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Elastic Maier-Saupe-Zwanzig model and some properties of nematic elastomers
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We introduce a simple mean-field lattice model to describe the behavior of nematic elastomers. This model
combines the Maier-Saupe-Zwanzig approach to liquid crystals and an extension to lattice systems of the
Warner-Terentjev theory of elasticity, with the addition of quenched random fields. We use standard techniques
of statistical mechanics to obtain analytic solutions for the full range of parameters. Among other results, we
show the existence of a stress-strain coexistence curve below a freezing temperature, analogous to the P -V
diagram of a simple fluid, with the disorder strength playing the role of temperature. Below a critical value of
disorder, the tie lines in this diagram resemble the experimental stress-strain plateau and may be interpreted as
signatures of the characteristic polydomain-monodomain transition. Also, in the monodomain case, we show that
random fields may soften the first-order transition between nematic and isotropic phases, provided the samples
are formed in the nematic state.
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I. INTRODUCTION

Liquid-crystalline molecules imbedded in a polymer net-
work give rise to the novel class of elastomer systems,
with coupled rubber elasticity and orientational order, and
rather unusual properties [1,2]. Nematic elastomers (NEs) may
undergo a distortion in response to an alignment of the nematic
units as the sample is cooled below the nematic-isotropic
transition temperature TNI. Reciprocally, the application of an
external stress may give rise to nematic ordering of an initially
disordered sample. There are a number of suggestions for
applications of these new soft-matter materials, ranging from
uses in optics (in bifocal lenses, for instance) to applications
as thermomechanical devices [1].

Compared with conventional liquid crystals, NEs present a
peculiar transition from the nematic to the isotropic states.
In usual nematics, according to the Landau-de Gennes
theory, symmetry requirements lead to a first-order transition,
with a jump of the nematic-order parameter, at a transition
temperature TNI. A different scenario is observed in the
NEs. Instead of a discontinuity there is a continuous but
quick variation of the order parameter during the transition.
The microscopic mechanism behind this nontrivial behavior
has been discussed by many authors [3–7]. In particular,
continuous three-dimensional coarse-grained theories [6] and
numerical simulations of microscopic models [5] indicate
that quenched random-field interactions may smooth out the
characteristic first-order transition in these systems. In NEs
these random fields are supposed to originate from internal
stresses produced by the network cross-links [8,9]. More
recently, slightly different random-field interactions have been
suggested by Lu et al. to describe network heterogeneity in
randomly cross-linked materials [10].

Random fields may also be relevant to describe the
interesting transition from states of polydomain to states of
monodomain in NEs [11]. If the system is cooled below TNI,
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NEs are known to display a stable structure, the so-called
“Schlieren texture,”characterized by sets of frozen randomly
oriented domains of mesogen units. This polydomain state
may be turned into a monodomain state by stretching the
sample under uniaxial tension. For a certain range of low
temperatures, experiments show an unusual stress-strain curve
with three characteristic regions. In the first region, for small
strain, the system is in the polydomain state, the sample is
opaque, and stress increases linearly with strain, according to
Hooke’s law. In the second region, the stress is constant for a
range of intermediate values of strain, and there is a dramatic
increase of the nematic-order parameter. This plateau is then
followed by an increase of stress at larger strains, with the
system in the optically transparent monodomain state [12–14].
Some authors have suggested that cross-linking conditions
are essential to explain the stable polydomain state [3,11].
In particular, random fields and the neoclassical theory of
elasticity have been used by Fridrikh and Terentjev to obtain
a good fitting of some experimental findings [11].

In this article we propose a lattice statistical model for NEs,
at the mean-field level, which can be analytically solved in the
presence of stress and random fields. This model has the ad-
vantage of providing a simple way to investigate a wide range
of parameters; gives a unified view of the critical behavior of
NEs, in general agreement with previous theoretical [6,11],
numerical [5], and experimental findings [1]; and suggests
the occurrence of some additional phenomena. In Sec. II,
we define the basic lattice model. The global free energy
is obtained in Sec. III. Some specific calculations, including
stress-strain curves, comparisons with the literature, and a few
new predictions are presented in Sec. IV. The main conclusions
are given in the last section.

