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Order in a multidimensional system
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We show that any convex K-dimensional system has a level of order R that is proportional to its level of Fisher
information I . The proportionality constant is 1/8 the square of the longest chord connecting two surface points
of the system. This result follows solely from the requirement that R decrease under small perturbations caused by
a coarse graining of the system. The form for R is generally unitless, allowing the order for different phenomena,
or different representations (e.g., using time vs frequency) of a given phenomenom, to be compared objectively.
Order R is also invariant to uniform magnification of the system. The monotonic contraction properties of R

and I define an arrow of time and imply that they are entropies, in addition to their usual status as informations.
This also removes the need for data, and therefore an observer, in derivations of nonparticipatory phenomena
that utilize I . Simple graphical examples of the new order measure show that it measures as well the level of
“complexity” in the system. Finally, an application to cell growth during enforced distortion shows that a single
hydrocarbon chain can be distorted into a membrane having equal order or complexity. Such membranes are
prime constituents of living cells.
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I. BACKGROUND

Consider a system in a general state of thermodynamic
nonequilibrium, e.g., possibly far from equilibrium. What is
the level of order in the system?

The concept of “order” is commonly used in the sense
of something that is highly structured or complex while
lacking significant randomness. The brain of man is commonly
considered the most ordered of any living creature’s. But, is it
and, if so, on what grounds and to what extent numerically?
(This question is considered further below.) Before Darwin,
nature used to commonly be regarded as harmonious and
ordered. A cancerous organ is, when viewed microscopically,
much less ordered in appearance than it was when healthy.
Today more sophisticated properties of an ordered system
are often mentioned, such as its spontaneous, coherent, or
statistical natures. However, it is now known that man’s nature
is to often see order even where it does not exist. There is thus
an obvious need to quantify “order” as a measurable quantity,
but attempts to do so are seldom made, largely for the following
reason.

Let us designate the order as quantity R. Intuition, and
common language usage, suggest that the order R and the
concept of disorder are, in some sense, polar opposites. And
disorder has long been quantified in physics as the Boltzmann-
Shannon entropy H , which must globally increase, by the
second law of thermodynamics. On this basis, then, its opposite
R must decrease. That is, R must be some mathematical,
inverse function R(H ) of H. But then a problem arises. There
are many possible inverses. For example, use of Ockham’s
razor would favor the simple negative inverse R(H ) = −H,

often called the “negentropy,” but Ockham’s razor cannot by
itself prove anything physical. Also, on the same basis other
choices exist, such as the simple reciprocal 1/H , or exp(−H ),
or even some cross-entropy form. All of these are legitimate
mathematical inverses to H .

Clearly, this approach gives too many candidate answers.
Merely regarding R as the inverse of H does not suffice. If

R is to be a unique measure, it cannot be merely defined by
H, i.e., by the physics of the second law. Instead, it must be
defined on its own, physically based grounds. What physical
effect suffices to uniquely define R?

A previous paper [1] sought such a definition of R for,
in particular, a one-dimensional (1D) system with signal
probability amplitudes qn, n = 1, . . . ,N . The system is, by
hypothesis, weakly coarse grained. The term coarse graining
describes any physical process that degrades the system
by replacing its signal values with weighted mathematical
projections of them. An example is when digitizing an analog
signal or when, in C.T. scan imagery, a spatially continuous,
signal absorptance specimen (say, a brain cross section) is
sequentially projected at a finite sequence of angles. Because
of the finite spacing between angles, these projections miss
in-between details of the system and contain in toto less order
than did the signal specimen. Coarse graining even demarks the
transition from a quantum to classical universe [2–4]. Thus,
in [1] the concept of coarse graining provides the physical
grounds we sought for defining the concept of order on its own
(i.e., independent of disorder). How may coarse graining be
so used?

Intuition suggests that order must be lost or, at least,
not gained when a system is coarse grained. Therefore,
the order R is defined to either decrease or stay con-
stant under any coarse graining operation. That is, during
the infinitesimal time duration �t required for the coarse
graining,

�R � 0 for �t > 0 or equivalently, �R � 0 for �t < 0.

(1)

Notice that although (of course) the physical arrow of time
obeys positivity �t > 0, the condition �R � 0 for �t < 0
(looking backward in time) in (1) turns out to be easier to
work with.
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On this basis, R was found [1] to relate linearly to the Fisher
information [5, 6] I for a shift-invariant, 1D system K = 1, as

R = 8−1L2I,where I ≡ 4
N∑

n=1

(
dqn

dx

)2

→ 4

b∫
a

dx

[
du

dx

]2

,

with u ≡ u(x) ≡ �x−1/2q(x) (2)

in the continuous limit �x → dx, xn → x. Function u(x) is
the real amplitude density function of the 1D system of finite
extension L ≡ b − a, with coordinate x obeying a � x � b.

