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Classical van der Waals interactions between spherical bodies of dipolar fluid
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The van der Waals interaction free energy Aint between two spherical bodies of Stockmayer fluid across a
vacuum is calculated using molecular simulations and classical perturbation theory. The results are decomposed
into their electrostatic and Lennard-Jones parts, and the former is shown to agree excellently with predictions from
dielectric continuum theory. Aint is decomposed into its energetic and entropic contributions and the results are
compared with analytical predictions. Finally, we expand the electrostatic part of Aint in a multipole expansion,
and show that the surprisingly good agreement between the molecular and continuum descriptions is likely due to
a cancellation of errors coming from the neglect of the discrete nature of the fluid within the dielectric description.
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I. INTRODUCTION

The understanding of van der Waals (vdW) forces between
macroscopic bodies is a long-standing issue in colloidal
science, due both to the fundamental interest and the many
applications of these interactions [1–3]. The traditional
treatments of vdW interactions, most notably that due to
Lifshitz and coworkers [4], treat the quantum-mechanical
(dispersion) and classical (permanent dipole) contributions to
the total interaction free energy on equal grounds. Within
Lifshitz’ approach, the total interaction is calculated from
the frequency-dependent relative permittivity ε(iξ ) of the
interacting materials, thus taking into account both classical
and quantum-mechanical contributions to the interaction free
energy. It is, however, possible to obtain expressions for the
interaction between purely classical bodies by taking the
appropriate limits of the Lifshitz expression, leading to an
interaction free energy that depends solely on the static relative
permittivity ε(0) [5–8].

The interaction between bodies composed of permanent
dipoles, which corresponds to the classical limit of Lifshitz
theory, has not, however, been extensively studied in the past.
In the 1980s, the force between planar dielectric surfaces
with adsorbed dipoles was calculated using perturbation
theory, integral equation theory, and Monte Carlo (MC)
simulations [9–12]. In a recent study [8], expressions for
the interaction between spherical bodies of classical dipoles,
described through their static relative permittivity ε(0), were
derived within the framework of dielectric continuum theory.
In the present contribution, we will calculate the interaction
free energy across a vacuum between two spherical bodies
of a simple dipolar model fluid using a combined MC and
perturbation theory approach. The results will be compared
with analytical predictions as well as decomposed into its
energetic and entropic contributions. The analysis is restricted
to the classical (zero-frequency) regime of the vdW interaction.
However, dispersion forces are included in a semi-empirical
way through generic Lennard-Jones interactions.
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II. CLASSICAL PERTURBATION THEORY

As a basis for our analysis, we will consider two subsystems
labeled 1 and 2, each containing N particles. The configuration
integral Z12 for the combined system is given by

Z12 =
∫
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where β = (kT )−1 is the inverse thermal energy and x(n)
i

represents all degrees of freedom of the ith particle (i,j ∈
{1, . . . ,N}) in subsystem n. Following the classical exposition
by Zwanzig [13], we now decompose the total interaction
potential V ({x(1)
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j }) into three parts describing the internal

couplings V11 and V22 within the two subsystems and the
interaction V12 between them, i.e.,
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At infinite separation between the subsystems, V12 = 0 and
the configuration integral simply reduces to the product of
the configuration integrals of the uncoupled subsystems, i.e.,
Z12 = Z1Z2. The use of this fact, together with Eqs. (1) and
(2) and some fundamental statistical-mechanical concepts,
enables us to express the free energy of interaction Aint between
the two subsystems as [13,14]

βAint = − ln
Z12

Z1Z2
= − ln〈exp [−βV12]〉0, (3)

where the subscript 0 denotes an average evaluated over the
uncoupled subsystem configurations. Equation (3) is strictly
exact, although useful in practice only when the overlap
between the configuration spaces of the coupled and uncoupled
systems is not too small. For sufficiently small values of
|β〈V12〉|, we may also express Eq. (3) as a power series in
β, according to
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where we have put in explicit expressions for the two first
expansion coefficients ωn. It should be noted that for interac-
tions involving dipolar particles, 〈V12〉0 = 0 by symmetry, and
thus the right-hand side of Eq. (4) represents the leading-order
contribution to Aint.

