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We show how the prevailing majority opinion in a population can be rapidly reversed by a small fraction p

of randomly distributed committed agents who consistently proselytize the opposing opinion and are immune
to influence. Specifically, we show that when the committed fraction grows beyond a critical value pc ≈ 10%,
there is a dramatic decrease in the time Tc taken for the entire population to adopt the committed opinion. In
particular, for complete graphs we show that when p < pc, Tc ∼ exp[α(p)N ], whereas for p > pc, Tc ∼ ln N . We
conclude with simulation results for Erdős-Rényi random graphs and scale-free networks which show qualitatively
similar behavior.

DOI: 10.1103/PhysRevE.84.011130 PACS number(s): 02.50.Le, 87.23.Ge, 89.75.Hc

I. INTRODUCTION

Human behavior is profoundly affected by the influ-
enceability of individuals and the social networks that link
them together. Well before the proliferation of online social
networking, offline or interpersonal social networks have been
acknowledged as a major factor in determining how societies
move toward consensus in the adoption of ideologies, tradi-
tions, and attitudes [1,2]. As a result, the dynamics of social
influence has been heavily studied in sociological, physics, and
computer science literature [3–7]. In the sociological context,
work on diffusion of innovations has emphasized how individ-
uals adopt new states in behavior, opinion, or consumption
through the influence of their neighbors. Commonly used
models for this process include the threshold model [8] and the
Bass model [9]. A key feature in both these models is that once
an individual adopts the new state, his state remains unchanged
at all subsequent times. Although appropriate for modeling the
diffusion of innovation where investment in a new idea comes
at a cost, these models are less suited to studying the dynamics
of competing opinions where switching one’s state has little
overhead.

Here we address the latter case. From among the vast
repertoire of models in statistical physics and mathematical
sociology, we focus on one that is a two-opinion variant [10]
of the naming game (NG) [11–15] and that we refer to as the
binary agreement model. The evolution of the system in this
model takes place through the usual NG dynamics, wherein at
each simulation time step a randomly chosen speaker voices a
random opinion from his list to a randomly chosen neighbor,
designated the listener. If the listener has the spoken opinion
in his list, both speaker and listener retain only that opinion,
or else the listener adds the spoken opinion to his list (see
Table I). The order of selecting speakers and listeners is known
to influence the dynamics, and we stick to choosing the speaker
first, followed by the listener.

*Corresponding author: sreens@rpi.edu

An important difference between the binary agreement
model and the predominantly used opinion dynamics models
[4,6,16–18] is that an agent is allowed to possess both opinions
simultaneously in the former, and this significantly alters
the time required to attain consensus starting from uniform
initial conditions. Numerical studies in [10] have shown
that for the binary agreement model on a complete graph,
starting from an initial condition where each agent randomly
adopts one of the two opinions with equal probability, the
system reaches consensus in time Tc ∼ ln N (in contrast, for
example, with Tc ∼ N for the voter model). Here, N is the
number of nodes in the network, and unit time consists of
N speaker-listener interactions. The binary agreement model
is well suited to understanding how opinions, perceptions, or
behaviors of individuals are altered through social interactions
specifically in situations where the cost associated with
changing one’s opinion is low, such as in the pre-release
buzz for a movie [19], or where changes in state are not
deliberate or calculated but unconscious [20]. Furthermore,
by its very definition, the binary agreement model may
be applicable to situations where agents, while trying to
influence others, simultaneously have a desire to reach global
consensus [21].

Another merit of the binary agreement dynamics in mod-
eling social opinion change seems worth mentioning. Two-
state epidemiclike models of social “contagion” (examples
in [22]) suffer from the drawback that the rules governing
the conversion of a node from a given state to the other are
not symmetric for the two states. In contrast, in the binary
agreement model, both singular opinion states are treated
symmetrically in their susceptibility to change.

Here, we study the evolution of opinions in the binary
agreement model starting from an initial state where all agents
adopt a given opinion B, except for a finite fraction p of the
total number of agents who are committed agents and have
state A. Committed agents, introduced previously in [23], are
defined as nodes that can influence other nodes to alter their
state through the usual prescribed rules, but which themselves
are immune to influence. In the presence of committed agents
adopting state A, the only absorbing fixed point of the system
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TABLE I. Shown here are the possible interactions in the binary
agreement model. Nodes can possess opinion A, B, or AB, and
opinion updates occur through repeated selection of speaker-listener
pairs. Shown in the left column are the opinions of the speaker (first)
and listener (second) before the interaction, and the opinion voiced
by the speaker during the interaction is shown above the arrow. The
column on the right shows the states of the speaker-listener pair after
the interaction.