The following properties of expression (2) for R were found
and discussed in [1]:

(1) It increases with system extension L, e.g. indicating
increased order due to mere repetition of details (as in an
apartment building, where each subsequent storey monotoni-
cally adds to the level of structural order). (2) It is unitless and
hence permits meaningful comparisons of order for different
types of scenarios, such as a bacterial culture and a hydrogen
atom. (3) It has the fractal property of being invariant under
linear system stretch y ≡ mx, m =const. (4) It increases as the
square of the number of oscillations in a sinusoidal function
q(x), independent of their amplitude. Thus it is a measure of
system complexity as well.

II. AIM

Here we seek the order in a generally K-dimensional
system, described by probability values p(x1, . . . ,xK ) ≡
q2(x1, . . . ,xK ), with q a real amplitude function and K-
dimensional rectangular coordinates (x1, . . . ,xK ). An example
K = 3 of a system q = q(x,y,z) of cubic shape is shown
in Fig. 1. Hence we want to extend the premise (1) and
answer (2) to a more general system of K dimensions.
What is the unique measure of order for such a system?
The system is defined by its sampled amplitude values q at
N discrete, K-dimensional, rectangular pixel positions [(xnk,

k = 1, . . . ,K), n = 1, . . . ,N]. Thus xnk represents the kth
dimensional value of the nth pixel in the space. An example is
a rectangular K = 3 space where xnk designates the coordinate
positions (x1,x2,x3)n = (x,y,z)n of the nth pixel. The pixels
are numbered arbitrarily, e.g., row-wise, then columnwise.

As is usual, the spacing of increments �xnk ≡ �x are
assumed equal in all K directions. Thus each vector pixel
length

�x ≡ (�x, . . . ,�x)
← K elements →

obeys �x · �x = K�x2. (3)

Let the system surface generally bulge outward, i.e., be
convex, so that a chord connecting any two surface points lies
inside the system. Define L as the longest such chord in the
Pythagorean sense. As in Fig. 1, let the origin O of coordinates
lie at one end of this longest chord (call it the far-left one).
Also, the other end (point O ′) of the chord has vector length
L ≡ (Lk,k = 1, . . . ,K). Then the maximum chord length L

obeys L2 = ∑
k L2

k.

Let the order R in the system depend upon the system
amplitude law in some unknown way

R ≡ R(q), with q ≡ [q(xnk,k = 1, . . . ,K),n = 1, . . . ,N].

(4)

FIG. 1. A cubic system. Distance L is the maximum chord length
connecting surface points.

The N amplitudes q at its K-dimensional pixel positions x are
assumed to be known and fixed, defining the system.

A. Definition of the order

The order is defined to decrease under coarse graining.
What order has this property? Let the system of amplitude
values q be coarse grained by a second system, which
perturbs the q by amounts �q. The second system is an
effective observer, either in the familiar data taking sense or,
more generally, as any physical system interacting with the
first. For example, the second system might be the outside
environment of the first. We assume that all perturbations
�p, �q, �R, etc., resulting from the interactive coarse
graining, are small, i.e., the coarse graining is weak. Since
the resulting system order R is to generally decrease for
perturbations taking place over a small time interval �t > 0,

then �R � 0 over that interval. Or, ipso facto, the change
�R over the corresponding negative time increment −�t is
positive, �R � 0. That is, looking backward in time, the order
increases. Since it is mathematically simpler to work with
such positive changes, the analysis is carried through over this
negative time increment. However, of course all applications
and interpretations of the results assume the usual positive time
increments. In summary, we postulate that R be a function of
the q that satisfies

�R � 0 for �t < 0 . (5)

Cencov’s famous inequality will be used to satisfy the
requirement of decrease in order, including the effects of
perturbations out to second order in the probabilities. The
answer for R(q) turns out to be unique, at least from heuristic
considerations.
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B. Strategy

There are two main steps to the analysis. By step 1, the
dependence of �R upon solely the changed amplitudes �q
is established. This is by hypothesis independent of how the
amplitudes and their changes are arranged spatially. Next, in
step 2, the spatial arrangement is brought in by assuming that
the q are analytic functions of all coordinates x. The usual
vector differential relation is then used:

�qn =
∑

k

∂q(xnk)

∂xnk

�xnk ≡ (∇q · �x)n ,

with ∇ ≡ ê1
∂

∂x1
+ · · · + êK

∂

∂xK

. (6)

The êk are unit vectors of corresponding coordinates
x1, . . . ,xK ≡ x. An example is the usual K = 3 case of rect-
angular coordinates x = (x,y,z) with respective unit vectors
ê1,ê2,ê3.

III. STEP 1: USE OF EFFECTIVE 1D VECTOR
OF CHANGES

It is convenient to first ignore the spatial coordinates of
amplitudes q. This is by describing q and its changes �q by
pixel number n = 1, . . . ,N in any fixed ordering, for example,
two 1D vectors of length N . The corresponding order R and
change in order �R due to q and �q are respectively denoted
as R(q) and �R(q,�q). These then depend only upon element
numbers n in the vectors and not explicitly upon geometrical
position x in the system. This first step of the two-step
approach then follows precisely the K = 1 dimensional
analysis of amplitude changes in [1]. For completeness we
repeat this but delete all discussions of secondary issues.

