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Heat-flow properties of systems with alternate masses or alternate on-site potentials
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We address a central issue of phononics: the search of properties or mechanisms to manage the heat flow in
reliable materials. We analytically study standard and simple systems modeling the heat flow in solids, namely,
the harmonic, self-consistent harmonic and also anharmonic chains of oscillators, and we show an interesting
insulating effect: While in the homogeneous models the heat flow decays as the inverse of the particle mass, in
the chain with alternate masses it decays as the inverse of the square of the mass difference, that is, it decays
essentially as the mass ratio (between the smaller and the larger one) for a large mass difference. A similar
effect holds if we alternate on-site potentials instead of particle masses. The existence of such behavior in these
different systems, including anharmonic models, indicates that it is a ubiquitous phenomenon with applications
in the heat flow control.
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I. INTRODUCTION

The understanding of the macroscopic laws of thermo-
dynamic transport starting from the underlying microscopic
models is still a challenge in physics. In particular, the
microscopic study of energy transport, which mainly involves
conduction of heat or electricity, is of great theoretical and
practical interest. In the one hand, the advances in modern
electronics (which stands for the study of electric charge
currents) are well known, but on the other hand, its thermal
counterpart, the phononics, i.e. the study of information
processing and control of heat flow by phonons, is much
less developed. However, due to several recently proposed
devices designed to manage the heat flow, such as thermal
rectifiers [1–3], thermal transistors [4], thermal logic gates [5],
etc., phononics has attracted increasing attention [6].

One of the most fundamental components of these devices
of phononics is the thermal rectifier or diode, a structure in
which the heat flows preferably in one direction. The first
diode has been proposed by Terraneo et al. [1], and since then
the phenomenon of thermal rectification has been intensively
investigated, mostly by numerical simulations [6–8]. The most
common and recurrent design of thermal diode is given by the
sequential coupling of two or three different segments with
different anharmonic potentials. Although frequently studied,
such structure is criticized [3] due to the significant decay of
the rectification factor with the system size, and mainly due to
the difficulty to be constructed in practice. Thus, the search of
a experimentally feasible diode and other devices to manage
the heat flow has become an important problem in phononics,
with many works dedicated to the theme [9,10]: in particular,
the use of graded materials has deserved attention [7,11,12].

The present paper is also devoted to this central issue
of phononics: the investigation of the heat flow control by
searching for nontrivial thermal properties of reliable systems
[11,13,14], i.e., of systems that may be built in practice. We
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perform here a detailed analysis of some harmonic chains of
oscillators, where precise analytic computations are possible,
as well as of certain anharmonic chains - where more usual
features may be seen, such as the normal conductivity and
rectification in asymmetric systems. We recall that, since
Debye, the standard microscopic models used to describe the
heat conduction in solids are mainly given by lattice systems
of oscillators. We show an “insulating” effect due to the
presence of alternate masses. That is, for these harmonic and
anharmonic chains of oscillators, we show that while in the
homogeneous system the heat flow decays as the inverse of
the particle mass, in the alternate mass chain it decays as
the inverse of the square of the mass difference, i.e., it decays
essentially as the mass ratio (between the smaller and the larger
one) for a large mass difference. Precisely, if in the alternate
mass chain we decrease one of the masses as m1 ∼ ε (ε small)
and increase the other one as m2 ∼ 1/ε, then the heat flow F
decays as F ∼ ε2. But, in the case of a homogeneous system
(with identical masses), by increasing the mass as m ∼ 1/ε,
we have F ∼ ε. In short, our analytical study indicates that
in order to make smaller the heat flow in a system, it is more
efficient to take alternate masses, increase one and, at the same
rate, decrease the other than simply increase the masses of the
particles in a homogeneous chain. Similar effects hold if we fix
the particle masses but change the on-site potentials (details
ahead).

In order to justify the analytic investigation of simple
systems, we quote Ruelle [15]: a “detailed analysis of simple
models can introduce a new degree of understanding” in
the study of the heat flow. Moreover, properties found in simple
(say, naked) models may be ubiquitous, since they do not
depend on specific and intricate interactions.