For a pairwise additive intermolecular potential v, V12 is
simply given by

V12
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and can easily be evaluated from, for example, computer
simulations. Alternatively, one may use the approach taken
in Ref. [8] and express the electrostatic part V

(el)
12 of V12 as a

double multipole expansion of the electrostatic potentials of
the two subsystems. Thus, Eq. (5) is replaced by
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where Q(n)
� denotes the 2�-pole tensor of subsystem n, and the

� = 0 terms vanish for subsystems of zero net charge. One
obvious advantage of using the expansion of Eq. (6) rather
than Eq. (5) for calculating V12 from a computer simulation
is that the former approach only uses a single loop over the
N particles to calculate each Q�, whereas the latter requires a
double loop, leading to an O(N2) rather than an O(N ) scaling
behavior. This reasoning, however, only holds for separations
between the subsystems where Eq. (6) converges reasonably
fast.

III. MODEL AND METHODS

In the present study, we take as our subsystems two
equally sized spherical bodies, each composed of N = 10 000
particles. The particles are confined by a hard cavity wall of
radius Rconf = 40.018 Å acting on the particle centers. The
intermolecular potential is a so-called Stockmayer potential,
composed of a Lennard-Jones (LJ) and a dipolar part, accord-
ing to

v(xi ,xj ) = vLJ + vdip, (7)

with

vLJ(rij ) = 4εLJ
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and
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In the above equations, μi represents the dipole of particle i, rij

is the vector pointing from particle i to particle j , rij = |rij |,
and εLJ and σLJ are the LJ parameters [15].

The thermodynamic properties of the unperturbed subsys-
tems were determined by performing an MC simulation of
one subsystem, saving a subset of the particle positions and
orientations to disk. From this set, subsystem configuration
pairs were chosen at random and mutually translated to a

given separation. The electrostatic part A
(el)
int of the interaction

free energy was then sampled as a function of the separation
between the subsystems using (i) the exact expression of
Eq. (3) with V12 given by Eqs. (5) and (9), (ii) the leading-order
perturbation expression of Eq. (4) using the same expression
for V12, and (iii) Eq. (3) together with the multipole expansion
of Eq. (6) to describe V12 using three different truncations
�max. In addition to this, the LJ part A

(LJ)
int of the interaction

free energy was sampled using Eq. (3) together with the pair
potential from Eq. (8). The direct interaction energy Uint was
also sampled for both the LJ and the electrostatic parts of the
pair potential using standard Boltzmann-weighted averages,
i.e.,
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where V
(s)

12 represents the value of V12 in configuration s and the
sums run over all sampled configurations. For all separations
considered, A

(el)
int and A

(LJ)
int were checked to be essentially

(within ∼5%) uncorrelated with each other, meaning that the
total interaction free energy merely equals the sum of the two
contributions. Further information about the model system and
calculations is given in the Appendix.

In order to map the results obtained using our molecular
model onto the dielectric continuum model of Ref. [8],
reasonable values of the dielectric radius a and static relative
permittivity ε have to be defined within the framework of
the molecular model. However, since the properties calculated
from the dielectric model are largely independent of ε for
high-dielectric media, we chose to use the approximative value
ε = 80 throughout, leaving the dielectric radius a as the only
fitting parameter. In accordance with what has been observed
before [16], a = Rconf + δ, where δ is on the order of half
a molecular radius, due to the possibility of the particles to
slightly protrude beyond the confining surface, since this acts
on the particle centers. A schematic picture of the molecular
model system is given in Fig. 1.