Hence here R(q) is a simple vector function (of ampli-
tudes q) of length N , consider the effect upon R of perturbing
the amplitudes q by small amounts �q. By Eq. (4) the
order must likewise change. Depending upon the form of the
order measure R and of the perturbations (which can be of
either sign), R could go up or down. Using an ordinary Taylor
series to second order in �q, this change is then

�R ≡ R(q + �q)−R(q),

= �qT ∇qR + 2−1�qT M�q + · · · ,
≡ �R1 + �R2 + · · · , with Mmn ≡ ∂2R/∂qm∂qn. (7)

Here �qT ∇qR ≡ ∑
n(∂R/∂qn)�qn, with ∇qR the gradient

of R, and M the Hessian matrix of elements Mmn As usual T
denotes the transpose. We retain terms of the series only out
to second order in the �q since these are small.

Next, matrix M is Hermetian and Riemannian [1]. Hence it
has positive eigenvalues

λn � 0 , n = 1, . . . ,N. (8)

This permits transformation

�q ≡ [B]�q′, such that �R2 = 2−1
∑

n

λn�q ′
n

2
, (9)

of the changes �q to new ones �q′ via a unitary matrix [B].
Thus δR2 is a 1D sum that replaces the cumbersome double
sum �qT M�q in (7).

Then by definition (7) of �R2

∂2R

∂q ′
m∂q ′

n

= λnδmn , so that
∂R

∂q ′
n

= λnq
′
n + Cn, (10)

where δij is the Kronecker delta. The second equation follows
an integration of the first, with Cn an arbitrary constant. We
may now re-express the order R and its changes �R1 and
�R2 in the shifted system. We show below that, effectively,
the Cn = 0.

In terms of the new changes �q′, using (9) and (10) give

�R = �R1 + �R2,

�R1 ≡ �q′T∇qR ≡
∑

n

�q ′
n(λnq

′
n + Cn), (11)

�R2 = 2−1
∑

n

λn�q ′
n

2
.

By postulate (5), over a negative time increment the order
R must increase,

�R = �R1 + �R2 � 0 for �t < 0 (12)

to second-order in changes �q ′
n. It is convenient to first regard

pixel length �x and change �R as finite, and then take its
continuous limit �x → dx. Hence we now ask, what order
measure R obeys property (12)? By Eq. (11), requirement
(12) becomes

�R ≡ �R1 + �R2,

=
∑

n

(λnq
′
n + Cn)�q ′

n + 2−1
∑

n

λn�q ′
n

2 � 0, (13)

for �t < 0. As was discussed, this requirement is equivalent
to requiring a loss −�R of order in the usual positive time
direction �t > 0.

A. Cencov’s inequality

Is there a set of λi that, in any scenario of coarse graining,
gives �R1 + �R2 � 0? Cencov’s inequality [7–10] states that
for a Hermitian metric such as M, the required eigenvalues are

λn = 1, n = 1, . . . ,N. (14)

However, M is the metric for �R2 and the overall sum �R1 +
�R2 does not have a well-defined Hermitian metric (the form
would have infinite diagonal terms in the limit �q ′

n → 0).
Hence, we simply evaluate �R under condition (14), so as to
test whether it does indeed obey the required positivity (5).

B. Resulting order increase

By Eq. (14), requirement (13) becomes

�R =
∑

n

(q ′
n + Cn)�q ′

n + 2−1
∑

n

�q ′
n

2 � 0, or (15)

�R =
∑

n

Cn�q ′
n + 2−1

∑
n

�q2
n � 0, for �t � 0. (16)

We used normalization condition
∑

n q ′2
n = 1 which, when

perturbed by the coarse graining, gives 2
∑

n q ′
n�q ′

n = 0. Also,
the right-hand sum of unprimed �q2

n arose from the primed
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sum of �q ′
n

2 by the identity

�qT�q ≡ [[B]�q′]T[[B]�q′] = �q′T[B]T[B]�q′

= �q′T[B]−1[B]�q′ = �q′T�q′, (17)

that is obeyed by transformation (9). Unitarity property
[B ]T = [B]−1 was used.

IV. STEP 2: SPATIAL ANALYSIS IN K DIMENSIONS

According to plan, result (16) must now be properly
expressed in K-dimensional position space. Thus in the
preceding the nth positional pixel is actually a K-dimensional
vector

xn ≡ (x1, . . . ,xK )n (18)

of scalar coordinates xk . For example, in K = 3 space the pixel
location is denoted as (x,y,z)n, i.e., the rectangular coordinates
of an nth three-space pixel. Hence to define the dependence
of R upon spatial position, this additional description must be
inserted into (16).

By (18) and identity (6), the first sum in (16) becomes

∑
n

C(x)n�q ′(x)n =
∑

n

C(x)n
∑

k

∂q ′(x)n
∂xk

�xk

→ ∫
dxk

∑
n

C(x)n
∂q ′(x)n

∂xk

(19)

in the continuous limit. We see that the latter sum is not
multiplied by any power of �x, i.e., it is not infinitesimally
small. This point is essential to the analysis below.