Before interaction After interaction

A
A→ A A-A

A
A→ B A-AB

A
A→ AB A-A

B
B→ A B-AB

B
B→ B B-B

B
B→ AB B-B

AB
A→ A A-A

AB
A→ B AB-AB

AB
A→ AB A-A

AB
B→ A AB-AB

AB
B→ B B-B

AB
B→ AB B-B

is the consensus state where all influenceable nodes adopt
opinion A, the opinion of the committed agents. The question
that we specifically ask is, how does the consensus time vary
with the size of the committed fraction? More generally, our
work addresses the conditions under which an inflexible set
of minority opinion holders can win over the rest of the
population.

The effect of having uninfluenceable agents has been
considered to some extent in prior studies. Biswas et al. [24]
considered, for two-state opinion dynamics models in one
dimension, the case where some individuals are “rigid” in both
segments of the population, and studied the time evolution
of the magnetization and the fraction of domain walls in
the system. Mobilia et al. [25] considered the case of the
voter model with some fraction of spins representing “zealots”
who never change their state, and studied the magnetization
distribution of the system on the complete graph, and in one
and two dimensions. Our study differs from these not only in
the particular model of opinion dynamics considered, but also
in its explicit consideration of different network topologies
and of finite-sized networks, specifically in its derivation of
how consensus times scale with network size for the case
of the complete graph. Furthermore, the above-mentioned
studies do not explicitly consider the initial state that we care
about—one where the entire minority set is uninfluenceable.
A notable exception to the latter is the study by Galam
and Jacobs [26] in which the authors considered the case of
“inflexibles” in a two-state model of opinion dynamics with
opinion updates obeying a majority rule. Whereas that study
provides several useful insights and is certainly the seminal
quantitative attempt at understanding the effect of committed
minorities, its analysis is restricted to the mean-field case and

has no explicit consideration of consensus times for finite
systems.

II. COMPLETE GRAPHS

A. Infinite-network-size limit

We start along similar lines as [26] by considering the case
where the social network connecting agents is a complete
graph with the size of the network N → ∞. We designate
the densities of uncommitted nodes in states A,B as nA,nB ,
respectively. Consequently, the density of nodes in the mixed
state AB is nAB = 1 − p − nA − nB , where p is the fraction
of the total number of nodes that are committed. Neglecting
correlations between nodes, and fluctuations, one can write the
following rate equations for the evolution of densities:

dnA

dt
= −nAnB + n2

AB + nABnA + 3

2
pnAB,

(1)
dnB

dt
= −nAnB + n2

AB + nABnB − pnB.

The terms in these equations are obtained by considering
all interactions which increase (decrease) the density of agents
in a particular state and computing the probability of that
interaction occurring. Table I lists all possible interactions. As
an example, the probability of the interaction listed in row
eight is equal to the probability that a node in state AB is
chosen as the speaker and a node in state B is chosen as the
listener (nABnA) times the probability that the speaker voices
opinion A ( 1

2 ).
The fixed-point and stability analyses (see the Appendix)

of these mean-field equations show that for any value of
p, the consensus state in the committed opinion (nA =
1 − p, nB = 0) is a stable fixed point of the mean-field dy-

namics. However, below p = pc = 5
2 − 3

2 (
3
√

5 + √
24 − 1)2

− 3
2 (

3
√

5 − √
24 − 1)2 ≈ 0.097 89, two additional fixed points

appear: one of these is an unstable fixed point (saddle point),
whereas the second is stable and represents an active steady
state where nA, nB , and nAB are all nonzero (except in
the trivial case where p = 0). Figure 1(a) shows (asterisks)
the steady-state density of nodes in state B obtained by
numerically integrating the mean-field equations at different
values of the committed fraction p and with the initial
condition nA = 0, nB = 1 − p. As p is increased, the stable
density of B nodes nB abruptly jumps from ≈0.6504 to zero
at the critical committed fraction pc. A similar abrupt jump
also occurs for the stable density of A nodes from a value very
close to zero below pc, to a value of 1, indicating consensus
in the A state (not shown). In the study of phase transitions,
an “order parameter” is a suitable quantity changing (either
continuously or discontinuously) from zero to a nonzero value
at the critical point. Following this convention, we use nB ,
the density of uncommitted nodes in state B, as the order
parameter appropriate for our case, characterizing the transi-
tion from an active steady state to the absorbing consensus
state.

