by Eqs. (1) and (4) for integers n separated
by unity. Higher-order spirals appear within this pattern for
sequences of n that increase by steps equal to one of the
Fibonacci numbers Fm, which are defined recursively by
Fm = Fm−1 + Fm−2 [25,27]. No other integers define regular
spirals within the underlying pattern. The Fibonacci numbers
also are noteworthy because their ratio approaches the golden
mean in the limit of large index, limm→∞ Fm+1/Fm = φ.

Within a Fibonacci spiral, the mth Fibonacci number Fm

defines a set of Fm intertwined spirals, which have come to
be known in the botanical context as parastichies of order
Fm [28]. By definition, the Fmth parastichy appears for radii
r > R0F

1/2
m . Which parastichies are available at a given radius

substantially influences the behavior of thermal ratchets based
on Fibonacci spirals.

B. Three-state ratchet

We define a Fibonacci spiral ratchet by placing a spa-
tially symmetric potential energy well of width σ at each
vertex in the Fibonacci spiral. The resulting potential energy
landscape is transformed into a ratchet potential through its
time evolution. To break spatiotemporal symmetry we adopt
the three-state protocol introduced originally for studies of
one-dimensional ratchets [18,29]. Rather than translating the
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FIG. 1. (Color online) Fibonacci spiral with vertices labeled by
index number n. The unshaded circles indicate the 21st order of
parastichies.

pattern, as in earlier studies [18,19,29], we rotate it about its
center:

θn(t) = nθ0 + f (t), (5)

with time dependence

f (t) =
⎧⎨
⎩

0, 0 � (t mod 3T ) < T,

α, T � (t mod 3T ) < 2T ,

2α, 2T � (t mod 3T ) < 3T .

(6)

This cyclic pattern has period 3T and holds the landscape
stationary for the duration T of each state. For simplicity,
we also choose identical angular steps α between the states.
The arrangement of traps and the three-state time evolution
define the Fibonacci spiral ratchet whose performance depends
on the three control parameters R0, α, and T .

C. Deterministic regime

To study transport properties arising purely from the
ratchet’s geometry, we first select R0 to be small enough that no
force-free region exists within the pattern. Any object released
from a vertex in one state will be drawn into the nearest
potential well (vertex) in the next state. Cycling through a
sequence of discrete angular steps therefore causes the object
to move from one site on the lattice to another, a process that
may be represented as a mapping of the spiral onto itself.
This mapping depends on the sequence of nearest-neighbor
steps in the intermediate states, which is determined by the
angle of rotation α. In this deterministic regime we assume
that diffusion may be ignored.

Defining trajectories through the rotating Fibonacci spiral
therefore involves finding the index n1 of the rotated site that

is closest to the vertex n in the previous state. We use the
notation

S(n,k) = rn exp [i (θn + kα)] = R0
√

n exp [i (nθ0 + kα])

(7)

to represent the nth site of the lattice in the kth state (k =
0,1,2). With this definition, the intervertex distance between
the nth site in the initial state and the n1th site after one step is

�n,n1 (α) = |S(n,0) − S(n1,1)|
= R0

√
n + n1 − 2

√
nn1 cos [(n1 − n) θ0 + α]. (8)

We assume that a particle initially at site n will advance to
the site n1 whose index minimizes �n,n1 (α). Repeating the
process for the second and third rotations yields the trajectory
n → n1 → n2 → n′. After one complete cycle, therefore, a
particle initially at site n undergoes a change of index

�n(n,α) = n′ − n. (9)

The single-cycle mapping �n(n, α) can be composed into
trajectories that particles will follow through the array as
the pattern cycles repeatedly through its sequence of states.
Empirically, we observe that �n(n,α) only takes on values
±Fm related to the Fibonacci numbers, and consequently that
particles are conveyed along parastichies by the three-state
ratchet cycle. Four examples are plotted in Figs. 2(a) through
2(d). Arrows in these plots indicate the direction of motion,
with red traces indicating outward motion (�n > 0) and blue
indicating inward motion (�n < 0). Trajectories characterized
by large jumps in index are possible only for sufficiently large
radii. Consequently, different parastichies may be selected at
different radii within the spiral.