Again using Eq. (6), now in the second sum in (16), gives∑
n

�q2(x)n =
∑

n

[∇q(x)n · (�x)n]2 � K�x2

×
∑

n

∇q(x)n · ∇q(x)n (20)

by use of the Schwarz inequality at each n. The factor K�x2

arises from uniform pixel spacing (3), giving at each n

(�x)n · (�x)n = K�x2. (21)

Now, using the definition of the Fisher channel capacity
[11] of I, Eq. (20) becomes∑

n

�q2(x)n � 4−1K�x2I, where I ≡ 4
∑

n

∇q(x)n · ∇q(x)n.

(22)

It is convenient to restate inequality (22) as an equality by use
of an efficiency coefficient η,∑

n

�q2(x)n = 4−1ηK�x2I, where 0 � η � 1. (23)

As we shall see, η measures the fractional amount of a
maximum possible level of order R0 that can actually be
observed. At this point it is important to distinguish between
two kinds of order:

Using Eqs. (19) and (23) in (16) gives the requirement [later
met at (32)]

�R =
∑

k

∫
dxk

∑
n

C(x)n
∂q ′(x)n

∂xk

+ 8−1ηK�x2I � 0,

for �t � 0. (24)

A. Intrinsic order R0 vs received order R

Let amplitudes q(x) define a system A. Next, consider a
system B that coarse grains A, i.e., it interacts with it in some
fashion (system B might simply be an observer.) Now there
are two levels of order to consider. First, there is the level of
order R in A that is present prior to the coarse graining. This
is defined by the system law q(x). Since it precedes coarse
graining it is undegraded, showing the intrinsic level of order
in A. Call this R0. Next, there is the level R that is actually
utilized by B (say, the observer). This level follows, in time,
the coarse graining, so that postulate (1) requires

R � R0 for �t > 0. (25)

According to the size of η, some systems are intrinsically
able to display more, or less, a fraction of their total possible
level R0 of order. The latter amounts to a kind of efficiency
condition on the system amplitudes q(x), in analogy with that
of classical estimation theory (see below). This situation is also
in analogy with the connection I = κJ between information I

and J in EPI (extreme physical information) theory [11], where
κ measures the efficiency with which information is transferred
from a source level J to data at level I . In comparison,
our coefficient η measures the efficiency with which order is
transferred from the subject system to the system that coarse
grains it (e.g., an observer).

V. R AS A FUNCTION OF COORDINATES x

Since the system is fixed, information I in Eq. (24) is a
fixed constant, i.e., not a function of x. Then (24) is effectively
an expansion for �R out to second order in changes �x → dx
in the continuous limit. Likewise, in this limit dR = dR(x).
Integrating this will give R = R(x), a function of the K

coordinates x, e.g., the K = 3 case gives R(x,y,z). That
R is a function of the coordinates is not surprising, since
Eq. (4) defines R as a function of the amplitudes q(x). The
order function R(x) thereby measures the local order pointwise
at coordinates x. It is a (second-order) density of the order.
What is this density function?

A. Plan

Result (24) is a power series expansion to second order in
the small scalar �x. Such a series is only a good approximation
if the system is small, so we assume that the length Lk of the
system in each dimension k is small. We may therefore evaluate
the coefficients of the powers in (24) by matching it up with
an ordinary Taylor series [Eq. (28)] for R(xn) in powers of
distances �x from the origin pixel O ≡ 0 to the position xn.
Therefore �x = |xn − 0|, and �x is assumed to be small.
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It follows from (21) that

|xn − 0|2 ≡ |�x|2 = K�x2, (26)

which is likewise small.

B. Implementation

The reason for choosing the origin of coordinates at the
leftmost point 0 of the maximum chord will now become
clear. Let the function R(xn) be analytic about this boundary
point 0. Then we may express R to a second-order power
series about it. For simplicity, we suppress subscript n from
all quantities xn and �xn when it is superfluous. The power
series is accordingly,

R(x) = R(0) +
∑

k

∂R

∂xk

∣∣∣∣
x=0

�xk + 2−1
∑
kl

∂2R

∂xk∂xl

∣∣∣∣
x=0

�xk�xl

= R(0) + �x
∑

k

∂R

∂xk

∣∣∣∣
x=0

+ 2−1�x2
∑
kl

∂2R

∂xk∂xl

∣∣∣∣
x=0

(27)

after again using the equality (3) of the �xk . Or, since R(x) −
R(0) ≡ �R(x) ≡ �R,

�R = �x
∑

k

∂R

∂xk

∣∣∣∣
x=0

+ 2−1�x2
∑
kl

∂2R

∂xk∂xl

∣∣∣∣
x=0

. (28)

Equations (24) and (28) represent the same thing, namely,
�R expressed as a power series in powers �x. Therefore terms
with corresponding powers of �x in the two series must be
equal. This gives rise to the following identities:

1. Terms (�x)0

The first right-hand term in (24) implicitly has a multiplier
(�x)0 → (dx)0 = 1, i.e., is a constant in �x. By comparison,
the right-hand side of (28) has no constant term in (dx)0.
Therefore, the first right-hand term of (24) must be zero. For
an arbitrary system q ′(x), this requires that

C(x)n = 0, all n. (29)

2. Terms (�x)1

Equation (24) has no term in (�x)1, whereas the first term
of (28) has this form. Therefore its sum obeys∑

k

∂R

∂xk

∣∣∣∣
x=0

= 0. (30)

(Notice that this requirement on the sum does not require

each element ∂R
∂xk

∣∣∣
x=0

= 0, k = 1, . . . ,K. Such a result would

express a condition of system equilibrium, whereas, at the
outset, the system is defined as being in any general state of
nonequilibrium.)

3. Terms (�x)2

The terms that are quadratic in �x in (24) and (28) are
equal if

2−1
∑
kl

∂2R

∂xk∂xl

∣∣∣∣
x=0

= 8−1ηKI. (31)

VI. ANSWER

Using identities (29) in (24) gives

�R = 8−1ηK�x2I � 0, for �t � 0. (32)

Because every factor in the product obeys positivity, the
positivity requirement (1) on �R is now fulfilled.

Likewise, using (30) and (31) in (27) gives

R(x) = R(0) + 8−1η(K�x2)I,

= R(0) + 8−1η|x − 0|2I (33)

by (26). Equation (33) states that in second-order approxima-
tion, the local value of the order R at point x must increase
with its squared distance from the fixed boundary point 0. It
also increases with the system’s Fisher information I. This
gives the two key results in the next subsection.

A. Order associated with distance inside system

(1) Finite order is only associated with finite distance from
the boundary point 0, so that the amount of order within
interval (0,0) is zero,

R(0) ≡ 0. (34)

(2) The total level of order R for the system shown in Fig. 1
is therefore the total amount of local order that is included from
the system origin point O to the maximum chord position
x = L at point O ′. Combining (33) and (34) gives R(x) =
8−1η|x|2I, so that

R(L) ≡ R = 8−1η|L|2I = 8−1ηL2I. (35)

This is the main result of the paper. Special cases follow.
The answer for the maximum chord length L depends upon

the shape of the system. For example, for a cubic system in
K dimensions, the length components Lk ≡ l, k = 1, . . . ,K.

Then by the Pythagorean theorem, |L|2 ≡ L2 = Kl2, so that
(35) gives

Rcube = 8−1ηKl2I, where 0 � η � 1. (36)

Thus for a 1D system K = 1, result (36) checks with the result
(2), since there l = L and also η = 1 (the latter since for the
1D case the first dot product in (20) is simply �q2 without
need for the Schwarz inequality). Or, for a case K = 3 of
ordinary space, the order (36) is K = 3 times larger than for
the corresponding 1D system, although once I is evaluated it
can go as K2 = 9 (see (45) below).

Another case of interest is a spherical system of diameter d.

Here the maximum chord length L = d, its diameter. Then
the result (35) gives

Rsphere = 8−1ηd2I. (37)

B. Is the measure unique?

Heuristic indications are that the expression (35) for R is
unique. The arguments are as in [1] and rest on the requirement
at the outset that the system function q(x) be in a general state
of nonequilibrium. For brevity we do not repeat the proof.
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C. Order and information as entropies

Result (35) holds for a generally convex system of any
shape. Taking its differential gives �R = 8−1ηL2�I. Then
positivity requirement (1) indicates that not only does the order
R decrease after a coarse graining, but so, likewise, does the
information I ,

�I � 0 for �t > 0, or conversely, �I � 0 for �t < 0, (38)

i.e., looking backward in time. Thus, for the general system,
the order changes monotonically, thereby defining an “arrow of
time.” This is also the defining property of an entropy. Hence,
the information channel capacity I is both a Fisher information
and a Fisher entropy. It is both a property of the system and of
any data from it.

D. Nonparticipatory phenomena

Many physical and biological effects may be derived [11–
17] on the basis of extremizing the Fisher information I . It is
presumed in these derivations that the observer has data at hand
from the unknown effect. This fits in nicely with Wheeler’s
concept of “participatory phenomena” [18]. However, such
effects as the timewise evolution of the wave function occur
unseen to any observer. They are nonparticipatory. Then how,
in principle, could extremizing I be justified as a means for
deriving such effects? Result (38) is that I is an entropy, which
is a system property, not a data property. Therefore, the use of
I in these derivations would allow nonparticipatory effects to
be derived as well. This emphasizes a dichotomy in nature: Its
laws express both order in a system and in its data.