The rest of the paper is organized as follows. In Sec. II,
we extend the results of a previous work [16] and derive
an exact expression for the heat flow of a harmonic chain
with alternate masses. By using such expression, we present
the effect and offer an explanation. We also (briefly) review
the result for the self-consistent harmonic chain. In Sec. III,
we describe a previously developed method aiming to study the
heat conduction in some anharmonic models [12], and derive
the expression for the thermal conductivity of a self-consistent
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anharmonic chain with alternate masses in order to show the
existence of the effect also in these more intricate systems.
Section IV is devoted to the final remarks.

II. HARMONIC MODELS

Now we describe the heat flow in some harmonic models,
where rigorous computations are possible and the mechanisms
underlying the behavior of the heat flow in the presence of
alternate masses are transparent. For clearness, we repeat some
results already described in previous works [16,17].

First we consider a chain of oscillators with nearest
neighbor interactions and thermal baths on the boundaries.
Recall that as the system is fully harmonic, it does not obey
the Fourier’s law of heat conduction. The exact expression for
the heat flow in the case of a homogeneous system (all the
particles with the same mass) has been obtained a long time
ago, in the seminal paper of Rieder, Lebowitz and Lieb [18].
Now, for the case of alternate masses, we follow the rigorous
approach proposed by Casher and Lebowitz [19], and extend
the analysis presented in Ref. [16] in order to obtain an exact
expression for the heat flow.

Now we introduce the model and derive the results. We take
a system of N oscillators (particles) with Hamiltonian

H (q,p) =
N∑

j=1

1

2

⎛
⎝ p2

j

mj

+ Mjq
2
j +

N∑
l �=j=1

qlJlj qj

⎞
⎠ , (1)

where mj , qj are the mass and position of the j -th particle;
pj is the associated momentum; J is a self-adjoint matrix
describing the interparticle interactions; Mj is the strength of
the harmonic on-site potential. The term Mjq

2
j may be written

together with qlJlj qj by defining Jjj = Mj and including the
term j = l in the sum above for the interparticle interaction.
The dynamics, as usual, is given by

dqj = ∂H

∂pj

dt = pj

mj

dt,

(2)

dpj = −∂H

∂qj

dt − ζjpjdt + γ
1
2

j dBj ,

where Bj are independent Wiener processes (i.e., dBj/dt are
Gaussian white-noises); ζi = ζ (δ1j + δNj ) is the heat bath
coupling (the dissipative constant); γj = 2mjζjTj where T1

and TN are the temperatures of the thermal reservoirs. Note
that, for this specific model, only ζ1 and ζN are nonzero.

Before carrying out the computations, we remark that
changes in the particle masses mj lead to the same effect of
(other properly chosen) changes in the on-site potentials Mj

and in the interparticle interaction J : i.e., the system above
can be mapped onto a system with equal on-site potentials, i.e.
Mj = M for all j = 1,...,N (and vice-versa: a system with
different particle masses can be mapped onto another one with
equal masses but with different on-site potentials). Precisely,
with the change of variables given by

Qj = M
1
2
j qj , Pj = M

− 1
2

j pj ,

we map the equations above onto

H̃ (Q,P) =
N∑

j=1

1

2

⎛
⎝P 2

j

m̃j

+ Q2
j +

N∑
l �=j=1

QlJ̃ljQj

⎞
⎠ ,

dQj = ∂H̃

∂Pj

dt = Pj

m̃j

dt, (3)

dPj = − ∂H̃

∂Qj

dt − ζjPjdt + γ̃
1
2

j dBj ,

with m̃j = mj/Mj , J̃lj = M
− 1

2
l JljM

− 1
2

j and γ̃j = 2m̃j ζjTj .
Thus, for ease of computation, in what follows we will

analyze a system with alternate masses and equal on-site
potentials, which will be included in the diagonal part of J .
Precisely, we take

H (q,p) =
N∑

j=1

1

2

(
p2

j

mj

+
N∑

l=1

qlJlj qj

)
, (4)

Jlj = 2δlj − δl+1,j − δl−1,j , j,l = 1, . . . ,N, (5)