In practice, for a complete graph of any finite size,
consensus is always reached. However, we can still probe
how the system evolves, conditioned on the system not having
reached consensus. Figure 1(a) shows the results of simulating
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FIG. 1. (Color online) (a) The steady-state density nB of nodes in state B as a function of committed fraction p for complete graphs
of different sizes, conditioned on survival of the system. Simulation results are from 100 realizations of the binary agreement dynamics.
(b) Movement of the stable fixed point (diamonds) and the saddle point (filled circles) in phase space as a function of committed fraction p

(see the text). The point at which they meet (coordinates shown) is indicated by the asterisk. The location of these points in phase space was
obtained through fixed-point analysis of the mean-field equations (1) (see the Appendix). The inset shows the density of nodes in state B at the
stable (red diamonds) and unstable (blue filled circles) fixed points as p is varied.

the binary agreement model on a complete graph for different
system sizes (solid lines). For p < pc, in each realization
of agreement dynamics, neglecting the initial transient, the
density of nodes in state B, nB , fluctuates around a nonzero
steady-state value, until a large fluctuation causes the system
to escape from this active steady state to the consensus state.
Figure 1(a) shows these steady-state values of nB conditioned
on survival for several values of p. As expected, the agreement
of simulation results with the mean-field curve improves
with increasing system size, since Eq. (1) represents the true
evolution of the system in the asymptotic large-network-size
limit. Accordingly, the critical value of the committed fraction
obtained from the mean-field equations is designated as
pc(∞); for brevity we refer to it simply as pc throughout
this paper.

The existence of the transition as p is varied and when the
initial condition for densities is (nA = 0,nB = 1 − p) can be
further understood by observing the motion of the fixed points
in phase space. Figure 1(b) shows how the stable fixed point
and the unstable fixed point move in phase space as p is varied
from 0 to pc. The active steady state moves downward and

right while the saddle point moves upward and left. At the
critical value pc the two meet and the only remaining stable
fixed point is the consensus fixed point. A similar observation
was made in the model studied in [26]. The fact that the value
of nB converges to ≈0.65 and does not smoothly approach
zero as the stable fixed point and the saddle point approach
each other explains the origin of the first-order nature of the
phase transition. Figure 2 shows the representative trajectories
obtained by integrating the mean-field equations for the cases
where p = 0.05 (<pc) and p = 0.1 (>pc).

B. Finite network size: Scaling results for consensus times

Even though consensus is always reached for finite N ,
limits on computation time prohibit the investigation of the
consensus time Tc for values of p below or very close to
pc. We therefore adopt a semianalytical approach prescribed
in [27] that allows us to estimate the consensus times for
different N for an appreciable range of p including values
below pc. We start with the master equation, which describes
the evolution of the probability that the network of size N has

FIG. 2. (Color online) Trajectories [obtained from integration of the mean-field equations Eq. (1)] in the phase plane show the nature of
flows from different regions of the phase plane into existing fixed points for (a) p = 0.05 (< pc) and (b) p = 0.1 (> pc).
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n (m) uncommitted nodes in state A (B). We denote by c the
number of committed nodes, and by l (=N − n − m − c), the
number of uncommitted nodes in state AB,

dpnm

dt

1

N
= 1

N2

(
− pnm[2ln + 3

2
lc + 2nm + l(l − 1)

+2lm + mc] + pn−1,m

3(l + 1)(n − 1 + c)

2

+pn+1,m

(n + 1)(2m + l − 1)

2

+pn−2,m

(l + 2)(l + 1)

2

+pn,m−1
3(l + 1)(m − 1)

2

+pn,m+1
(m + 1)(2n + 2c + l − 1)

2

+pn,m−2
(l + 2)(l + 1)

2

)
. (2)

The factor of 1/N in the left-hand side (LHS) comes from
the fact that a transition between states takes place in an
interval of time 1/N . The transition rates in each term
are the product of two densities which is responsible for
the overall factor of 1/N2 in the RHS. The probabilities
are defined over all allowed states of the system (i.e., 0 �
n � N − c and 0 � m � N − c − n for given n) and the
allowed transitions from any point {n,m} in the interior
of this state space are {n,m} → {n,m ± 1}, {n,m} → {n ±
1,m}, {n,m} → {n,m + 2}, and {n,m} → {n + 2,m}.