II. LATTICE MODEL FOR A NEMATIC ELASTOMER

The Maier-Saupe (MS) model, which is known to provide
a good description of the isotropic-nematic transition [15,16],
is the liquid-crystalline analog of the Curie-Weiss model of
ferromagnetism [17]. The idea consists in the extension of the
finite-range interactions of realistic systems to infinite-range
interactions in order to construct a simpler model, whose exact
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solution corresponds to the mean-field approximation of the
realistic system. In the MS model, the basic elements are the
molecular unit vectors ni , representing a set of N mesogens,
which interact via the quadrupole energy

EMS = − A

N

∑
1�i<j�N

∑
μ,ν=x,y,z

S
μν

i S
μν

j , (1)

where A > 0 is an energy constant,

S
μν

i = 1
2

(
3n

μ

i nν
i − δμν

)
, (2)

and |ni | = 1 for i = 1,2, . . . ,N. The calculations may be
further simplified if we adopt a suggestion of Zwanzig and
restrict the number of allowed orientations of ni to the six
values along the Cartesian axes,

ni ∈ {(±1,0,0),(0,±1,0),(0,0,±1)} . (3)

Generalizations of this model, which we call the Maier-Saupe-
Zwanzig (MSZ) model, have been applied to the study of
biaxial and uniaxial ordering in rod-plate mixtures of liquid
crystals [18,19]. In agreement with predictions of the Landau-
de Gennes theory [16], the isotropic-nematic transition is
found to be first order, with a discontinuity in the nematic-order
parameter. In the NE case, Xing et al. have considered similar
Maier-Saupe type interactions adjunct to a microscopic model
to make contact with a macroscopic Landau theory [20].

To model the mechanical and orientational character
of NEs, a number of approaches have been considered
[1,3,5,7,21–23]. We shall assume that elastic properties arise
from an entropic contribution [1]. Thus we consider the
canonical partition function

Z =
∑
{ni }

�({ni},�) exp(−βEMS), (4)

where β = 1/kBT , EMS is the interaction energy of the MSZ
model given by Eq. (1), and the sum is over the configurations
(3) of the microscopic nematic directors ni . The entropic term
� depends on the nematic orientations and on a global lattice
distortion tensor � [1]. If we consider a uniform uniaxial strain
along the direction of a unit vector m and assume sample
incompressibility, the distortion components may be written
as

�αβ = λ−1/2δαβ + (λ − λ−1/2)mαmβ, α,β = x,y,z, (5)

where λ is the distortion factor. According to an extension of
the neoclassical theory of elasticity [1,2] for lattice Hamilto-
nian systems, proposed by Selinger and Ratna [5], we write
the degeneracy as

� = exp(−βFel), (6)

with the elastic free energy

Fel = μ

2

∑
i

Tr
(
l0,i · �T · l−1

i · �
)
, (7)

where μ is the linear shear modulus, l i is a local shape tensor,
and l0,i is the local shape tensor at the time of the cross-linking.
The components of the shape tensors are obtained from the
equation

l−1
i,αβ = l−1

⊥ δαβ + (l−1
‖ − l−1

⊥ )ni,αni,β, (8)

where l⊥ and l‖ are the effective step lengths of the nematic
polymers in the perpendicular and parallel directions with
respect to the nematic vectors. If the cross-linked network is
formed with the sample in a totally disordered isotropic state,
we assume that the shape tensor l−1

0,i is given by an isotropic
average of l−1

i ,

l−1
0,αβ = 1

3 (2l−1
⊥ + l−1

‖ ) δαβ. (9)

Thus we obtain

Fel = μ

2

N∑
i=1

[
(λ2 + 2λ−1) − δ(λ2 − λ−1)

(
3

2
(m · ni)

2 − 1

2

)]

= μN

2

(
λ2+ 2

λ

)
− μδ

3

(
λ2 − 1

λ

) N∑
i=1

∑
μ,ν

MμνS
μν

i , (10)

where we have introduced the tensor

Mμν = 1
2 (3mμmν − δμν) (11)

and the parameter

δ = 2l−1
⊥ − 2l−1

‖
2l−1

⊥ + l−1
‖

, 0 � δ � 1, (12)

with δ = 0 in the isotropic case and δ = 1 in the limit of largest
anisotropy. The first term on the right-hand side of Eq. (10) is
the classical rubber free energy,

frub = μ

2

(
λ2 + 2

λ

)
. (13)

Finally, the partition function may be written

Z =
∑
{ni }

exp (−βEeff) , (14)

with the effective energy

Eeff = − A

N

∑
1�i<j�N

∑
μ,ν=x,y,z

S
μν

i S
μν

j

− 4

9
B

N∑
i=1

∑
μ,ν=x,y,z

MμνS
μν

i + Nfrub, (15)

where we have defined

B = 3

4
μδ

(
λ2 − 1

λ

)
. (16)

Given the entropic origin of the elastic contribution to the free
energy, the linear shear modulus should depend linearly on
temperature,

μ = nskBT , (17)

where ns is the number of strands in the polymer chain per
unit volume [1].

