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Microcanonical entropy inflection points:
Key to systematic understanding of transitions in finite systems
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We introduce a systematic classification method for the analogs of phase transitions in finite systems. This
completely general analysis, which is applicable to any physical system and extends toward the thermodynamic
limit, is based on the microcanonical entropy and its energetic derivative, the inverse caloric temperature.
Inflection points of this quantity signal cooperative activity and thus serve as distinct indicators of transitions. We
demonstrate the power of this method through application to the long-standing problem of liquid-solid transitions

in elastic, flexible homopolymers.
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Structure formation processes are typically accompanied
by nucleation transitions, where crystalline shapes form out
of a liquid or vapor phase. Thus, nucleation is governed by
finite-size and surface effects. For small physical systems, it is
difficult to understand thermodynamic transitions of this type,
as they strongly depend on system size.

Cooperativity refers to collective changes in a statistically
significant fraction of the degrees of freedom in a system,
which transforms the system into a new macrostate. In the ther-
modynamic limit of an infinitely large system, the ensemble of
macrostates sharing similar thermodynamic properties would
be called a “phase” and the transformation a “phase transition.”
The description of such a transformation in a finite system
is more subtle, as it cannot be described in the traditional
Ehrenfest scheme of singularities in response quantities.
However, statistical physics and thus thermodynamics are also
valid for systems with no thermodynamic limit. Examples
include the structure formation in small atomic clusters and
all biomolecules. This is particularly striking for proteins,
i.e., heterogeneous linear chains of amino acids. The fact
that the individual biological function is connected to the
geometrical shape of the molecule makes it necessary to
discriminate unfolded (nonfunctional) and folded (functional)
states. Although these systems are finite, they undergo a
structural transition by passing a single (or more) free-energy
barrier(s). Since these finite-system transitions exhibit strong
similarities compared to phase transitions, we extend the
terminology once defined in the thermodynamic limit to all
systems exhibiting cooperative behavior.

In this paper, we introduce a commonly applicable and
simple method for the identification and classification of
cooperative behavior in systems of arbitrary size by means
of microcanonical thermodynamics [1]. It also includes the
precise and straightforward analysis of the finite-size effects,
which are important to a general understanding of the
onset of phase transitions. This is in contrast to canonical
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approaches, where detailed information is lost by averaging
out thermal fluctuations. Regaining information about finite-
size effects in canonical schemes, e.g., by the investigation
of the distribution of Lee-Yang zeros in the complex tem-
perature plane [2] or by inverse Laplace transform [3], is
complicated.

The identification of transitions is associated with a distinct
definition of transition points such as a transition temperature.
In the canonical representation of finite systems, these usually
differ, e.g., peak structures of thermodynamic quantities such
as the specific heat and fluctuations of order parameters as
functions of the heat-bath temperature. This makes it impos-
sible to fix a unique transition point. In the microcanonical
analysis, the temperature is defined via the curvature of the
caloric entropy curve, and thus all transition signals in the
microcanonical entropy can be directly associated with a
transition temperature.

After introducing the method, we apply it to liquid-solid and
solid-solid transitions occurring for elastic, flexible polymers,
which have been under debate for quite some time. In contrast
to the rather well-understood coil-globule collapse transition,
the formation of highly compact crystalline, amorphous, or
glasslike structures intricately depends on the precise relation
of intrinsic energy and length scales in the system [4-9].

In recent work, the microcanonical analysis has success-
fully been applied in aggregation studies of coarse-grained
polymer and peptide models, where a nucleation process was
found to be an energetically ordered hierarchy of individual
structural subphase transitions [10]. Caloric approaches have
also been used to investigate the folding behavior of proteins
[11-15] and the structural phases of polymers with stiff bonds
[8], as well as polymer adsorption transitions [16—18]. Other
applications include the formation of galaxies [19], the cluster-
ing and fragmentation of atomic clusters and nuclei [1,20,21],
and order-disorder transitions in spin systems [1,3,22-24].
Most of these studies are aimed at using the microcanonical
analysis as an alternative approach to investigating finite-size
scaling properties. However, a systematic scheme for the
classification of transitions in the respective finite systems has
remained lacking. The method introduced here closes this gap
through the introduction of an Ehrenfest-like analysis based
on microcanonical entropy inflection points.
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A fundamental property of each physical system, and
the central quantity for our method, is the microcanonical
entropy S(E) = kplng(E), where g(E) is the density of
states for a given energy E (in the following, we will set
kg = 1). Alternatively, a volume entropy can be defined via
the integrated density of states by S'(E) = kg In G(E), with
G(E) = fEIi. dE'g(E") [25], which is virtually identical with
g(E)AE (JAE/E| < 1) in the transition regions [10]. It has
been argued that only G(E) is consistent with the classical
equipartition theorem [26,27], however, its physical meaning is
much less obvious [1]. Therefore, we will continue using S(E)
instead. It should also be mentioned that g(E) is the “natural”
output provided, e.g., by generalized-ensemble Monte Carlo
methods. Among the most prominent of these methods are
multicanonical [28] and Wang-Landau [29] sampling, which
enable a precise numerical estimation of this quantity over
hundreds or even thousands of orders of magnitude [6,7].