(i.e., J is the negative lattice Laplacian with Dirichlet boundary
conditions) and we take the odd sites with particle mass m1

and the even sites with particle mass m2.
We follow Casher and Lebowitz (see Eq. (3.12), derived in

more detail in Ref. [19]). In the limit of an infinite chain with
two alternate masses, say, m1 < m2, the heat flow is given by

F = (T1 − TN )m1m2ζ

π

×
∫ |ω sin q|

|(1 + ζ 2m1m2ω2)(m2K1,1 + m1K2,2)|dω, (6)

the integration being over the region where ω satisfies

|K1,2 − K2,1| � 2,

that is,

−2 � K1,2(ω) − K2,1(ω) = 2 cos q � 2, (7)

where K2,1 = 1, and Kj,l(ω) is the determinant of the (l −
j ) × (l − j ) matrix (J − w2M) for a particular chain which
starts from the j th site and ends with the lth one. M above
is the diagonal matrix whose diagonal entries are the particle
masses (mj,mj+1, . . . ,ml).J is the matrix for the interparticle
interaction (5) (for a chain that starts from the j th site and ends
with the lth one, as already said).

Now we make explicit the region of integration. The
extremes of the integration intervals are the roots of (2 −
m1ω

2)(2 − m2ω
2) and (2 − m1ω

2)(2 − m2ω
2) − 4 in Eq. (7).

By using that

| sin q| =
√

1 − cos2 q,

where q is related to ω via Eq. (7)

cos2 q = [(1 − m1ω
2/2)(1 − m2ω

2/2) − 1]2, (8)
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and noting that the integrand in Eq. (6) depends only on ω2

(we denote ω2 by x in what follows), we obtain

F = (T1 − TN )m1m2ζ

2π

×
{∫ 2

m2

0
f (x)dx −

∫ 2(m1+m2)
m1m2

2
m1

f (x)dx

}
, (9)

f (x) =
√

1 − 1
4 [(2 − m1x)(2 − m2x) − 2]2

(1 + m1m2ζ 2x)(m1 + m2 − m1m2x)
. (10)

After several tedious computations (some convenient
changes of variables, algebraic manipulations, etc.), we ob-
tained the exact expression for the heat flow

F = (T1 − TN )

4m1m2ζ 3

[
1 + ζ 2(m1 + m2) − ζ 4

(
m2

2 − m2
1

)
1 + ζ 2(m1 + m2)

−
√

[1 + 2ζ 2(m1 + m2)](1 + 2ζ 2m1)(1 + 2ζ 2m2)

1 + ζ 2(m1 + m2)

]
,

(11)

where we recall that m1 < m2.
As a test, we note that taking the limit m1 → m2 = m (i.e.,

considering the homogeneous case) we have

F = T1 − TN

4m2ζ 3
(1 + 2mζ 2 −

√
1 + 4mζ 2), (12)

which is exactly the same expression obtained by Rieder,
Lebowitz, and Lieb [18]. We note that in the homogeneous
case the heat flow decays as we increase the particle mass as

F ∼ 1/m as m → ∞.

Turning to the system with alternate masses, if instead
of increasing both masses we increase m2 and decrease m1,
precisely, if we take m2 = 1/ε and m1 = ε (for small ε), a
direct computation yields

F = (T1 − TN )ζ

4
ε2 + O(ε3). (13)

That is, the heat flow decays as the inverse of the square of
the mass difference (i.e., it decays proportionally to the mass
ratio). In other words, we note an interesting (and not obvious)
property: To decrease the heat flow, it is more effective to take
alternate masses for the particles, increase one and decrease the
other, than simply increase the particle mass of a homogeneous
system. This phenomenon is clear in Fig. 1. We have a slower
decay in the diagonal direction, where m1 = m2.