We further assume that the microscopic nematic directors
are subjected to random fields, which originate from the
distribution of local anisotropy axes generated at the time of
cross-linking. These interactions may be represented by the
energy term [8,9,11,21]

Erf = −γ

2

N∑
i=1

∑
μ,ν=x,y,z

H
μν

i S
μν

i , (18)
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with

H
μν

i = 1
2

(
3h

μ

i hν
i − δμν

)
, (19)

where γ is an energy parameter and h
μ

i is the μth component of
the unit vector hi . We assume that {hi} is a set of independent
and identically distributed quenched random variables with
probability distribution

P (h) =
{
c/2, for h = (0,0,±1),

(1 − c)/4, for h = (±1,0,0), (0,±1,0),
(20)

with 0 � c � 1. Let us choose the symmetry axis of the
mesogen units along the z direction. Then the parameter c

is related to the degree of anisotropy of the mesogens attached
to the network cross-links, so that c = 1/3 for samples formed
in the isotropic state and c > 1/3 for samples formed in the
nematic state. Note that we have assumed the shape tensor
l−1

0,i to be fixed as an isotropic average of l−1
i , and we have

chosen to include the network-heterogeneity history in the
random-field interaction only. This choice lends itself to a
simpler calculation, and is in line with previous theoretical
works (see, for instance, Refs. [5] and [11]).

III. CALCULATION OF THE FREE ENERGY

Effects of a fixed external stress σ are taken into account
by means of the partition function

Y ({hi}) =
∫ ∞

0
dλ eNβσλ

∑
{ni }

exp[−β(Eeff + Erf)], (21)

for a given a configuration of random fields. The free-energy
density is given by

f = − 1

β
lim

N→∞
1

N
ln Y = frub − σλ

− 1

β
lim

N→∞
1

N
ln

∑
{ni }

exp(−βE), (22)

where f should be a minimum with respect to λ and

E = − A

2N

∑
μ,ν

(
N∑

i=1

S
μν

i

)2

− 4

9
B

N∑
i=1

∑
μ,ν

MμνS
μν

i

− γ

2

∑
μ,ν

N∑
i=1

H
μν

i S
μν

i , (23)

where we discarded terms of order smaller than N .
Using a set of standard Gaussian integral transformations

[17] we decouple the interactions between different particles,

∑
{ni }

exp(−βE) =
∫

[dQ] exp

(
−NβA

2

∑
μ,ν

Q2
μν

)

×
∏

i

{∑
{n}

exp

[
β

∑
μ,ν

Sμν

(
AQμν

+ 4

9
BMμν + γ

2
H

μν

i

)]}
, (24)

where [dQ] = ∏
μν

√
βAN/2πdQμν . Performing the sum

over the orientations n of a single particle we obtain

f = frub + B

3
− σλ − 1

β
ln 2 − β−1 lim

N→∞
1

N

× ln
∫

[dQ] exp

[
−NβA

2

(∑
μ,ν

Q2
μν + TrQ

)]

× exp

{
N∑

i=1

[
−βγ

4
TrHi + ln

(∑
μ

eμ(hi)

)]}
, (25)

where the second-order tensor Q has components Qμν , and

eμ(hi) = exp

[
β

(
3A

2
Qμμ + 3γ

4
H

μμ

i + Bm2
μ

)]
. (26)

Invoking the law of large numbers, we have

lim
N→∞

1

N

N∑
i=1

{
−βγ

4
TrHi + ln

(∑
μ

eμ(hi)

)}

= −βγ

4
〈TrH〉h +

〈
ln

(∑
μ

eμ(h)

)〉
h

, (27)

where 〈· · ·〉h denotes the expectation value with respect to the
random-field variables, from which we see that the free energy
is self-averaging. Carrying out the integration using Laplace’s
method we arrive at

f = frub + B

3
− σλ − 1

β
ln 2 − β−1 max L(Qμν), (28)

where Qμν maximizes the functional

L = −βA

2
(TrQ2 + TrQ) +

〈
ln

(∑
μ

eμ

)〉
h

. (29)

The condition for L to be stationary with respect to Qμν

leads to the equations of state for the order parameters

Qμν = 1

2

(
3

〈
eμ∑
α eα

〉
h

− 1

)
δμν. (30)

Notice that TrQ = 0. The condition for the free energy to be
stationary with respect to λ leads to the equation of state for
the distortion,

λ = 1

λ2
+ σ

μ
+ δ

2

(
2λ + 1

λ2

)∑
μ

m2
μQμμ, (31)

where we have used Eq. (30). Using these equations of state
we may rewrite the free-energy density as

f = frub + B

3
− σλ − 1

β
ln 2 + A

2
TrQ2 − 1

β

〈
ln

(∑
μ

eμ

)〉
h

.