Figure 2(e) shows which trajectory is selected as a function
of rotation angle α and radius within the spiral. Depending on
the angular step α, trajectories spiral inward or outward, clock-
wise or counterclockwise. In some cases, such as Fig. 2(d),
there is no motion at all, �n(n,α) = 0. Each domain in
Fig. 2(e) is labeled according to the parastichy �n along which
particles travel, with positive numbers indicating trajectories
that spiral outward. The direction of motion also is indicated
by the domains’ shading.

The number of accessible domains increases in Fig. 2(e) as
the number N of nodes in the spiral increases and additional
Fibonacci numbers become accessible. Consequently, the
selected parastichy tends to change with radius for all �n �= 0.
This behavior is evident in Fig. 2(b), whose inner region spirals
outward, and whose outer region spirals inward. The only
exception arises for particular rotation angles

α0(m) = Fm θ0 − 2π Fm−2 (m � 2), (10)

which correspond to motionless states, �n = 0.
The deterministic Fibonacci spiral ratchet thus exhibits far

richer transport properties than any one-dimensional ratchet.
This provides the foundation for the still more varied properties
that arise when the Fibonacci spiral is used as the basis for a
thermal ratchet.
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FIG. 2. (Color online) Transport in the three-state Fibonacci spiral ratchet. (a) α = −0.306 rad, (b) α = 0.306 rad, (c) α = 0.8 rad, and
(d) α = 0.9 rad. Arrows indicate direction of motion. (e) Displacement diagram as a function of the number of vertices N and the angle of
rotation α. Numbers refer to the order of the parastichies along which particles travel for a given set of conditions, with positive numbers
referring to outward motion. The domain for selecting each parastichy is shaded according to its Fibonacci number.

D. Stochastic regime

When R0 is large enough that traps in consecutive states
do not overlap, a Brownian particle released from a trap at
the end of one state finds itself in a force-free region at the
beginning of the next state. The particle can advance through
the pattern only by diffusing. In one-dimensional ratchets, such
a diffusive contribution to the transport process creates pos-
sibilities for temperature-dependent flux reversals [5,18,30].
The observation that particles travel along parastichies in
the Fibonacci spiral ratchet’s deterministic limit suggests
that similar reversals should emerge in its stochastic limit.
Unlike one-dimensional models, however, the stochastic limit
of the Fibonacci spiral ratchet also can permit transport along
directions not permitted in the deterministic limit.

To explore these possibilities, we model the trap at each
vertex as a Gaussian potential well,

V (r,t) = −V0

N∑
n=1

exp

(
− [r − rn (t)]2

2σ 2

)
, (11)

where σ is the effective width of a trap and V0 is its depth. The
time evolution of the probability density ρ(r,t) for finding
a particle at position r is described by the Fokker-Planck
equation [31]

∂ρ(r,t)
∂t

= D∇2ρ(r,t) − μ∇ · [ρ(r,t)F(r,t)] , (12)

where F(r,t) = −∇V (r,t), D is the particles’ diffusion
coefficient, and μ is their mobility. Equation (12) can be solved
numerically using the finite-difference method [32] for any
starting distribution ρ(r,0). From this, the instantaneous local
drift velocity induced by the ratchet potential can be computed
as

v(r,t) = μF(r,t) − D∇ ln ρ(r,t). (13)

To characterize the ratchet’s performance, we start with the
traps occupied,

ρ(r,0) = 1

N

N∑
n=1

δ(r − rn), (14)

and compute the mean full-cycle velocity field

v̄(r) = 1

3T

∫ 3T

0
v(r,t) dt. (15)

This velocity field can be integrated to obtain trajectories that
may be compared with the deterministic mapping. The same
numerical model thus can be used to explore behavior in both
the deterministic and stochastic regimes.