E. Efficiency of the order

Equation (35) indicates that that the level R of order ac-
quired by observing (i.e., interacting) system B is maximized
when η = 1, i.e., when the order is

R0 = 8−1L2I , with R = ηR0 (39)

more generally. Are there systems for which such maximum
order may be attained? Recall that η arose from use of
the Schwarz inequality (20). The latter becomes an equality
when the components of its dot product are parallel. In (20)
there is a total of N dot products, one for each pixel n.
Therefore, the condition for equality is that for each n there is
a proportionality constant bn such that

∇q(x)n = (�x)nbn, bn ≡ b(x)n. (40)

Since subscript n denotes a pixel x, it is now superfluous
and, so, may be dropped. Also, using equal spacings (3), the
condition (40) becomes

∂q

∂xk

= b(x)�x (41)

for any integrable function b(x).
By inspection, a solution is

q(x) = h

(
�x

∑
k

xk

)α

, α = 1 or 2 (42)

for any differentiable function h. Its use in (41)
identifies b(x) = h′ for α = 1 or b(x) = 2xh′ for α = 2.

The prime denotes a derivative. Equation (42) seems
to be the general solution as well. An example of
solution (42) is the K-dimensional, Gaussian function
q(x) = A exp[−�x

∑
k xk

2], with A a normalization constant.
Its substitution into (41) verifies this, with b(x) = −2q(x)x.

F. Partial coarse graining

Partial coarse graining, as opposed to full coarse graining
in all the preceding, occurs when there are a finite number
of linear constraints upon the system amplitudes q(x). As in
the Appendix of [1], the order of a partially coarse grained
system may readily be found. Among other results, it is shown
that partial coarse graining results in a smaller loss of order
than does full coarse graining. Also, the value of the partial
order is the unconstrained order value R reduced by a sum of
weighted Fisher informations I (Fk) [19]. Essentially the order
is reduced because the linear constraints upon q(x) smooth out
its fluctuations, and order form (35) decreases with decreasing
fluctuation.

G. Nature independent of representation

Since, at the outset, q is a unitless probability amplitude
(whose square is a unitless probability p), by Eq. (22) the
information I has units of x−2

k . Then the result (35) shows that
the order R is unitless. This is a powerful result. It has the
following ramifications.

First, principle (1) and representation (35) for R thereby
hold for all choices of representation of the independent
variables x, whether they be coordinates of time, position,
energy, potential, etc. The results are independent of the
particular coordinate representation.

Second, principle (1) and results (35), (39) hold for any
choice of the dependent variable, i.e., the amplitude function
q(x) or equivalent density function ρ(x) ≡ q2(x)/�x3. But
given a system, which of its density functions should be
used? Do we want the order in the structural density of the
mass, or charge, electric current, magnetic flux, or some other
observable density that shows structure? Each is specified by
a generally different density function ρ(x), and therefore has
a generally different level of order R. (It would be interesting
if some of these agreed.) It is notable that any such choice
obeys principle (1) and therefore holds, regardless of the type
of coarse graining that the system may be subjected to.

Any relative error is unitless. The Cramer-Rao [5,6] result
for the minimum rms error is emin = 1/

√
I . Multiplying this

equation by L−1 and using (39) gives the minimum relative
error εmin ≡ emin/L as obeying εmin = (

√
2/4)(1/

√
R0). This

is again unitless and shows that order R0 relates to the relative
error just as I relates to the absolute error.

H. Fractal property

Equations (35) and (39) are the principle results of the
paper. They give the total order measure as proportional to
the shift-invariant Fisher information and to the square of
the maximal system extension. These joint effects indicate
a strong, basic distinction between order R and information I

as system measures. This is conveniently seen when the system
is degraded by the particular coarse graining effect of uniform
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system stretch. Here the coordinates x are linearly magnified to
form new coordinates χk = mxk , m =const., k = 1, . . . ,K. By
Jacobian transformation, the information Iχ in the magnified
system is IXm−2. Thus for a stretch m > 1 the information
goes down. By comparison, the order (35) for the original
system is RX = 8−1ηL2IX, so that the stretched system has
an order Rχ = 8−1η(mL)2Iχ = 8−1η(mL)2IXm−2 = RX once
again! Uniform magnification does not affect the order (also
see end of Sec. IX).

VII. EXAMPLES: SINUSOIDAL STRUCTURE IN K
DIMENSIONS

A simple and instructive class of systems is a
K-dimensional cube of side l containing a probability den-
sity function (PDF) ρ(x), which is a product of sinusoids
sin2(nπxk/ l) over the K dimensions. Thus each dimension
contains n oscillations or fringes. Here it is simplest to work
with problems on the continuous space x, described by PDFs
ρ(x) rather than the discrete space and its probabilities p(x)n,
used previously.

A. Fisher I and order R

The normalized, corresponding amplitude function u(x) is
its square root [see the last of Eqs. (2)],

u(x) = (l/2)−K/2
K∏

k=1

sin(nπxk/ l), 0 � xk � l. (43)

Its gradient is easily evaluated, giving for the Fisher informa-
tion [11]

I ≡ 4
∫

dx∇u · ∇u ≡ 4
K∑

k=1

∫
dx

(
∂u

∂xk

)2

= (2nπK/L)2.