We know from the mean-field equations that in the
asymptotic limit, and below a critical fraction of committed
agents, there exists a stable fixed point. For finite stochastic
systems, escape from this fixed point is always possible, and
therefore it is termed metastable. For a finite system, the
probability of having escaped to the metastable fixed point
as a function of time is Pe(t) = 1 − Ps(t), where Ps(t) is
the survival probability. The surviving fraction is constrained
to be in the allowed region of the n,m quadrant excluding
the true fixed point {N − c,0}. If the number of committed
agents is far lower than pcN , we expect this surviving fraction
to occupy configurations around the metastable fixed point,
and the occupation probabilities pn,m to be peaked around
the metastable fixed point. In systems which exhibit such
long-lived metastable states in addition to an absorbing fixed
point, applying a quasistationary (QS) approximation has been
found to be useful in computing quantities of interest [27–29].
This approximation assumes that, after a short transient, the
occupation probability, conditioned on survival, of allowed
states excluding the consensus state is stationary. Following
this approximation, the distribution of occupation probabilities
conditioned on survival can be written as p̃nm = pnm(t)/Ps(t)
[27] and, using this form in the master equation (2),
we get

dPs(t)

dt
p̃nm = −Ps(t)

N

(
p̃nm

[
2ln + 3

2
lc + 2nm

+ l(l − 1) + 2lm + mc

]

− p̃n−1,m

3(l + 1)(n − 1 + c)

2

− p̃n+1,m

(n + 1)(2m + l − 1)

2

− p̃n−2,m

(l + 2)(l + 1)

2

− p̃n,m−1
3(l + 1)(m − 1)

2

− p̃n,m+1
(m + 1)(2n + 2c + l − 1)

2

− p̃n,m−2
(l + 2)(l + 1)

2

)
. (3)

Considering transitions from states {N − c − 1,0} and
{N − c − 2,0} to the absorbing state {N − c,0}, we obtain
the decay rate of the survival probability dPs(t)/dt :

dPs(t)

dt
= −Ps(t)

[
p̃N−c−1,0

(
3(N − 1)

2N

)
+ p̃N−c−2,0

2

N

]
.

(4)

Substituting Eq. (4) into Eq. (3), we finally obtain a condition
that the occupation probabilities conditioned on survival must
satisfy [30]:

p̃nm = Q̃nm

Wnm − Q̃0
, (5)

where Q̃nm = Qnm(t)/Ps(t) is obtained through explicit con-
sideration of the terms in the master equation:

Q̃nm = p̃n−1,m

3(l + 1)(n − 1 + c)

2

+ p̃n+1,m

(n + 1)(2m + l − 1)

2
+ p̃n−2,m

(l + 2)2

2

+ p̃n,m−1
3(l + 1)(m − 1)

2
+ p̃n,m−2

(l + 2)2

2

+ p̃n,m+1
(m + 1)(2n + 2c + l − 1)

2
, (6)

and

Q̃0 = [p̃N−c−1,0(3(N − 1)/2) + 2p̃N−c−2,0]

is the term arising from the decay of the survival probability
Eq. (4). Wnm is the coefficient of pnm (p̃nm) within the brackets
on the right-hand side of Eqs. (2) and (3) and is equal to the
transition rate out of state {n,m} times N2.