IV. RESULTS AND DISCUSSION

In Fig. 2(a), the electrostatic part A(el)
int of the interaction free

energy is shown, obtained using the exact and perturbation
approaches described above. The optimum value of the fitting
parameter was found to be δ = 0.73 Å. From this figure, we
observe that (i) the results obtained using the exact expression
Eq. (3) show an excellent agreement with the dielectric
continuum results, although there is a small discrepancy at
the shortest separations considered, and (ii) the leading-order
perturbation results Eq. (4) exhibit a good agreement with
the exact ones for D/a � 0.1, below which the perturbation
results start to underestimate A

(el)
int . The first observation

indicates that the molecular model system is accurately
described by a dielectric continuum approximation down to
very small separations; the smallest separations considered
here correspond to a minimum particle-particle separation of
about 2.2 Å, which is less than one LJ diameter. Observation
(ii) is in agreement with the fact that the perturbation
expansion of Eq. (4) is no longer accurate for large values of
|βAint|.
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FIG. 1. Schematic picture of the molecular system, together with definitions of relevant parameters.

Figure 2(b) shows results obtained using the multipole
expansion of Eq. (6) with truncations of �max = 1,2, and 3,
using the value of δ (0.73 Å) obtained from the fitting
in Fig. 2(a). Clearly, when including contributions up to
the octupole-octupole interaction, the multipole expansion
Eq. (6) grossly underestimates A

(el)
int for all but the largest

separations considered. In other words, the description of a
body composed of molecular dipoles through its fluctuating
multipole moments yields a slowly converging sum, and A

(el)
int

is underestimated by more than an order of magnitude at
small separations when including multipole moments with
� � 3. Furthermore, the agreement between the molecular and
continuum models is still satisfactory, but there is a slight
overestimation of A

(el)
int in the dielectric model for �max = 2

and 3. As a further indication of the slow convergence speed of
Eq. (6), within the dielectric continuum formalism, truncation
values of �max = 500 and 50 were needed to reach converged
values (within ∼6 × 10−4kT ) of A

(el)
int for D/a = 0.01 and

0.1, respectively. [8] An interesting analogy can be drawn to

the dispersion interaction between two quantum-mechanical
polarizable bodies, such as two noble gas atoms. In this
case, the interaction is often approximated using only dipole
polarizabilities, and including multipole polarizabilities with
� � 4 usually gives a quantitatively accurate description of
the interaction [17]. Thus, there is a tremendously quicker
convergence of the multipole expansion in the quantum-
mechanical case, due to the large excitation energies involved
in creating higher-moment fluctuations. In the case of classical
polarizabilites, however, all fluctuations are, by definition,
assumed to be thermally excited, and thus high-� fluctuations
also contribute significantly to the interaction (free) energy.

The total value and the attractive part (i.e. only the r−6

term) of A
(LJ)
int are presented in Fig. 3. Since the LJ potential is

a way of representing the dispersion and short-range repulsion
interactions in a semi-empirical manner, it is not feasible
to try to map the LJ results onto any analytical theory
(e.g. Lifshitz theory) obtained from fundamental principles.
However, we note that the total LJ interaction is about an
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FIG. 2. (Color online) The electrostatic part A
(el)
int of the interaction free energy, calculated using (a) Eq. (3) (black symbols) and Eq. (4)

(red symbols), and (b) Eq. (6) using three values of the truncation �max. The solid curves represent dielectric continuum results [8], and the
dotted vertical lines indicate where D + 2δ = σLJ, corresponding to the separation where particles in different bodies may start to overlap.
In all cases, δ = 0.73 Å and ε = 80 were used for the fittings to the dielectric continuum results. The error bars represent one standard
deviation.
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FIG. 3. (Color online) The total (black) and attractive (red) parts
of A

(LJ)
int , calculated using Eq. (3). The dashed line represents the

dielectric continuum results for the electrostatic interaction [black
solid line in Fig. 2(a)], and the dotted black line as in Fig. 2. The error
bars represent one standard deviation.