(32)

To make a closer contact with experiments on liquid
crystals, we use the standard diagonal parametric form of the
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FIG. 1. Order parameter S and free-energy density f (upper
curve) as a function of temperature for γ = 0 and applied stress
σ = 0.02.

traceless matrix Q appropriate for the nematic ordering along
the z direction,

Q =

⎛
⎜⎜⎜⎝

−S + η

2
0 0

0 −S − η

2
0

0 0 S

⎞
⎟⎟⎟⎠ . (33)

The nematic-order parameters S and η characterize the
isotropic phase (S = η = 0), the uniaxial nematic phase (S 
=
0, η = 0), and the biaxial nematic phase (S 
= 0, η 
= 0). From
the equation of state (30) we find

S = 3

2

〈
ez∑
μ eμ

〉
h

− 1

2
(34)

and

η = 3

2

〈
ey − ex∑

μ eμ

〉
h

. (35)

The simplest version of the MSZ model defined by Eqs. (1)–
(3) lacks the proper symmetry to describe a stable nematic
biaxial phase. To check if this behavior is robust after including
elasticity and random fields, we have considered the case

where the strain direction is perpendicular to the chosen axis of
symmetry of the order parameter. In fact, there has been a lot
of debate in the literature about the soft (or semisoft) response
of NEs being related to the onset of biaxial behavior [1,24–26].
While the description of such phenomena is beyond the scope
of this paper, we emphasize that a numerical inspection of the
equations of state have led us to conclude that biaxial symmetry
remains absent for a large range of parameters. Hence we shall
take η = 0 and consider the strain direction parallel to the z

axis, m = (0,0,1). This is a reasonable assumption since the
coupling between elastic and orientational degrees of freedom
provides an easy axis of symmetry for this system. Thus the
free-energy density (32) becomes

f = frub + 1

3
B − σλ − 1

β
ln 2 + 3A

4
S2 − 1

β

〈
ln

(∑
μ

eμ

)〉
h

,

(36)

where

eμ(h) = exp
{
β
[− 3

4AS + 3
8γ

(
3h2

μ − 1
)]}

, μ = x,y,

(37)

ez(h) = exp
{
β
[

3
2AS + 3

8γ
(
3h2

z − 1
) + B

]}
, (38)

and the equation of state for distortion (31) takes the form

λ = 1

λ2
+ σ

μ
+ δ

2

(
2λ + 1

λ2

)
S. (39)

The results obtained thus far are valid for arbitrary random-
field distributions. Henceforth we limit ourselves to the
discrete distribution (20). In this case the free-energy density
(36) is given by

f = frub + 1

3
B − σλ − 1

β
ln 2 + 3

4
AS(S + 1)

− 1

β
{c ln[2 + eβ(9AS/4+9γ /8+B)]

+ (1 − c) ln[1 + e9βγ/8 + eβ(9AS/4+B)]}, (40)
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FIG. 2. Nematic order parameter (a) and distortion factor (b) as a function of temperature, for γ = 0 and various applied stresses σ .
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FIG. 3. Nematic-order parameter as a function of temperature for σ = 0. (a) γ = 0.2 and various values of c. (b) c = 0.4 and various values
of γ .

where we have dropped an additive constant 3γ /8. The
equation of state for the order parameter (34) becomes

S = 3

2

[
c eβ(9AS/4+9γ /8+B)

2 + eβ(9AS/4+9γ /8+B)

+ (1 − c)eβ(9AS/4+B)

1 + e9βγ/8 + eβ(9AS/4+B)

]
− 1

2
. (41)

IV. THERMODYNAMIC RESULTS

Without loss of generality, we assume ns = 1 and δ = 0.5,
since other choices lead to qualitatively similar results. Let
us write down the equations in terms of which we performed
numerical calculations. We express the energies in units of A

and the temperature in units of kB/A. The free-energy density
(40) is given explicitly as

f = −σλ + 3
4S(S + 1) + T

{
1
8 (5λ2 + 7λ−1) − ln 2

− c ln[2 + e9(2S+γ )/8T +3(λ2−λ−1)/8]