Equation (4) indicates that the survival probability decays
exponentially with a rate λ = Q̃0/N . Since the mean lifetime
of an exponentially decaying process is the inverse of the decay
rate, it follows that the mean consensus time (neglecting the
short transient before the QS distribution is attained) is

Tc ≈ 1

λ
= 1

/ [
p̃N−c−1,0

(
3(N − 1)

2N

)
+ p̃N−c−2,0

2

N

]
. (7)

Thus, knowledge of the p̃nm’s (in particular, p̃N−c−1,0 and
p̃N−c−2,0) would allow us to calculate Tc through Eq. (7). In
order to obtain p̃nm (for all 0 � n,m), we adopt the iterative
procedure proposed in [30]. Following this procedure, we start
with an arbitrary initial distribution p̃0

nm, and obtain a new dis-
tribution using p̃i+1

nm = αp̃i
nm + (1 − α)[Q̃i

nm/(Wi
nm − Q̃i

0)],
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FIG. 3. (Color online) (a) Mean consensus time Tc for p < pc obtained by using the QS approximation. (b) Exponential scaling of Tc

with N , for p < pc; mean consensus times (circles, squares) are obtained using the QS approximation. The lines are guides to the eye.
(c) Logarithmic scaling of Tc with N for p = 0.3 > pc; mean consensus times are obtained from simulations. The line shows the best linear
fit to the data. (d) The rate α(p) of exponential growth of the consensus time with N as a function of p − pc (see the text). Circles show the
values of α(p) obtained for p = 0.2,0.3,0.4,0.5,0.6,0.7,0.8 by considering the scaling of Tc with N for these values of p. The straight line
shows a linear fit to the data plotted on a log-log scale.

where 0 � α � 1 is an arbitrary parameter and Q̃i
nm,Wi

nm, and
Q̃i

0 are all obtained using the probability distribution at the
current iteration p̃i

nm. With a sufficient number of iterations,
this procedure is expected to converge to a distribution that
satisfies Eq. (5) and which is thus the desired QS distribution.
In our case, we obtained acceptable convergence with a choice
of α = 0.5 and 30 000 iterations.

Following the above method, we obtain the QS distribution
and consequently the mean consensus times Tc for different
values of committed fraction p and system size N . Figure 3(a)
shows how the consensus time grows as p is decreased beyond
the asymptotic critical point pc for finite N . For p < pc,
the growth of Tc is exponential in N [Fig. 3(b)], consistent
with what is known regarding escape times from metastable
states. For p > pc, the QS approximation does not reliably
provide information on mean consensus times since consensus
times themselves are small and comparable to transient times
required to establish a QS state. However, simulation results
show that above pc the scaling of the mean consensus time with
N is logarithmic [Fig. 3(c)]. A snapshot of the QS distribution
(Fig. 4) near pc (p = 0.09) for a system of size N = 100
shows clearly the bimodal nature of the distribution, with the
two modes centered around the stable fixed point, and the
consensus fixed point.

The precise dependence of consensus times on p can
also be obtained for p < pc by considering the rate of

exponential growth of Tc with N . In other words, assuming
Tc ∼ exp[α(p)N ], we can obtain α(p) as a function of p.
Figure 3(d) shows that α(p) ∼ |p − pc|ν , where ν ≈ 1.65.
Thus, below pc, we have

Tc(p < pc) ∼ exp[(pc − p)νN ]. (8)

FIG. 4. (Color online) The quasistationary distribution p̃nm for
p = 0.09 and N = 100.
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FIG. 5. (Color online) (a) The steady-state density nB of nodes
in state B as a function of committed fraction p for Erdős-Rényi
graphs of different sizes with 〈k〉 = 10, conditioned on survival
of the system. Symbols show mean values of nB obtained from
100 simulations of different system sizes; the black line shows the
mean density of nodes in state B obtained by integrating Eq. (1). (b)
Scaling of �Tc(〈k〉) (defined in the text) with 〈k〉; the line shows the
best linear fit to the data. (c) The steady-state density nB of nodes
in state B as a function of committed fraction p for Barabasi-Albert
networks of different sizes with 〈k〉 = 10, conditioned on survival of
the system [symbols as in (a)].

This exponential growth is presumably modulated by factors
of ln N which become dominant only when p = pc. Above

pc, the dependence of Tc on p as seen from simulations is
negligible (not shown).

III. SPARSE NETWORKS

Next, we present simulation results for the case when the
underlying network topology is chosen from an ensemble
of Erdős-Rényi (ER) random graphs with a given size N

and a given average degree 〈k〉. The qualitative features of
the evolution of the system in this case are the same as
those of the complete graph, although the critical fraction pc

displays some dependence on 〈k〉. For a small 〈k〉 and fixed
N , the drop in consensus times occurs slightly earlier in p for
ER graphs than for a complete graph of the same size, as shown
in Fig. 5(a). However, for p > pc, a complete graph has shorter
consensus times (on average) than an ER graph of the same
size. Above pc, the difference between consensus times for
a graph with an average degree 〈k〉 and the complete graph
�Tc decays approximately as a power law with increasing 〈k〉
[Fig. 5(b)]. The deviation from a perfect power law is likely due
to other weaker 〈k〉-dependent terms, presumably logarithmic
in 〈k〉.

