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Optimal vertex cover for the small-world Hanoi networks
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The vertex-cover problem on the Hanoi networks HN3 and HN5 is analyzed with an exact renormalization
group and parallel-tempering Monte Carlo simulations. The grand canonical partition function of the equivalent
hard-core repulsive lattice-gas problem is recast first as an Ising-like canonical partition function, which allows
for a closed set of renormalization-group equations. The flow of these equations is analyzed for the limit of infinite
chemical potential, at which the vertex-cover problem is attained. The relevant fixed point and its neighborhood are
analyzed and nontrivial results are obtained both for the coverage as well as for the ground-state entropy density,
which indicates the complex structure of the solution space. Using special hierarchy-dependent operators in the
renormalization group and Monte Carlo simulations, structural details of optimal configurations are revealed.
These studies indicate that the optimal coverages (or packings) are not related by a simple symmetry. Using a
clustering analysis of the solutions obtained in the Monte Carlo simulations, a complex solution space structure
is revealed for each system size. Nevertheless, in the thermodynamic limit, the solution landscape is dominated
by one huge set of very similar solutions.
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I. INTRODUCTION

We study the vertex-cover problem [1,2] of the recently
introduced set of Hanoi networks [3–5].1 An optimal vertex
cover attempts to find the smallest set of vertices in a graph
such that every edge in the graph connects to at least one
vertex in that set. It is one of the classical nondeterministic
polynomial-time hard (NP-hard) combinatorial optimization
problems discussed in Ref. [6]. The problem is equivalent to
a hard-core lattice gas [7], in which any pair of particles must
be separated by at least an empty lattice site. The vertex-cover
problem has recently attracted a lot of attention in physics
because in ensembles of Erdös-Rényi random networks [8],
phase transitions in the structure of the solution landscape were
found that coincide with a polynomial-exponential change of
the running time of exact algorithms [1,2].

During the past decade, alternative ensembles of ran-
dom networks have attracted the attention of physicists.
Well-known examples are Watts-Strogatz small-world net-
works [9] and scale-free networks [10–13]. These networks
exhibit more structure and describe the behavior of real
networks much better than the Erdös-Rényi random networks
[14]. Also, physical systems (such as the Ising model [15,16])
that exist on these more complex network or lattice structures
behave differently compared to regular (hyper-cubic) lattices
or random networks.

Hanoi networks mimic the behavior of small-world systems
without the usual disorder inherent in the construction of
such networks. Instead, they attain these properties in a

*http://www.physics.emory.edu/faculty/boettcher/
†http://www.compphys.uni-oldenburg.de/
1Unfortunately, we had to learn that there already exists a

hierarchical graph with that name that is, in fact, similar
but otherwise unrelated to the networks discussed here; see
http://mathworld.wolfram.com/HanoiGraph.html.

recursive, hierarchical manner that lends itself to exact real-
space renormalization [17]. These networks do not possess
a scale-free degree distribution; they are, like the original
small worlds, of regular degree or have an exponential degree
distribution. These Hanoi networks have a more physically
desirable geometry [18], with a mix of small-world links and
a nearest-neighbor backbone characteristic of lattice-based
models [4].

For the vertex-cover problem considered here, or the
equivalent hard-core lattice gas, it is difficult to find metric
structures with a nontrivial solution. For instance, hypercubic
lattices are bipartite graphs that always have an obvious unique
and trivial solution without any conflicts. Of the planar lattices,
the triangular one is certain to exhibit imperfect solutions
(i.e., there will be edges requiring multiple coverings for any
solution), but any such solution is translationally invariant
and can be easily enumerated, leading to a vanishing entropy
density. Similarly, a fractal lattice such as the Sierpinski gasket,
say, only has trivial solutions of that sort. Both of these
examples are given in Fig. 1. In contrast, we find an extensive
ground-state entropy here, similar to the antiferromagnet on
a triangular lattice [19]. Yet our ground states do not appear
to be the result of any symmetry relation. Thus the study
of the vertex-cover problem on the Hanoi networks affords
simple, analytically tractable examples of coverages that have
nontrivial entropy densities. In fact, analytically we found
merely an approximate algorithm to generate (and enumerate)
the set of all solutions whose true cardinality we can determine
at any finite system size only by exact renormalization.