(44)

Using result (44) in (39), and the fact that here chord length L

obeys L2 = Kl2, gives an intrinsic order

R0 = (nπK)2/2. (45)

This extremely simple result relates the concepts of order and
complexity. It shows that the amount of order is independent
of the extension(s) l of the system, and it rapidly increases
with the number n of oscillations of the sine wave and the di-
mensionality K , i.e., with system complexity. By comparison,
I is seen, in (44), to depend upon the number per unit length
n/L of the oscillations. This is a vital difference. Also, the
K dependence indicates that a three-dimensional (3D) system
has intrinsically nine times the level of order, or complexity, as
a corresponding 1D system. As mentioned before, the result
(45) also is unitless.

B. Case K = 2 with n = 5 ripples in each direction

Let side l = 1, with n = 5 ripples in each direction. The
PDF ρ(x,y) ≡ |u(x,y)|2 = 4 sin2(5πx) sin2(5πy) by (43). It
is plotted in Fig. 2.

Visually, the complexity of detail is quite high. By (45) the
intrinsic order level is R0 = (5π × 2)2/2 = 493. 48, or about
six times larger as for a case n = 2. Hence R0 measures the

FIG. 2. Sinusoidal PDF with n = 5 ripples in each of K =
2 dimensions. Note the visually high level of complexity that
accompanies the high level of order R.

level of system order in the sense of its degree of complexity
as well.

VIII. WEIGHTED SINUSOIDAL STRUCTURE WITHIN A
3D CYLINDRICAL SYSTEM

Cylindrical shapes are of interest in biology, as in the cases
of (a) an E coli bacterium or (b) many simple carbon-based
polymers (e.g., narrow linear forms, thin membranes, etc.).
What are their levels of order? We consider in particular case
(a), noting that the results have obvious application to cases
(b) as well.

Consider a general cylinder of length L and cross-sectional
diameter l. Using cylindrical coordinates r,z,θ , let its internal
details be described by an amplitude function u (r,z,θ ) of M

basis functions ψm that are weighted by respective coefficients
am,

u(r,z,θ ) = A

M∑
m=1

amψm(r,z),each ψm ≡ sin(2mπr/l)

× sin(mπz/L) (46)

with A2 = (8L−1l−2)/(
∑

m a2
m), the normalization factor for

the PDF ρ(r,z,θ ) ≡ u2(r,z,θ ). Each basis function ψm has
m sinusoidal ripples, both within length L and across each
diameter l. The results will hold for any set of weights am, so
that the analysis is general in this regard. Note that a2

m = pm,

the probability of occurrence of state ψm.

A. Information and order

It is straightforward, if tedious, to calculate the information
(44)

I ≡ 4

π∫
−π

dθ

l/2∫
0

drr

L∫
0

dz

[(
∂u

∂r

)2

+
(

∂u

∂z

)2

+ 1

r2

(
∂u

∂θ

)2
]

(47)
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for the amplitude function (46), which immediately simplifies
since the third integrand r−2(∂u/∂θ )2 is zero identically.
The result is I = (π3/4)(4l−2 + L−2)〈m2〉, with expectation
〈m2〉 = ∑

m a2
mm2/

∑
m a2

m. Also, for this geometry the
maximum chord length is L2 = L2 + l2. Then by (39), the
intrinsic order is

R0 = (π3/32)(1 + ε2)(1 + 4ε−2)〈m2〉,where ε ≡ l/L
(48)

defines the eccentricity of the cylinder. Its shape for ε 	 1 is
that of a fiber, or for ε 
 1 that of a disk or membrane.

B. Change in order from fiber to disk

A typical E coli bacterium is of diameter l = 0.5 μm
and length L = 2.0 μm, therefore of eccentricity ε = 0.25,

a fiber. However, the shapes of bacteria and other single-celled
creatures are often variable, depending upon their environment
(see below) and stage of development. A fundamental question
is how the level of order changes as the cell shape parameter
ε is increased (say, due to longitudinal compression), while
maintaining a fixed internal structure defined by fixed values
of n, the am, and 〈m2〉. For simplicity, in (48) we can
therefore set 〈m2〉(π3/32) ≡ 1. The resulting plot of order
R0 vs eccentricity ε is shown in Fig. 3.

This shows that in general the same value of order R0 is
met by two widely disparate shapes, a fiber and a disk. For
example, the order 69.1 in the undisorted E coli (for ε = 0.25
on the curve) is equalled by an equivalent disk of eccentricity
8.0. Also, by allowing a change in mass by some factor α to
take place during the compression, the disk has dimensions l =
0.707α1/3 μm, L = 0.088α1/3 μm. Obviously their quotient
gives the same eccentricity, that of a disk, for any mass factor
α. Integer values α = 2,3, . . . connote mitosis events. The
change in mass is effected by energy flow, either from (for
α > 1) or into (α < 1) the environment. These results have
the following biological significance:

(1) It was recently found [20] that E coli or other bacteria
can squeeze through practically any opening. When forced to
pass through an extremely narrow slit it typically takes on a

FIG. 3. Level of order R0 in the internal structure of a cylindrical
system vs its eccentricity ε. In general, two different ε values –
corresponding to a cylinder or a disk – give rise to the same level of
R0, for values R0 �

√
2.

completely flattened shape. This corresponds to the disk shape
in the above. Also, the mass change factor obeys α > 1 due
to cell growth by mitosis during the distortion process. Such
distortions of bacteria are also envisioned [20] as naturally
occurring underground, where bacteria are constrained to live
in spaces of about a micrometer.