The results in Fig. 3 were computed for a particular choice
of the rotation angle, α = 0.306 rad, which corresponds to
�n = −21 in the deterministic limit. Deterministic trajecto-
ries wind clockwise and inward under these conditions, as
indicated by the inset to Fig. 3(b). Other parameters were
selected to mimic the experimental conditions in Sec. III.
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FIG. 3. (Color online) Flux calculated with Eqs. (11) through (15)
in the radial (green dashed curve) and azimuthal (yellow solid curve)
directions for the three-state Fibonacci spiral ratchet models for a
particular angle of rotation, α = 0.306 rad. (a) Flux as a function of
state duration T for representative values of the pattern’s scale R0.
(b) Flux reversal as a function of scale for a fixed frequency of rotation,
T = 0.45 s. Inset: Deterministic map for α = 0.306 rad.

The diffusion coefficient D = 0.3 μm2/s is appropriate for
1.5-μm-diameter spheres diffusing in water at room tempera-
ture, and corresponds to a mobility of μ = 73 μm/pN s. The
potential energy wells at each vertex were given a depth of
V0 = 9kBT and a width of σ = 0.75 μm.

The results in Fig. 3(a) for the radial and azimuthal
components of the induced drift velocity share much in
common with results obtained from one-dimensional thermal
ratchet models [18]. Traces in this figure show the drift velocity
normalized by the natural velocity scale, D/R0, for a few
representative values of the intertrap separation R0. If the
trapping pattern spends a long enough time T in each state, the
diffusing particles fall preferentially into the nearest traps, and
advance along the same trajectory as would have been selected
deterministically. If, on the other hand, the pattern advances too
rapidly, particles cannot reach the nearest trap in one time step.
Rather, they preferentially find the nearest trap after two time
steps, which carries them backward along the same path [18].
The drift velocity vanishes for large T because the pattern itself
advances slowly. It vanishes for small T because the traps do
not exert enough force to drag particles so quickly through the
viscous medium.

Figure 3(b) shows how the radial and azimuthal components
of the drift velocity depend on the scale of the pattern for a
particular choice of T . Smaller-scale patterns favor transport
along the deterministically selected direction. Larger intertrap
separations favor flux reversal by requiring particles to diffuse
further between trapping events.

For a given state duration T , the flux also depends on the
scale of the pattern, R0. Smaller values of R0 favor transport in
the direction of the deterministic solution. Large values allow
for flux reversal. This behavior can be seen in Fig. 3(b) at a
fixed duration, T = 0.45 s.

Both radial and azimuthal flux reversals resemble the
single flux reversal observed in one-dimensional models [18].
Because the scale of the intertrap separation along a parastichy
depends on radius, however, flux may reverse in only part of
the pattern for a given cycle time T . In a pattern-averaged
sense, then, flux reversal in the radial and azimuthal directions
need not occur at the same values of R0 and T . Each flux
reversal in the Fibonacci spiral thermal ratchet therefore can

consist of two crossovers. This is one respect in which this
model differs from one-dimensional thermal ratchets.

Although computed for particular rotation angles, the
results in Fig. 3 also highlight another general feature of
transport in the Fibonacci spiral ratchet. Regardless of the size
scale and cycle period, particles tend to follow the parastichy
selected in the deterministic limit for the specific rotation
angle α.