Using branch-and-bound algorithms, we enumerate exact
solutions [2]; however, due to the exponentially growing
running time of this exact algorithm, we are restricted to
rather small system sizes. Hence, for most of the numerical
studies performed here, we use Monte Carlo simulations [20]
to generate the solutions and clustering algorithms to elucidate
their correlations [21].
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FIG. 1. (Color online) Vertex covering for (a) a triangular lattice
and (b) a Sierpinski gasket. In both cases, the optimal coverage (large
dots) is imperfect (i.e., some edges possess double coverings). Yet
these solutions either are unique, as for the Sierpinski gasket, or
possess a finite symmetry, such as the possible translations on the
triangular lattice, both cases leading to a vanishing entropy density.
For both lattices it is easily seen that the asymptotic coverage is 2

3 . In
the case of the triangular lattice, the unit cell (dashed red box) contains
two vertices completely and shares half of eight vertices with other
cells, i.e., it has effectively 2 + 8

2 = 6 vertices of which 1 + 6
2 = 4

are covered. The unit cell in the Sierpinski gasket contains 3 + 3
2

vertices of which the three fully contained ones must be covered.

Previous work [7] has focused on averaged properties on lo-
cally treelike (mean-field) networks using the replica method,
unearthing interesting phase transitions for the problem. Thus
far, there are only a few investigations into the statistical
mechanics of the vertex-cover problem on more complex
networks. In a study of randomly connected tetrahedra [22],
glassy behavior was observed. When introducing degree
correlations, it was found that the vertex-cover problems
becomes numerically harder [23].

This paper is organized as follows. In Sec. II we review the
properties of the Hanoi networks. In Sec. III we briefly recount
the relevant theory for a thermodynamic study of vertex cover
in terms of a hard-core lattice gas. In Sec. IV we develop the
renormalization-group treatment of the lattice gas (with most
of the technical details deferred to the Appendixes) and its
application to the Hanoi networks HN3 and HN5. A detailed
numerical study of the problem follows in Sec. V. We present
our conclusions and an outlook for future work in Sec. VI.

II. GEOMETRY OF THE HANOI NETWORKS

Each of the Hanoi networks possesses a simple geometric
backbone: a one-dimensional line of sites 0 � n < N = 2k +
1 [3,4]. Most importantly, all sites are connected to their nearest
neighbors, ensuring the existence of the one-dimensional
backbone. To generate the small-world hierarchy in these
networks, consider parametrizing any integer n (except for
zero) uniquely in terms of two other integers (i,j ), i � 1, via

n = 2i−1 (2j + 1) , (1)

where i denotes the level in the hierarchy and j labels
consecutive sites within each hierarchy. For instance, i = 1
refers to all odd integers, i = 2 to all integers once divisible
by 2 (i.e., 2, 6, 10, . . .), and so on. In these networks, aside
from the backbone, each site is also connected with some of

FIG. 2. Depiction of the three-regular network HN3 on a semi-
infinite line. Note that HN3 is planar.

its neighbors within the hierarchy. For example, we obtain a
three-regular network HN3 (best done on a semi-infinite line)
by connecting first the backbone; then 1 to 3, 5 to 7, 9 to 11,
etc, for i = 1; next 2 to 6, 10 to 14, etc, for i = 2; and 4 to
12, 20 to 28, etc, for i = 3, and so on, as depicted in Fig. 2.
Previously [3], it was found that the average chemical path
between sites on HN3 scales as

dHN3 ∼
√

l (2)

with the distance l along the backbone.
While HN3 is of a fixed, finite degree, there exist gen-