To offer an explanation for this phenomenon, namely, for
the different behaviors of the heat flows of a homogeneous
and an alternate mass chain, we turn to the analysis of the
spectra of these systems and their effects in the heat current.
First, we note that in the expression for the heat flow (6)
[see also Eq. (7)], the region of integration on ω, given by
Eq. (7), corresponds to wave vectors q (recall that 2 cos q =
eiq + e−iq) with which waves of one of the frequencies in the
band determined by ωj (q), j = 1,2 will propagate through the
lattice. The ω2

j are the two roots of the polynomial equation
(K1,2 − K2,1)(ω2) = 2 cos q, with (K1,2 − K2,1)(ω2) being a

FIG. 1. Heat flow per temperature difference as a function of the
masses m1 and m2 for ζ = 0.046 [see Eq. (11)]. We note that, of all
possible ways to decrease the heat flow, the least efficient is by setting
m1 = m2.

polynomial of order 2 in ω2, and ωj (q) are positive for q real
(more details in Ref. [19]). That is, in Eq. (6) the integration, as
already said, is over |K1,2 − K2,1| � 2 [i.e., over the frequency
bands of ω2: minω2

j (q) � ω2 � maxω2
j (q), j = 1,2, which are

the solutions of Eq .(7)]. In a few words, the heat flow is given
by an integration over the spectrum of the chain and there is
an obvious difference between the expressions involving the
spectrum of a single mass chain and those of a binary chain.
There is only one interval of integration in the single mass
case, but it splits into two parts (considering ω2 as the variable
of integration) for the binary system [see Eq. (9)]; roughly, the
prohibited band between 2/m2 and 2/m1 (which obviously
disappears if m1 = m2) makes the heat flow more difficult.

The central question now is the reliability of such property,
that is, will we find it in more realistic models? A first
step to answering this question may be the analysis of the
self-consistent harmonic chain of oscillators. This model,
proposed in Ref. [20] and revisited in Ref. [21] (in the latter
with homogeneous structures), is a schematic (and analytically
treatable) anharmonic system: it consists of a chain of oscilla-
tors with harmonic nearest-neighbor interparticle interactions
and on-site potentials and stochastic reservoirs coupled to
each site. Its mathematical description is given by Eq. (2),
now with each γj and Bj nonzero. From a physical point of
view, the inner reservoirs may be interpreted as a schematic
representation of the anharmonic part of the interaction (this
model, as proved in Ref. [21] obeys Fourier’s law, in opposition
to the pure harmonic systems [18]). We stress that the inner
reservoirs are not regarded as “real” thermal baths (the real
baths are represented by the reservoirs at the boundaries), they
describe only some residual mechanism of phonon scattering
not present in the Hamiltonian interactions. Such a description
is guaranteed by the “self-consistent condition,” which means
that the temperatures of the inner reservoirs are chosen in such
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a way that in the average no heat flows between each inner
reservoir and its respective site in the steady state.

The heat flow for the self-consistent harmonic chain with
alternate particle masses and harmonic on-site potentials has
been studied in detail in a previous work [17]. For the regime
of small (and nearest-neighbor) interparticle interaction J , up
to O(J 2), we have

F = 2J 2ζm−1
1 m−1

2(
M1
m1

− M2
m2

)2 + 2ζ 2
(

M1
m1

+ M2
m2

) ×
(

TN − T1

N − 1

)
.

(14)

We note that for the homogeneous case F ∼ 1/m. For M1 =
M2 = 1 (as already said, Mj denotes the on-site harmonic
coefficient and J the interparticle coefficient), m1 = ε and
m2 = 1/ε, we get, when ε � 1,

κ = 2J 2ζ

(1/ε − ε)2 + 2ζ 2(1/ε + ε)
≈ 2J 2ζ ε2. (15)

That is, the phenomenon also holds in this model with normal
conductivity. In short, the presence of this phonon scattering
mechanism (i.e., noise in each site) does not destroy it.

III. ANHARMONIC CHAINS

Now we turn to self-consistent anharmonic chains of
oscillators, that is, we introduce on-site anharmonic potentials
in the previous self-consistent system. It makes the model more
realistic since explicit anharmonic terms are found everywhere
in interacting models. We keep the “extra” stochastic variables
for technical reasons (as is well known, the analytic study of
these nonlinear models is very difficult: “a rigorous treatment
of a nonlinear system, even the proof of the existence
of the conductivity coefficient, is out of reach of current
mathematical techniques” [22]). However, we emphasize that
they are not determinant for many properties of the heat flow.
The inhomogeneous classical harmonic chain, for instance,
even with inner reservoirs, does not present rectification,
that is, there is rectification only in the model with real
anharmonic on-site potentials. In other words, the presence
of real anharmonicity may introduce considerable changes in
the system behavior, and in that way, it could (in principle)
destroy the effect that appears in harmonic chains due to the
presence of alternate large and small masses. The use of these
hybrid models (i.e., intricate anharmonic Hamiltonian systems
still with inner noises) is recurrent [23].