− (1 − c) ln[1 + e9γ /8T + e9S/4T +3(λ2−λ−1)/8]
}
. (42)

The equation of state for the order parameter (41) takes the
form

S = 3

2

[
c e9(2S+γ )/8T +3(λ2−λ−1)/8

2 + e9(2S+γ )/8T +3(λ2−λ−1)/8

+ (1 − c)e9S/4T +3(λ2−λ−1)/8

1 + e9γ /8T + e9S/4T +3(λ2−λ−1)/8

]
− 1

2
, (43)

and the equation of state for the distortion (39) gives

λ = 1

λ2
+ σ

T
+ 1

4

(
2λ + 1

λ2

)
S. (44)

In the absence of applied stress (σ = 0), the equation of
state (44) can easily be solved for the distortion with the result

λ =
(

1 + S/4

1 − S/2

) 1
3

. (45)

The distortion increases monotonically with S, for 0 < S < 1.
In addition, S = 0 implies λ = 1, indicating that the strain

is driven by the orientational ordering only. For an arbitrary
applied stress (σ � 0) the equation of state (44) is a cubic
equation in λ with only one real and positive root given by the
formula

λ= 2σ

3(2 − S)T

×
{

1+ 2 cosh

[
1

3
cosh−1

(
1+ 27(2−S)2(4 + S)T 3

32σ 3

)]}
,

(46)

which is a monotonically increasing function of S.
In our numerical calculations we solved Eq. (43) for the

order parameter S using for λ the result given by Eq. (46).

A. Results in the absence of disorder (γ = 0)

In Fig. 1 we plot the order parameter S and the free-energy
density f (upper curve) as a function of temperature for applied
stress σ = 0.02 in the temperature range where a first-order
transition takes place. The low-temperature stable solution abc

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

c

γ

FIG. 4. The curve for σ = 0 above and to the right of which there
is no first-order transition. The vertical dotted line corresponds to
c = 1/3.
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FIG. 5. Distortion factor λ as a function of temperature for σ = 0,
c = 1/3, and γ between 0 and 1.

with larger order parameter S is called the nematic solution,
whereas the high temperature solution dbe with smaller order
parameter is referred to as an isotropic solution, even though
S no longer vanishes as in the case of zero applied stress. The
branch cd corresponds to an unstable solution. In the narrow
temperature interval Td < T < Tc both the nematic and the
isotropic solutions are stable, and we have to choose the one
with smaller free energy. The first-order transition between
nematic and isotropic phases occurs at the temperature TNI =
Tb where the free energies become equal. We observe that,
in agreement with classical elasticity theory, the free energy
changes linearly with temperature in the isotropic phase [1].

In Fig. 2 we plot (a) the nematic-order parameter S and
(b) the distortion factor λ as a function of temperature for
several values of the applied stress σ . As expected from
Eq. (46), the graph of λ follows closely that of S. For small
applied stress σ the system undergoes a first-order transition
with a gap between the nematic and isotropic solutions. As
the aligning stress σ increases, the gap decreases until the
critical point is reached, beyond which there is no phase
transition. This behavior has been predicted by de Gennes
in the mid-seventies [27] before NEs were proven to be
chemically feasible. Experimentally, however, no first-order
transition is observed down to the limit of zero applied stress.
The jump in the first-order transition is smoothed out, being
replaced by a continuous but quick variation of the order

parameter. This fact has been interpreted theoretically as being
due to the anisotropic distribution of random fields [5,6].

B. Effects of disorder (γ > 0)

Let us examine how the random fields affect the nematic-
isotropic transition. In Fig. 3(a) we show the nematic-order
parameter as a function of temperature for σ = 0, γ = 0.2,
and several values of c. We observe that the gap between the
nematic and isotropic solutions decreases as c increases from
c = 1/3 to c = 0.422, disappearing above this value of c. In
Fig. 3(b) the nematic-order parameter is shown as a function
of temperature for c = 0.44 and several values of γ . Again,
the gap between the nematic and isotropic solutions decreases
as γ increases from γ = 0 to γ = 0.263, and the transition
disappears above this value of γ .

These results show that anisotropic (c > 1/3) distribution
of the random fields of sufficient strength (γ > 0) is necessary
to smooth out the isotropic-nematic transition, in agreement
with the numerical simulations of Selinger and Ratna [5].
Figure 4 shows, for zero applied stress (σ = 0), the curve
in the γ -c plane above and to the right of which there is no
first-order transition.