eralizations of HN3 that lead to insight into small-world
phenomena [3,4,24]. For instance, we can extend HN3 in
the following manner to obtain a network of average degree
5, hence called HN5. In addition to the edges in HN3, in
HN5 we also connect each site in level i (i � 2, i.e., all even
sites), to (higher-level) sites that are 2i−1 sites away in both
directions. Note that Eq. (1) implies that the nearest neighbors
of a site i within its hierarchy are separated by a distance of
2 × 2i−1. The resulting network HN5 remains planar but now
sites have a hierarchy-dependent degree, as shown in Fig. 3.
To obtain the average degree, we observe that 1/2 of all sites
have degree 3, 1/4 have degree 5, 1/8 have degree 7, and so
on, leading to an exponentially falling degree distribution of
P {α = 2i + 1} ∝ 2−i . Then the total number of edges L in a
system of size N = 2k + 1 as shown in Fig. 3 is

2L = 2 (2k + 1) +
k−1∑
i=1

(2i + 1) 2k−i = 5 × 2k − 4, (3)

where the expression outside the sum refers to the special case
of those three vertices at the highest levels, k − 1 and k. Any
other choice of boundary conditions may vary the offset in
Eq. (3), but not the average degree, which is

〈α〉 = 2L

N
∼ 5. (4)

In HN5, the end-to-end distance is trivially 1 (see Fig. 3).
Therefore, we define as the diameter the largest of the shortest
paths possible between any two sites, which are typically
odd-index sites farthest away from long-distance edges. For
the N = 33 site network depicted in Fig. 3, for instance, that
diameter is 5, measured between sites 3 and 19 (starting with
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FIG. 3. (Color online) Depiction of the planar network HN5,
consisting of an HN3 core (black lines) with the addition of farther-
reaching long-range edges (shaded lines). Note that sites on the lowest
level of the hierarchy have degree 3, then degree 5, 7, etc, comprising
a fraction of 1/2,1/4, 1/8, etc., of all sites, which makes for an
average degree of 5 in this network. (There is no distinction made
between black and shaded lines in our studies here.)

n = 0 as the leftmost site), although there are many other such
pairs. It is easy to show recursively that this diameter grows as

dHN5 = 2 �k/2� + 1 ∼ log2 N. (5)

Other variants of the Hanoi networks are conceivable. For
instance, a nonplanar version has been designed [25,26], but
that network happens to possess only a unique, alternating
covering of 1

2 and is not considered here.

III. VERTEX-COVER PROBLEM AS A HARD-CORE
LATTICE GAS

Vertex cover is a well-known NP-hard combinatorial
problem [6,27,28] that consists of finding a minimal covering
of the vertices of a network in such a way that each edge is
covered at least once. Formally, for a graph G = (V,E), with
V being the set of vertices and E ⊂ V (2) the set of edges, a
vertex cover V ′ is a subset of V with the property that for
each (undirected) edge {i, j} ∈ E either i ∈ V ′ or j ∈ V ′. A
minimum vertex cover Vmin is a vertex cover of minimum
cardinality |Vmin|.

As shown in Ref. [7], the vertex-cover problem can be
formulated alternatively as a hard-core repulsive lattice-gas
problem. In this formulation, the uncovered vertices of the
covering problems correspond to the actual gas particles.
These particles have a hard-core repulsion such that they
cannot occupy neighboring lattice sites, i.e., they cannot
simultaneously vie for the same edge. Interpreting these
particles as the voids of the covering problem implies that
no edge may be left uncovered on both ends. Accordingly,
all properties of the minimum cover problem derive from the
ground state of the lattice gas at its highest packing.

The grand canonical partition function for such a lattice gas
is generically given by

� (μ) =
∑

x0={0,1}
· · ·

∑
xN ={0,1}

exp

(
μ

N∑
i=1

xi

)∏
〈i,j〉

(1 − xixj ),

(6)

where the product extends over all edges of the graph and exerts
the hard-core repulsive constraint. The chemical potential μ is
provided to regulate the density as gas particles get packed into
the system. Since maximal density of the gas implies minimal

coverage of all edges, we are looking for the configurations in
the limit μ → ∞ of the gas.