To be precise, we take N oscillators with the Hamiltonian

H (q,p)=
N∑

j=1

⎡
⎣1

2

⎛
⎝ p2

j

mj

+Mjq
2
j +
∑
l �=j

qlJlj qj

⎞
⎠+λjP(qj )

⎤
⎦ ,

where Mj > 0, Jjl = Jlj , P is the anharmonic on-site poten-
tial: P(qj ) = q4

j /4; with the usual time evolution

dqj = (pj/mj )dt,dpj =−(∂H/∂qj )dt−ζjpjdt + γ
1/2
j dBj ,

(16)

where, as in the harmonic case, Bj are independent Wiener
processes, ζj is the coupling between site j and its reservoir,
and γj = 2ζjmjTj , where Tj is the temperature of the j th

bath. We recall that here we consider only nearest-neighbor
interactions.

As usual, the energy current inside the system is given by
〈Fj→〉, where 〈·〉 means the expectation with respect to the
noise distribution, and where

Fj→ = Jj,j+1(qj − qj+1)

(
pj

2mj

+ pj+1

2mj+1

)
, (17)

that is, Fj→ describes the heat flow from the j th to the
(j + 1)th site.

To ease the computation (i.e., the manipulation with indices,
etc.) we map our system onto another with mj = 1, for all j .
It only means that we make the change of variables Qj =√

mjqj , Pj = pj/
√

mj , and so, J , M and λ are replaced by
J̃jk = (mj )−1/2Jjk(mk)−1/2, λ̃j = λj/m2

j , M̃j = Mj/mj . For
simplicity, we drop out the tilde notation in the system below
with unit masses, but, of course, we will rescale it later to
recover the original system with different masses.

We also introduce the notation of the phase-space vector
ϕ = (Q,P ), with 2N coordinates. Then, the dynamics (16)
becomes

ϕ̇ = −Aϕ − λP ′(ϕ) + ση,

where A = (A0 + J ) and σ are 2N × 2N matrices

A0 =
(

0 −I

M̃ �

)
, J =

(
0 0

J 0

)
, σ =

(
0 0

0
√

2�T

)
.

I above is the unit N × N matrix, J is the N × N matrix de-
scribing the interparticle interaction Jlj . M̃,�,T are diagonal
N × N matrices: M̃j l = Mjδjl , �jl = ζj δjl , Tj l = Tjδjl . η

are independent white noises, P ′(ϕ) is a 2N × 1 matrix with
P ′(ϕ)j = 0 for j = 1, . . . ,N and P ′(ϕ)i = dP(ϕi−N )/dϕi−N

for i = N + 1, . . . ,2N . It is useful to adopt the following index
notation: i for index values in the set [N + 1,N + 2, . . . ,2N ],
j for values in the set [1,2, . . . ,N ], and k for values in
[1,2, . . . ,2N ].

In an approximative scheme, we establish an integral
representation for the correlation functions, and so, for the heat
current, of systems with the stochastic dynamics considered
here. We emphasize that such an approach turns out to give the
same result as the rigorous treatment for the simpler harmonic
case [12]. Now we describe our approach. First, we consider
the time evolution equations including the anharmonic on-site
potential, but without the interparticle interaction J . A strong
solution, even for the decoupled anharmonic problem, is
unknown, but we may find the steady distribution: We follow
Boltzmann, that is, we note that our system with J = 0
involves only noninteracting particles, each one connected to
a thermal bath, and so we have, in the Q,P notation

dμ∗(Q,P ) = exp

⎛
⎝−

N∑
j=1

H
(J=0)
j /Tj

⎞
⎠∏

j

dQjdPj/norm.,

H
(J=0)
j =

(
1

2
MjQ

2
j + λjP(Qj ) + 1

2
P 2

j

)
.