A qualitative change in the interplay of entropy and energy
in the system is signaled by noticeable alterations in the
curvature of S(E), which are quantitative measures for the
strength of cooperativity of the associated transitions. For finite
systems exhibiting transitions with phase separation, S(FE)
can even possess convex regions [1], although it is a strictly
concave function in the thermodynamic limit. In this case, the
slope of a tangent at each point of the curve is unique, and it is
common to define the reciprocal microcanonical temperature
via the caloric derivative of S,

B(E) =T YE)=(dS/dE)y.v, (1)

where system size N and volume V are kept constant. In
the thermodynamic limit, where fluctuations about the mean
energy become negligible, the canonical and microcanonical
ensembles are identical, and the canonical (or heat-bath)
temperature equals the microcanonical temperature. This is not
the case for a finite system experiencing a structural transition,
where different quantities vary in their fluctuation properties,
rendering an identification of transition points impossible.
Since the complete phase behavior is already encoded in S(E),
it is useful to consider S(E) as a unique parameter to identify
transition points.

We further propose to analyze the monotonic behavior of
B(E), expressed by its derivative with respect to energy,

v(E) = dB(E)/dE = d*S/dE*. )

This will allow for the introduction of a systematic classifica-
tion scheme of transitions in finite systems. In principle, this
can also be used for scaling analyses toward the thermody-
namic limit.

We define a transition between phases to be of first order
if the slope of the corresponding inflection point of B(E) at
E = E is positive, i.e., i = ¥ (Ey) > 0. Only in this case is
the temperature curve nonmonotonic and there is no unique
mapping between B8 and E. Physically, both phases coexist
in the transition region. The overall energetic width of the
undercooling, backbending, and overheating regions, obtained
from a Maxwell construction, is thus identical to the latent
heat. Therefore, for a first-order transition, Ag > 0. In the case
that the inflection point has a negative slope, v, = y(Ey) <
0, the phases cannot coexist and the latent heat is zero. In
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FIG. 1. (Color online) Inverse temperature S(e) and its derivative
y(e) as functions of the energy per particle, e = E/N, exemplified
for an elastic polymer with 102 monomers. The maxima of y(e)
indicate transitions between the structural phases A and B at 2P
and B and C at eBC. The associated points B(e2P) = BB and
B(eB€) = BEC define the transition temperatures T8 = (82B)~! and
TBC = (BEC)~!. According to our classification scheme, the transition
between A and B is of second order, since the slope of the inflection
point is negative. On the other hand, B<>C is a first-order transition,
as the respective slope at B(eE€) is positive. The nonmonotonicity of
B(e) in this region, called “backbending,” is a typical signal of phase
coexistence. The latent heat Ag5C is defined as the energetic width
of this transition region.

complete analogy to phase transitions in the thermodynamic
limit, we classify such transitions as of second order. Since
the inflection points of B(E) correspond to maxima in y(E),
it is therefore sufficient to analyze the peak structure of y(E)
in order to identify the transition energies and temperatures.
The sign of the peak values classifies the transition. This very
simple and general classification scheme applies to all physical
systems.

Figure 1 illustrates the procedure for the identification of
the transitions by means of inflection-point analysis, where the
inverse temperature 8 and its energetic derivative y are plotted
as functions of the reduced energy e = E /N, with N being the
system size. As a first example, we consider an elastic flexible
homopolymer with N = 102 monomers. This system exhibits
four structural phases [7]: two solid icosahedral phases (A:
Mackay, B: anti-Mackay), a globular liquid phase (C), and the
random-coil phase (D). In Fig. 1, the transitions can indeed
be uniquely identified (since the C<>D transition occurs at
much higher energy and temperature, it is not included, but
can also easily be found by inflection-point analysis; it is a
second-order transition at eSP &~ —1.21, BSP ~ 1.08). A first-
order liquid-solid transition B<>C is characterized by y2¢ >
0 at e3¢ ~ —4.35 (BBC€ A 2.97). The width of the energetic
transition region corresponds to the latent heat AgB€, which
is obviously nonzero because of the backbending effect or the
coexistence of both phases in this region. The second-order
transition A<>B is found at e2% ~ —4.58 (B4 ~ 3.34) by an
inflection point with negative slope (8 < 0).