We also performed simulations of the binary agreement
model on Barabasi-Albert (BA) networks [Fig. 5(c)], and
found similar qualitative behavior as observed for ER networks
including the difference from mean-field behavior. We leave a
detailed analysis of the dependence of the critical fraction pc

and the consensus times Tc on the average degree 〈k〉 of sparse
networks for future work.

IV. SUMMARY

In closing, we have demonstrated here the existence of a
tipping point at which the initial majority opinion of a network
switches quickly to that of a consistent and inflexible minority.
There are several historical precedents for such events, for
example, the suffragette movement in the early 20th century,
and the rise of the American civil-rights movement that started
shortly after the size of the African-American population
crossed the 10% mark. Such processes have received some
attention in sociological literature under the term minority
influence [26,31]. Our motivation here has been to study
this process in more detail through semianalytical methods
and simulations for finite-sized and sparse networks, within
the realm of a particular social influence model—the binary
agreement model. There are several open questions and
extensions of this work that are worth studying in our opinion:
for example, given a network with nontrivial community
structure, what is the optimal scheme for selecting committed
agents (for a given committed fraction) that would minimize
consensus times and reduce pc? Second, extensions of the
model to include utility-driven opinion switching by agents
may be useful in designing optimal incentive schemes for
opinion spreading.

APPENDIX: FIXED POINTS OF THE
MEAN-FIELD EQUATIONS

Here, we analyze the mean-field equations for the existence
of fixed points. To simplify notation we use the notation
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x = nA and y = nB . Thus, for a fixed point of the evolution
given by Eq. (1):

−xy + (1 − x − y − p)2 + x(1 − x − y − p)

+ 1.5p(1 − x − y − p) = 0,

−xy + (1 − x − y − p)2 + y(1 − x − y − p) − yp = 0,

(A1)

which can be reduced further to

x = [(1 − y − p/4)2 − 9p2/16]/(p/2 + 1),

y = (1 − x − p)2. (A2)

Substituting the expression of x into the expression for y and
denoting z2 = y, we get

z[z3 − (2 − p/2)z + p/2 + 1] = 0. (A3)

For any value of p, z = z0 = 0 is a solution to the above
equation. In other words, for any value of p the mean-
field equations admit a stable fixed point, nA = x1 = 1 − p,
nB = y1 = 0, which represents the network having reached a
consensus state where all nodes have adopted the opinion of
the committed agents.

The remaining fixed points are roots of

f (z) = z3 − (2 − p/2)z + p/2 + 1 = 0. (A4)

In order to find the criterion which has to be satisfied for
valid roots [i.e., 0 � z �

√
(1 − p)] of the above equation to

exist, we analyze the extrema of the function f (z), which are
given by

f ′(z) = 3z2 − 2 + p/2 = 0. (A5)

Thus, the extrema occur at

z1,2 = ±
√

2/3 − p/6. (A6)

It can be seen from Eq. (A5) that f (z) is increasing, decreas-
ing, and increasing again in the intervals (−∞,z1), (z1,z2),
and (z2, + ∞), respectively. Consequently, f (z) achieves a
maximum at −1 < z1 = −√

2/3 − p/6 < 0 and a minimum
at 0 < z2 = √

2/3 − p/6 < 1. Furthermore, since f (−2) =
−p/2 − 3 < 0 and f (−1) = 2 > 0, one root of f (z) = 0
occurs in the interval −2 < z < −1. Since f (z) is positive at
z1, decreasing from z1 to z2 where it achieves a minimum, and
increasing thereafter, it follows that a necessary and sufficient
condition for more roots of f (z) = 0 to exist is that f (z2) be
less than zero:

f (z2) = z3
2 − (2 − p/2)z2 + p/2 + 1 < 0.