(2) One model for the origin of life is the formation of many
linear chains of hydrocarbons – the fiber case above – that
eventually combine into a thin membrane which is the protype
for a cell membrane [21]. For example, bacterial cell walls
are membranes of peptidoglycan, which is made in part from
polysaccharide chains [22]. But from the preceding analysis
the membrane could have instead resulted from distortion
of a single such chain (or fiber), since both a chain and
corresponding membrane can have equal complexity R. Single
chains are known to be readily formed by UV radiation [23]
and are long known to exist widely in interstellar space, even
away from galactic centers [24]. These suggest that life could
exist widely in space.

IX. SUMMARY, AND TWO QUESTIONS

By postulating that the order of a system should decrease
under weak coarse graining, we have quantified that the
total order R obeys Eq. (39). This basically traces from
expansion (7), to second order in small amplitude changes
�q, for the change �R resulting from the coarse graining.
The second derivative matrix M defined in (7) is found to
be Hermitian and, by (8), this guarantees positive eigen-
values λi in a suitably transformed system (9) to changes
�q′. Use of the Cencov choice (14) of unit eigenvalues in
Eq. (13) and steps (15)–(23) then give an intermediary result
(24) for �R. This is the sum of an integral of an unknown
function C(x) and a term linear in Fisher information I .
Then by Taylor expansion (28), whose powers of �x must
match those of (24), the term in C(x) is found to be zero
[see (29)] and the mixed partial derivatives (31) are found
to be proportional to I . It results that �R ∝ I . Finally, the
assumption that chord length L is small enough to ignore cubic
and higher-order powers of �xk gives the order (35) as R =
8−1ηL2I , with η an efficiency coefficient obeying 0 � η � 1.

Complete efficiency η = 1 is found to hold for amplitude
functions of the form (42), an example being a K-dimensional
Gaussian law.

Properties of the new measure R are examined. It is found
to be unitless, invariant to linear system stretch (a fractal
property), and to be an entropy. The system property (38)
indicates that Fisher I is likewise an entropy, independent
of the presence of data. This therefore allows past I -based
derivations of physical law [11, 13] to describe both partici-
patory and non-participatory phenomena (where no data are
available). Finally, hydrocarbon-based polymers shaped like
fibers or disks can have equal levels of order. This suggests that
a two-dimensional (2D) cell membrane can readily form from
a single 1D hydrocarbon chain, permitting the widespread
occurrence of life in the cosmos.

We end with two questions of interest.
(1) Suppose that we want to test the hypothesis that man’s

brain is more ordered or complex than that of any other
living creature. We use Eq. (39) to compute R0, and decide to
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compare R0 values on the basis of mass density distributions
ρ. We choose to compare human brain complexity with that
of the creature with the largest brain, the sperm whale. The
neuronal density in cetaceans is usually as high as in humans.
The lamination or number of cortical layers is also, as in
humans, advanced [25,26]. On this basis, it seems reasonable
to estimate the Fisher information level I as roughly equal
in the two brains. However, this estimate is compromised by
the lack of knowledge of the complexity of cortical patterns,
the specialization of cortical arrangements, and the amount
of communication between cells in the whale. Hence the
comparison will not be definitive. With the two I values
about equal, Eq. (39) indicates that the factor L2 is decisive
to the comparison. The whale’s brain weighs about 9.0 kg vs
1.3 kg in a human. Assuming both brains are roughly the
same shape, the ratio of lengths L ≈ (9.0/1.3)1/3, so that
the ratio of factors L2 is about (9.0/1.3)2/3 = 3. 6. On this
basis the whale brain is more complex, although the question
remains open because of the unknowns mentioned above.
Note, furthermore, that an advantage in the complexity of the
brain’s mass distribution does not necessarily associate with
intelligence. Instead, one author [26] associates intelligence

with a brain’s neural distribution (and qualities): “These data...
demonstrate that there is no neural basis for the often-asserted
high intellectual abilities of cetaceans.”

(2) Regard our universe as a closed system. Due to Hubble
expansion, the universe is apparently expanding at an ever-
accelerating rate. Thus its fate in the distant future is often
imagined to be an irreversibly stretched system from which
recovery via a “big crunch” could never occur. This implies
that due to the expansion, its order is ever approaching zero.
But, what does the measure R predict? Order R was found to
remain constant under uniform system stretch. Then, is Hubble
expansion uniform over our system, i.e., all of space, taking
into account its possible curvature and quantum gravitational
effects? If so, the expansion would leave the order unaffected
at all times! So, how does Hubble expansion affect our ultimate
fate? A paper on this question is in preparation.
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