C. Results for an isotropic disorder (c = 1/3, γ > 0)

We recall that an isotropic distribution of random fields
c = 1/3 represents samples formed in the isotropic state, with
the random stresses coming from the cross-linked network
without preferred direction. According to Fig. 4, in this case
a first-order transition occurs in zero applied stress (σ = 0)
for any value of the random-field strength γ . To illustrate this
fact, we plot in Fig. 5 the distortion factor λ as a function
of temperature in the absence of external stress (σ = 0) for
several values of the disorder parameter γ . The nematic phase
decreases with increasing γ , but the first-order transition
persists showing no evidence of the experimentally observed
smoothed out nematic-isotropic transition in samples formed
in the nematic state.

In the presence of the applied stress (σ > 0), the first-order
transition is smoothed out by a sufficiently large temperature
or disorder strength. This can be seen in the stress-strain
curves, where the strain e is related to the distortion by
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FIG. 6. Stress-strain curves for c = 1/3. (a) Isotherms for γ = 0.6. (b) Iso-γ curves for T = 0.8.
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FIG. 7. Stress-strain curves for T = 0.95. (a) γ = 0.45 and c =
0.35. (b) γ = 0 and c = 1/3.

the equation λ = 1 + e. In Fig. 6(a) we plot isotherms for
γ = 0.6 and in Fig. 6(b) we plot iso-γ curves for T = 0.8.
It is clear from these figures that the temperature and the
disorder strength have similar effects on the system. For
sufficiently low temperature (T < Tc) or disorder strength
(γ < γc), the stress grows monotonically with strain in the
isotropic phase up to the first-order transition to the nematic
phase. At the transition the two phases coexist and the strain
is independent of stress. The stress-strain “plateau” is then
followed by a stress growth at larger strains. This behavior
agrees with the experimental scenario of a typical transition
between polydomains and a monodomain in NEs. However, we
note that our simple mean-field calculations cannot distinguish
the polydomain state from the isotropic state. Although we
opted for the polydomain-monodomain interpretation for the
transition, the stress-induced NI transition is also a possible
alternative interpretation. As the temperature or the disorder
strength increases, the coexistence curve shrinks until the
critical point is reached at T = Tc or γ = γc. The whole
phase diagram resembles a typical P -V diagram of simple
fluids.

V. DISCUSSION

Recent experiments have shown that NEs cross-linked
in the isotropic state display a well-defined plateau at the

stress-strain curve, for substantially lower critical stresses, in
comparison with NEs cross-linked in the nematic state [28].
Optical microscopy observations suggest this behavior should
be attributed to larger memory effects for NEs formed in the
nematic state. We may then expect that γ is not independent,
but should increase with c, according to the language of our
model. Now it is not difficult to find appropriate values of γ

and c satisfying this restriction, and in general agreement with
the experimental results. We show in Fig. 7 two stress-strain
curves for T = 0.95. For curve (a), we consider samples
cross-linked in the isotropic state (c = 1/3), which implies no
memory effect (γ = 0). In this case, the stress-strain curve
presents a well-defined plateau for low critical stress. For
curve (b), we consider samples cross-linked in the nematic
state (c = 0.35), which should imply strong memory effects
(γ = 0.45). Note that the stress-strain curve characterizes a
broad polydomain-monodomain transition for higher critical
stress, in good agreement with the experimental results by
Urayama et al. [28].

In conclusion, we have introduced a simple mean-field
lattice model to describe the behavior of NEs. This model
combines the MSZ theory of liquid crystals [15,18,19] and the
lattice version, due to Selinger and Ratna [5], of the Warner-
Terentjev theory of elasticity [1]. We performed detailed
calculations for a large range of parameters, with the inclusion
of the effects of a quenched distribution of random fields. A
stress-strain coexistence curve may be obtained for systems
cooled below a freezing temperature, which is analogous
to the P -V diagram of a simple fluid, with the disorder
strength playing the role of temperature. Below a critical
stress, the characteristic tie lines resemble the experimental
stress-strain plateau and may be interpreted as signatures of a
polydomain-monodomain transition. In the monodomain case,
we show that random-field disorder may soften the first-order
transition between nematic and isotropic phases, provided
the samples are formed in the nematic state. Beyond general
agreement with some previous findings, we hope our results
may motivate further experimental work on the stress-strain
coexistence curve of NEs.
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