III. EXPERIMENTAL DEMONSTRATION

We demonstrated both deterministic and stochastic modes
of operation with experiments on colloidal spheres moving
through holographically projected optical force landscapes.
Our implementation is shown schematically in Fig. 4. The
sample consists of 1.57-μm-diameter colloidal silica spheres
(Duke Scientific Catalog no. 8150, lot no. 30158) dispersed
in a 30-μm-thick layer of water between a glass microscope
slide and a glass coverslip. The edges of the sample volume
were sealed with uv-cured adhesive (Norland Optical Adhesive
Type 81) for mechanical stability and to slow evaporation.
The sample was allowed to equilibrate to room temperature
(23 ± 1 ◦C) on the stage of an inverted optical microscope
(Nikon TE-2000U). Patterns of 200 optical tweezers arranged
in a Fibonacci spiral according to Eqs. (1) through (4)
were projected into the sample using the holographic optical
trapping technique [33–37]. Computer-generated holograms
[35] encoding the pattern of traps were imprinted onto the wave
fronts of the trapping laser (Coherent Verdi 5W, 532nm) using
a liquid-crystal spatial light modulator (SLM; Hamamatsu
X8267-16). Powering the hologram with 1.8 W provides each
trap with an estimated 1.3 ± 0.3 mW, after accounting for
the hologram’s diffraction efficiency and other losses in the
optical train. Each trap, therefore, has an estimated width of
σ = 0.85 μm [38] and a depth of 9kBT [39].

FIG. 4. (Color online) Schematic representation of an optical
Fibonacci spiral ratchet implemented with holographic optical traps.
Inset: Image of 200 optical traps arranged in a Fibonacci spiral. The
coordinates of the nth trap (rn, θn) are defined by Eq. (1). Scale bar
indicates 10 μm.
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The microscope’s objective lens (Nikon Plan-Apo 100×,
numerical aperture 1.4, oil immersion) was used both to
focus the traps into the sample and also to image the spheres
through conventional bright-field microscopy. Images were
acquired with a low-noise monochrome video camera (NEC
TI-324A II) at 30 frames per second with a spatial resolution
of 0.135 μm per pixel. Individual particles were located in
each snapshot to within 20 nm using standard methods of
digital video microscopy [40]. Their locations were linked
into time-resolved trajectories with a maximum-likelihood
algorithm [40]. These trajectories, in turn, were used to
estimate the mean ratchet-induced flux using nonparametric
density estimators [41]. The image of the focused traps inset
into Fig. 4 was obtained by replacing the sample with a
front-surface mirror.

The data in Fig. 5 show the radial and angular drift
velocities measured for an optical Fibonacci spiral ratchet
operating in the deterministic regime. The scale for the
trapping pattern, R0 = 2.16 μm, was selected to be small
enough that traps overlap in consecutive states. The pattern
was rotated according to Eq. (6) through an angle of α =
0.306 rad by projecting a sequence of holograms with the
SLM. The data in Fig. 5 were obtained by varying the duration
T over which each hologram was projected. Each value
represents the average of 1000 particles’ trajectories measured
over 80 cycles each. Any possible influence of out-of-plane
fluctuations was minimized by projecting the traps at the

FIG. 5. (Color online) Flux measured in a three-state ratchet with
200 optical traps and R0 = 2.16 μm for a fixed angle of rotation
α = 0.306 rad. (a) Radial flux from experimental data (circles) as a
function of T . (b) Azimuthal flux from experimental data (squares)
as a function of T . Solid curves in both (a) and (b) represent the
numerical solutions of the Fokker-Planck equation. (c) Image of
colliodal particles taken after 50 cycles with an optimal state duration
T = 1.06 s marked, as the vertical dashed line in (a) and (b). The
dashed circle indicates the area subtended by the ratchet. Scale
bar indicates 10 μm. (d) Representative experimental trajectories
(black curves) for the optimal condition, plotted over streamlines
of the computed velocity field, plotted as white barbs. In both
cases, the experimentally observed trajectories follow the computed
streamlines. Colors denote the computed speed in dimensionless
units.

spheres’ equilibrium height above the wall [42]. The solid
curves in Fig. 5 show results from numerical solutions of
the Fokker-Planck equation, averaged over the entire pattern.
Excellent agreement between simulation and experiment is
obtained with no adjustable parameters.