order of magnitude stronger than the electrostatic part of the
interaction free energy, which should be compared with the
“internal” couplings (corresponding to 〈V11〉0 and 〈V22〉0 in
the present notation) where the magnitude of the electrostatic
energy is about 20% larger than the LJ energy (−4.25 × 104

and −3.58 × 104kT , respectively). The strong dominance
of the LJ interactions is, however, in qualitative agreement
with the fact that dispersion interactions usually dominate
the vdW interaction between bodies across vacuum or air
[3]. With that said, it should also be mentioned that the LJ
model cannot be expected to accurately account for dispersion
interactions between real bodies, since these are indeed not
pairwise additive. We also note that the attractive r−6 part and
the total LJ interaction are identical down to separations of
D/a ∼ 0.05, where the short-range r−12 repulsion starts to
set in.

In order to study the energetic and entropic contributions to
Aint, the ratio Aint/Uint was calculated for the electrostatic
and LJ contributions to the interaction. The results are
shown in Fig. 4. Examining the results for the electrostatic
interaction, there seems to be a systematic overestimation of
Aint/Uint in the dielectric continuum model as compared to
the molecular description, which is a discrepancy that seems
to increase as the separation decreases. Thus, the relative
entropic penalty of correlating the polarization fluctuations
of the two bodies is higher in the molecular system than what
is predicted by dielectric theory. This can be explained by the
molecular graininess and discreteness present in the molecular
description, which requires a stronger correlation between the
bodies to find the optimal configurations, thus leading to a
larger entropic penalty than in the continuum description. It
should also be noted that the dielectric continuum result is
close (within ∼0.5%) to the classical linear response result
Aint/Uint = 1/2 [8]. For the LJ contribution, Aint/Uint ≈ 1 at
large separations, which is a consequence of the fact that the
LJ potential, unlike the electrostatic interaction, is isotropic
on length scales where the molecular graininess is negligible,
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FIG. 4. (Color online) The ratio Aint/Uint for the electrostatic
(black symbols) and LJ (red symbols) parts of the interaction. The
solid black line gives analytical dielectric continuum results [8], the
dotted red line shows Aint/Uint = 1, and the dotted black line as in
Fig. 2. The error bars represent one standard deviation.

since there is no angular dependence in the intermolecular
potential. Thus, the orientations of the two bodies remain
uncorrelated, and there is no entropic penalty involved in the
interaction. At shorter separations, however, the nonuniform
density of the two bodies becomes apparent, and they start
to somewhat correlate their orientations in order to find the
optimal configurations, just as in the case of the electrostatic
interaction. The reason that the effects of discreteness seem to
set in earlier (i.e., for larger separations) for the electrostatic
interaction than for the LJ interaction is that the former, on
the molecular level, decays as r−3 for short and r−6 for long
separations, whereas the LJ potential decays as r−6 at all
separations.

V. CONCLUSIONS

In the present contribution, we have presented results from
an investigation of the vdW interaction between two spherical
bodies of Stockmayer fluid using Monte Carlo simulations and
statistical-mechanical perturbation theory. The main finding
is that the electrostatic part of the free energy of interaction
between the two bodies shows excellent agreement with
dielectric continuum results. Furthermore, the Lennard-Jones
part of Aint was shown to be about one order of magnitude
larger than the electrostatic interaction. Finally, we noted
that dielectric continuum theory slightly underestimates the
entropic penalty associated with correlating the electrostatic
fluctuations of the two bodies, as compared to the molecular
system.