Now we use the Girsanov theorem (Cameron-Martin formula)
[24] to introduce the interparticle interaction J . Such a theorem
relates the solution of the complete process ϕ (including
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J , the interparticle interaction) to the previous one φ (with
J = 0): for t1, . . . ,tk � t , it states that 〈ϕr1 (t1), . . . ,ϕrk

(tk)〉 =∫
φr1 (t1), . . . ,φrk

(tk)Z(t)dμ, where 〈·〉 is the expectation for
the complete process ϕ, while dμ is the distribution associated
with the expectations of the decoupled process φ. After some
stochastic calculus [12], the factor Z(t) is given by

Z(t) = exp
[−γ −1

i φi(t)Jij φj (t) + γ −1
i φi(0)Jij φj (0)

]
× exp

(∫ t

0
dsγ −1

i φi(s)Jij φj+N (s) +−
∫ t

0
dsφj (s)

×J †
jiγ

−1
i A0

ikφk(s) −
∫ t

0
dsφj (s)J †

jiγ
−1
i λP ′(φ)i(s)

− 1

2

∫ t

0
dsφj (s)J †

jiγ
−1
i Jij ′φj ′(s)

)
. (18)

The boundary condition φ(0) = 0 is assumed here, for
simplicity. As is well known, the heat flow (17) in the
steady state involves the expression limt→∞〈ϕu(t)ϕv(t) −
ϕu−N (t)ϕv+N (t)〉, u > N,v � N [i.e.,

∫
φu(t)φv(t)Z(t)dμ,

etc]. Note that, by writing Z(t) = exp[− ∫ W (φ(s)]ds, and
by applying a perturbative analysis we obtain terms such
as
∫ {φu(t)φv(t)W [φ(s)]}dsdμ. However, it is very diffi-

cult to calculate the distribution dμ: For the nonlinear

process we know only the steady distribution dμ∗. Then,
we have to introduce an approximative scheme on which to
follow.

First, we note that, from the Itô calculus, we have
〈f [φ(t)]〉 = e−tHf [φ(0)], H = − 1

2γi∇2
i + [A0φ + λP ′(φ)]

∇, where ∇ means the derivative with respect to φ (the index
i, as is well known, takes values in [N + 1, . . . ,2N ]). Thus,
to relate φ(t) and φ(s), we replace φ(·) by its average value.
Moreover, we also replace P ′(φ)/φ by its average value in
the exponential relaxation of φ (more details ahead). In short,
we propose the changes: φ(t) → e−(t−s)Hφ(s) = e−(t−s)Aφ(s),
where A is given by A0 with M replaced by M ≡ M +
〈λP ′(φ)/φ〉. But recall that the computation of

∫
φ(s)φ(s)dμ

is not possible since we do not know the distribution dμ, as
said before. As we have a fast (exponential) convergence to
the steady state (i.e., the main contribution in our computations
comes from the terms with s close to t) , we propose to replace
dμ by dμ∗, the well-known steady distribution.

In summary, our approximative scheme essentially means
the replacement of φ(t) by 〈φ(t)〉 and of dμ by dμ∗.

Now, we may carry out the computations in an anharmonic
model. Thus, up to the first order in J , after using a suitable
representation [24] for e−τA and performing the integration in
τ , we obtain, for u > N,v � N

〈ϕuϕv〉 = −(2ζuTu)−1Juv

〈
φ2

uφ
2
v

〉+ (Mv − Mu)(Duv)−1
(
γ −1

u + γ −1
v

)
Juv

〈
φ2

uφ
2
v+N

〉
+ ζu + ζv

Duv

[
Muζvγ

−1
v

〈
φ2

u−Nφ2
v+N

〉− Mvζuγ
−1
u

〈
φ2

uφ
2
v

〉]
J †

vu + Mu

Duv

[(Mu − Mv) + ζv(ζu + ζv)]

× {(Muγ
−1
u + Mvγ

−1
v

)〈
φ2

u−Nφ2
v

〉
J †

uv + [λu−N

〈
φu−NP ′(φu−N )φ2

v

〉
γ −1

u + λv

〈
φ2

u−NP ′(φv)φ2
v

〉
γ −1

v

]
J †

vu

}
, (19)

where Mu ≡ Mu−N , Duv = (Mu − Mv)2 + (Muζv +
Mvζu)(ζu + ζv). For u > N , 〈φ2

u〉 = Tu. However, the
computation of 〈φ2

v〉, v � N is not straightforward (note that
dμ∗ is a single spin distribution, so that 〈φk

uφ
m
v 〉 = 〈φk

u〉〈φm
v 〉).