As expected, no flux reversal occurs in this range of
conditions. The induced drift vanishes as 1/T in the long-time
limit. It also vanishes in the short-time limit because the traps
do not exert enough force to move the particles so rapidly
through the water. Over the entire range from T = 0.2 to
5 s, the particles follow the trajectories predicted by the
deterministic map in Fig. 3.

Increasing the scale of the trapping pattern to R0 =
3.51 μm moves the system into the stochastic regime. Whereas
the deterministic ratchet advected particles clockwise and
inward along the �n = −21 parastichy, the thermal ratchet
admits flux reversal in both radial and azimuthal coordinates,
as revealed in Fig. 6. The data for each T value in this plot were
obtained from 2000 particles’ trajectories each consisting of
150 cycles. Substantially greater statistics are required in this
case because the particles’ drift is a comparatively small bias
on their otherwise random trajectories. Even so, the ratchet-
induced drift follows the deterministic map in the long-time
limit. At shorter times, the drift velocity reverses direction,
and particles run backward along the deterministically selected
parastichy. The solid curves in Figs. 6(a) and 6(b) represent
the numerical solutions of Eqs. (12) and (15) for this set of
conditions, again with no adjustable parameters. As in the
deterministic limit, the optical Fibonacci spiral ratchet acts in
quantitative agreement with theory when operated as a thermal
ratchet.

Flux reversal occurs when the characteristic distance L =
2
√

DT that a particle diffuses during one step of the three-step
cycle is smaller than one-third of the distance between traps

FIG. 6. (Color online) Flux reversal measured in a three-state
ratchet with 200 optical traps and R0 = 3.51 μm for a fixed angle
of rotation α = 0.306 rad. (a) Radial flux from experimental data
(circles) as a function of T . (b) Azimuthal flux from experimental data
(squares) as a function of T . Solid curves in both (a) and (b) represent
the numerical solutions of the Fokker-Planck equation. (c) and (d)
Representative experimental trajectories (black curves) plotted over
the numerically determined streamlines of the velocity field for T =
0.45 and 4.0 s, respectively. Colors indicate the computed speed in
dimensionless units.
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on the deterministically selected parastichy. This distance,
however, is obtained from Eq. (9) and depends nontrivially on
position within the spiral. Unlike a one-dimensional thermal
ratchet, therefore, here flux reversal can arise at different cycle
times T at different radii within a Fibonacci spiral ratchet.

These experiments were carried out with 40 or fewer
particles interacting with the trap array, or roughly one
particle for every five traps. This occupation number appears
to be small enough for quantitative agreement with the single-
particle theory in Eqs. (11) through (15). Collisions arising
in more highly occupied patterns could give rise to additional
transport phenomena such as cooperative flux reversal of the
type that is observed in ratchets for magnetic flux quanta
[43,44] and bacterial swarms [45]. This is a matter for future
study.

IV. CONCLUSIONS

We have demonstrated that the Fibonacci spiral can serve
as the basis for a two-dimensional thermal ratchet model, and
have implemented this model experimentally using colloidal
spheres and holographic optical traps. Periodical rotation of a

spiral trapping pattern through a three-state sequence causes
diffusing particles to drift both radially and azimuthally. The
speed and direction of the ratchet-induced motion have a very
rich dependence on the scale R0 of the pattern and on the
angle α of the rotation. Remarkably, this seemingly complex
dynamical system follows comparatively simple rules, with
particles flowing along well-defined paths through the pattern
that are selected principally by α for a given radius within the
pattern. Variation of R0 and the cycle time T affords control
over the rate and direction of motion along these paths.

The transition to flux-reversed transport need not occur uni-
formly within the Fibonacci spiral. Rather, some regions may
follow the deterministic route while others flow in a retrograde
direction. This creates the possibility that the system-averaged
flux may undergo radial flux reversal separately from angular
flux reversal.
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