Although the agreement between simulation data and
dielectric continuum theory is in general good, and in many
cases excellent, it is interesting to analyze the nature of the
discrepancies that do exist. One puzzling fact is the excellent
agreement between theory and simulation when calculating the
exact values of A

(el)
int [Fig. 2(a)], an agreement that holds down

to separations of molecular dimensions. On the other hand,
the dielectric continuum model seems to overestimate A

(el)
int
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obtained from the multipole expansion approach [Fig. 2(b)],
an overestimation that increases with increasing values of
the truncation �max, at least for �max � 3. This increasing
difficulty of the molecular system to fully (compared to the
dielectric case) develop electrostatic fluctuations of increasing
order � is in accordance with what has been observed before
for subvolumes inside a bulk fluid, in those cases for � � 4
[16,18]. However, the lack of interaction energy for low
values of � clearly has to be compensated by “super-dielectric”
contributions from higher terms in the multipole expansion in
order to be consistent with the good agreement between theory
and simulation for the exact calculation of A

(el)
int . This can be

explained by the fact that for small separations, A(el)
int is strongly

dominated by interactions between a few particles that are very
close to each other, rather than by the collective multipole
moments of the whole bodies. These interactions correspond
to terms of very high order in the multipole expansion, which
thus compensate for the subdielectric contributions from terms
of low and intermediate values of �. This means that the
good correspondence between the total interaction obtained
from the molecular and continuum models is partly due to the
cancellation of two different errors coming from the inability of
dielectric continuum theory to take into account the particulate
nature of the molecular fluid. This is also the reason behind
the underestimation of the entropic penalty for correlating
the fluctuations of the two bodies present in the dielectric
continuum theory.

It should be mentioned that the confining hard-wall poten-
tial used here was chosen due to its technical convenience
rather than on physical grounds. Indeed, for the smallest
separations considered, we would expect considerable devi-
ations from spherical geometry, which can strongly affect
the magnitude of the vdW interactions [19]. One obvious
improvement, if one wants to describe a “real” droplet, would
be to instead simulate a spontaneously condensed droplet of
dipolar particles, which would then be in equilibrium with its
own vapor. This approach would clearly lead to the possibility
of larger shape fluctuations, however, leading to further
difficulties in defining the sizes of and separation between the
bodies. Furthermore, this would lead to problems when trying
to map the results onto dielectric continuum results, which
was one of the main objects of this study, since the continuum

results were obtained using an idealized spherical geometry.
With that said, we still believe that the present choice of con-
fining boundary conditions gives a qualitatively correct picture
of the fluctuation interaction between two real fluid bodies.
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APPENDIX: MODEL AND CALCULATION DETAILS

For the model system, the LJ parameters σLJ = 2.8863 Å
and εLJ = 1.970 23 kJ mol−1 were used, together with the
dipole moment μ = 0.343 97e Å (corresponding to 0.65
atomic units). The temperature was kept constant at T =
315.8 K. In reduced units, the system was characterized
by the quantities μ∗ ≡ μ/(4πε0εLJσ

3
LJ)

1/2 = 1.863 and T ∗ ≡
kT /εLJ = 1.333. The specifications of the model system are
identical to those employed in Ref. [16].

The MC simulations were carried out in the canonical
(constant N,V,T ) ensemble employing the molecular sim-
ulation package MOLSIM [20] with translational and rotational
displacement parameters of 0.7 Å and 25 degrees, respec-
tively. The simulation extended over 2 × 106 MC steps, each
involving one trial move per particle. Particle positions and
orientations were saved every 1000 MC steps, yielding 2 × 103

saved configurations in total. All interparticle interactions were
considered explicitly within the cavity, without applying any
long-range correction.

Interaction energies and free energies were calculated
using a Fortran 90 computer code. For each separation,
105 configuration pairs were chosen randomly. For each
configuration pair, ten random mutual orientations of the two
spheres were created, and the relevant thermodynamic param-
eters were sampled. The multipole tensors Q� (1 � � � 3)
were calculated with respect to the center of each spherical
subsystem using the approach described in the appendix of
Ref. [18]. Statistical uncertainties were estimated by subdivid-
ing the calculations into ten equally sized blocks.
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