In order to demonstrate the capability of our method
to systematically analyze all transitions in finite systems,
we estimate the transition points for the entire set of

011127-2



MICROCANONICAL ENTROPY INFLECTION POINTS: KEY ...

elastic Lennard-Jones homopolymers with N = 13,...,309
monomers. In the liquid and solid regimes, the structural
behavior of these polymers is very similar to rare-gas
systems consisting of N atoms, which also form compact,
crystalline clusters at very low temperatures [7,9,30]. We
employ the standard model for flexible, elastic polymers,
where the monomers interact via a truncated-shifted Lennard-
Jones potential, E]'j‘JOd(rij) = Epy[min(rij,r.)] — Eps(re) with
ELJ(r[j) = 46[(0’/7‘,’j)12 — (O'/V,'j)6], where rij is the distance
between two monomers located atr; andr; (i,j =1,...,N),
and € = 1 and 0 = 27"%r;, with the potential minimum at
ro = 0.7 and the cutoff at r. = 2.50. Adjacent monomers
are connected by finitely extensible nonlinear elastic (FENE)
anharmonic bonds [31,32], Epeng(riit1) = —KR*In{l —
[(riiv1 — 10)/ R1*}'/2. The FENE potential minimum is located
at ro and diverges for r — ry £ R (in our simulations R =
0.3). The spring constant K is set to 40. The total energy
of a polymer conformation X = (ry,...,ry) is given by
EX) =30 Y0 ER) + 0 Erene(rii).
Figure 2 shows the caloric temperature curves for elastic
polymers with various chain lengths in the liquid and solid
regimes, calculated from highly accurate density of states es-
timates obtained in sophisticated multicanonical Monte Carlo
simulations [33]. The identified inflection points associated
with conformational transitions are indicated by blue dots.
As expected, there is no general and obvious relation of
the behavior of chains with slightly different lengths. This
is due to the still dominant finite-size effects of the polymer
trying to reduce their individual surface-to-volume ratio, which
therefore strongly depends on optimal monomer packings in
the interior and on the surface of the conformations. For
example, for chains of moderate lengths (N < 147 [7,9]),
the different behavior can be traced back to the monomer
arrangements on the facets of icosahedral structures, known
as Mackay and anti-Mackay overlayers [34]. Solid-solid
transitions between Mackay and anti-Mackay structures are
also possible under certain conditions in these systems [7,9].

5.5 5.0 45 4.0 3.5 3.0 25
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FIG. 2. (Color online) Caloric temperature curves T () = 87! (e)
for a selection of elastic, flexible polymers with chain lengths in the
interval N = 13, ...,309 (from right to left). Curves for chains with
magic length (N = 13,55,147,309) are bold. The relevant inflection
points, indicating the conformational transitions on the basis of our
analysis method, are marked by blue dots.
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FIG. 3. (Color online) Transition temperatures 7,,(N) of con-
formational transitions for small elastic polymers with chain
lengths N = 13, ...,309 in the liquid-solid and solid-solid transition
regimes, obtained from inflection-point analysis. First-order transi-
tion points are marked by red dots; second-order transition points are
marked by blue x’s. Also shown is a fit for the liquid-solid transition
temperature toward the thermodynamic limit N — oo (dashed line).

This can be seen in Fig. 3, where all transition temperatures
Tw(N) = ,Bt;l(N ) for liquid-solid and solid-solid transitions
are plotted in dependence of the chain length N [35]. The red
dots indicate first-order transitions, which for N > 38 can be
associated with the respective liquid-solid transitions, whereas
the blue x’s mark second-order transitions.

If the associated transition temperatures are smaller than
the liquid-solid transition temperatures, the symbols indicating
second-order behavior belong to solid-solid transitions, e.g.,
transitions between geometrical shapes with Mackay or anti-
Mackay overlayers. Note the different behavior for “magic”
chain lengths Npaeic = 13,55,147,309, .. ., in which complete
icosahedral Mackay ground states form. Figure 3 also gives
evidence for the convergence of the solid-solid and liquid-solid
transition temperatures when N approaches a magic length.
This behavior repeats for each N interval that finally ends at a
certain magic length Ny,gic, where both transitions merge into
a single first-order liquid-solid transition. The influence of the
solid-solid effects weakens with increasing system size, while
the liquid-solid transition remains a true phase transition in
the thermodynamic limit. Inserted into the plot is a fit function
To(N) = T —aN~'3, which suggests an estimate for the
thermodynamic phase transition temperature 7,° ~ 0.64.

Summarizing, we have introduced a general method for the
analysis of phase transitions in small systems based on the
central quantity of any statistical system, the microcanonical
entropy, and applied it to the long-standing problem of struc-
tural transitions of flexible polymers. Advanced Monte Carlo
simulation techniques such as multicanonical sampling [28]
and the Wang-Landau method [29] enable precise estimations
of the density of states, and thus it is straightforward to
obtain the microcanonical entropy in computer simulations.
Since indicative quantities such as transition temperatures
can be quantitatively determined, our method also enables
experimentally competitive predictions.

This project has been partially supported by NSF Grant
No. DMR-0810223.
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