To continue the analysis, we assume the system in a
high anharmonic regime (i.e., λ large and M small).
Thus, we take 〈φ2

v〉 = 2c1T
1/2
v /λ

1/2
v , 〈φ4

v〉 = 4c2Tv/λv .
If M = 0, we would have c1 � �(3/4)/�(1/4) � 1/3,
c2 � �(5/4)/�(1/4) = 1/4. We may determine the values
of c1 and c2 by turning to the expression of the heat current
Fj→ = Juv(〈ϕuϕv〉 − 〈ϕu−Nϕv+N 〉)/2, with u − N = j ,
v = j + 1: namely, we take all sites at the same temperature
T and find the values such that Fj→ = 0. We obtain
c2 = 1/4 and c1 = 1/2. Now we can carry out all the further
computations. In the case of high anharmonicity, after
rescaling back to the system with general mass values (i.e.,
λj → λj/m2

j , etc.), we get, up to O(J 2),

Fj,j+1 = J 22ζ

mjmj+1

⎧⎨
⎩
[(

λ
1/2
j T

1/2
j

mj

)
−
(

λ
1/2
j+1T

1/2
j+1

mj+1

)]2

+ 2ζ 2

×
[(

λ
1/2
j T

1/2
j

mj

)
+
(

λ
1/2
j+1T

1/2
j+1

mj+1

)]}−1

(Tj − Tj+1).

(20)

From Fj,j+1 above and the self-consistent condition F =
F1,2 = F3,4 = · · · = FN−1,N , which essentially means that
the heat current comes from the first reservoir, travels through
the chain, and goes out by the last reservoir, we derive
the temperature profile and the expression for the thermal
conductivity. For simplicity, we take only alternate masses, that
is, we make the other parameters homogeneous (λj = λ, etc.).
For a system under a small gradient of temperature, precisely,
for T1 = T + a1δ and TN = T + aNδ, δ small, we have (up
to first order in δ) Tj = T + aj δ, with aj determined by the
self-consistent condition (i.e., F1,2 = F2,3 = · · · = FN−1,N ),
and so we obtain, after some algebraic manipulations

F = 2J 2ζ/(λ1/2T 1/2)[
λ1/2T 1/2 (m1−m2)2

m1m2
+ 2ζ 2(m1 + m2)

] × (a1 − aN )δ

(N − 1)
.

(21)

That is, the heat flow obeys Fourier’s law [the term (a1 −
aN )δ/(N − 1) is the temperature gradient in the chain], with
the thermal conductivity

K = 2J 2ζ

λ1/2T 1/2

[
λ1/2T 1/2 (m1 − m2)2

m1m2
+ 2ζ 2(m1 + m2)

]−1

.

(22)
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Hence, we see that the same effect as the one previously
described for the harmonic systems due to the presence
of alternate masses also holds in the anharmonic chain. In
summary, it seems to be a ubiquitous phenomenon. We remark
that similar effects appear if we consider alternate on-site
potentials instead of alternate masses (it is clear from the
previous expressions).

IV. FINAL REMARKS

In the present work, searching for properties or mechanisms
to manipulate the heat flow in general materials, we analyti-
cally study harmonic and anharmonic chains of oscillators with
nearest-neighbor interactions, and show a kind of insulating

effect obtained with the use of alternate large and small masses
or on-site potentials.

We stress that the existence of similar behaviors in standard
systems with different features modeling the heat conduction
in solids, such as the harmonic, self-consistent harmonic and
anharmonic chains, indicates the ubiquity of the phenomenon.
Moreover, the simplicity of the conditions for the existence of
the effect (namely, no intricate interaction or specific potential
is required, only the presence of alternate masses or on-site
potentials) also shows that it may be used in practical devices.
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