Denoting z2 = q and p = 4 − 6q2 [from Eq. (A6)] yields the
following inequality for q as a condition for more roots of
f (z) = 0 to exist:

f (q) = q3 + 1.5q2 − 1.5 > 0. (A7)

(Note that z2 is itself a function of p.) Analyzing the derivative
of f (q) enables us to glean that the inequality Eq. (A7) is
satisfied for q > q0, where q0 is the solution of the cubic
equation f (q) = 0 and is given by

q0 = [
3

√
5 +

√
24 + 3

√
5 −

√
24 − 1]/2.

Thus, the original fixed-point equation (A1) has at least one
valid root besides z = 0, so long as p is less than or equal to

pc = 5
2 − 3

2 (
3
√

5 + √
24 − 1)2 − 3

2 (
3
√

5 − √
24 − 1)2, (A8)

which using standard computer algebra software is evaluated to
be pc = 0.097 89. Using z2 = y = q0 and Eq. (A2), we obtain
the state of the system at pc to be {nA,nB} = {0.0957,0.6504}.
It also follows from the expression for f (z) that f (0) > 0 and
therefore, if f (z2) is negative, Eq. (A4) has two roots on the
positive line when p < pc. Thus there are two fixed points of
Eq. (A1) when p < pc.

The exact expressions for these fixed points (which can
also be obtained numerically) obscure their dependence on
p. We therefore adopt an approximation which exhibits a
much clearer dependence of the fixed point values on p,
and numerically yield values close to those obtained from the
exact expressions. Substituting z = t

√
2− p

2 in Eq. (A4) reduces
it to

t3 − t + r = 0, (A9)

where r = 1+p/2
(
√

2−p/2)3 . Clearly, r is a monotonically increasing

function of p, and therefore 1
2
√

2
� r <

1+pc/2
(
√

2−pc/2)3 = 2
3
√

3
for

0 � p < pc, our range of interest. The function g(t) = t3 − t

is monotonically decreasing for t < −1 and g(−1) = 0, while
g(−2) < −1 < −r . Hence, there is a real root t1 ∈ (−2, − 1)
to Eq. (A9) which is a monotonically decreasing function of
r , but which clearly does not yield a valid fixed point. This
root can be expressed as t1(r) = − 2√

3
+ ε(r), where ε(r) is

monotonically decreasing from less than 0.0106 to 0 over the
range of our interest for r . Substituting this expression back
into Eq. (A9) and neglecting powers of ε(r) higher than unity,
we get an approximation of ε in terms of r , and consequently
an approximation for t1:

t1(r) ≈ − 16

9
√

3
− r

3
, (A10)

with a relative error of less than 0.01%. Now we can factorize
the LHS of Eq. (A9) and write it as (t2 + bt + c)(t − t1).
Equating this factorized expression with t3 − t + r gives us
b and c in terms of r . Thus two more roots of Eq. (A9)
are obtained in terms of r by solving the quadratic equation
t2 + bt + c = 0, which yields

t2,3 = 8

9
√

3
+ r

6
±

√
17

81
− 8r

9
√

3
− r2

12
. (A11)

Finally, we can obtain the values of z associated with the above
roots, and therefore the values of x and y written in terms of
these roots are derived as

y2,3 = t2
2,3

4 − p

2
,

(A12)

x2,3 = (4 − 4y2,3 − p)2 − 9p2

8p + 16
.
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The stability of these fixed points can be checked via
linear stability analysis. Following the standard procedure, the
stability matrix is given by

S =
[−1 − p

2 −2 + 2y∗ + p

2−2 + 2x∗ + 2p −1

]
,

where (x∗,y∗) is the fixed point under consideration. The
eigenvalues of the stability matrix are given by

λ = 1
4 (−4 − p ± [17p2 + 64(x∗ − 1)(y∗ − 1)

+ 16p(x∗ + 4y∗ − 5)]1/2). (A13)

From the expression for the eigenvalues we numerically
determine that the real part of both the eigenvalues is negative
for (x2,y2) over the range 0 � p < pc, indicating that (x2,y2)
is a stable fixed point. This is, however, not the case for

(x3,y3), making it unstable. Similarly, the consensus fixed
point (x1,y1) is found to be stable for 0 � p � 1. Finally, we
note that as p → 0, the stable fixed point converges to nA =
0,nB = 1, while the unstable fixed point converges to nA =
nB ≈ 0.38.
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