The quantities [7] we seek are the thermodynamic limit
(N → ∞) of the packing fraction for the lattice gas,

ν (μ) = 1

N

〈
N∑

i=1

xi

〉
μ

= 1

N

∂

∂μ
ln � (μ) , (7)

and the entropy density of such configurations,

s [ν (μ)] = 1

N

(
1 − μ

∂

∂μ

)
ln � (μ) . (8)

It has also been shown in Ref. [7] that one can extract the
corresponding properties of the minimal vertex coverage from
these in the μ → ∞ limit. For the coverage density, this
corresponds simply to the void density of the gas,

cmin = 1 − lim
μ→∞ ν (μ) , (9)

and the entropy density of optimal coverages is simply equal
to that for the lattice gas:

sVC (cmin) = s (ν = 1 − cmin) . (10)

Due to the hierarchical structure of the Hanoi networks,
we will also introduce level-specific chemical potentials μi ,
for example, to extract information about the coverage with
respect to the level of the hierarchy (i.e., the range its
small-world edge attains) that a vertex may reside in. The
corresponding derivations are presented in the Appendixes.
Throughout, we will find it often convenient to express the
chemical potentials as an activity variable,

mi = e−μi (1 � i � k) , (11)

such that μi → ∞ corresponds to the somewhat more tractable
limit mi → 0.

IV. RENORMALIZATION GROUP FOR THE HARD-CORE
LATTICE GAS ON HANOI NETWORKS

The renormalization group (RG) as applied to the lattice-gas
problem developed here contains a few unfamiliar features.
Thus we have to elaborate to a significant extent on the
procedure. Although ultimately the RG will heavily rely on
procedures used for Ising spin models, initially we will have to
rewrite the grand canonical partition function of the lattice gas
in an appropriate form. To this end, the purpose of the first step
of the RG (already eliminating half of all sites) is to generate
the initial conditions for the subsequent canonical partition
function analysis, in which the usual coupling variables depend
in a complicated way on the chemical potential μ instead of a
temperature and the apparent spin variables are in fact Boolean,
xi ∈ {0,1}.

We have to rewrite the generic partition function in
Eq. (6) for the special case of the Hanoi networks. To access
more details of the solutions, we will take the opportunity to
generalize to the case of a hierarchy-specific chemical potential
μi for 1 � i � k, where N = 2k + 1 is the size of the system.
(For the RG, it is natural to consider the Hanoi network with
an open boundary both at node 0 and at node 2k; for a system
with periodic boundaries on a loop, both of these nodes would
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become identical and N = 2k would be the size of the system.
Of course, either choice results in identical thermodynamic
averages.)

First, we rewrite the hard-core repulsive factor in Eq. (6) as
separate products, one for the long-range edges and the other
for the backbone edges,

∏
〈i,j〉

(
1 − xixj

) =
⎛⎝ K∏

i=1

2k+1−i∏
n=1

(1 − x2i−1(n−1)x2i−1n)

⎞⎠⎛⎝k−1∏
i=1

2k−i−1∏
l=1

(1 − x2i−1(4l−3)x2i−1(4l−1))

⎞⎠ . (12)

The case K = 1 corresponds to HN3, with a simple, one-
dimensional line of edges connecting all sites in the backbone
sequentially. In succession, for HN5 we set K = k, with each
i > 1 referring to the layers of those edges that connect along
the backbone only every second site, every fourth site, every

eight site, etc., as shown in Fig. 3. Note that in Eq. (12) we have
used the decomposition of the sites in the network implied by
the renumbering in Eq. (1).

By the same token, we reorder the summation in
Eq. (6) as

∑
x0

eμi(0)x0 · · ·
∑
xN

eμi(N)xN =
∑
x0

m
−x0
i(0) · · ·

∑
xN

m
−xN

i(N) =
∑

x0,x2k−1 ,x2k

m
−x0−x2k−1 −x2k

k

⎛⎝k−1∏
i=1

2k−i−1∏
l=1

∑
x2i−1(4l−3)

∑
x2i−1(4l−1)

m
−x2i−1(4l−3)−x2i−1(4l−1)

i

⎞⎠ ,

(13)

where we have simplified the notation on the sums to mean∑
x =̂∑

x∈{0,1}. Of course, Eq. (13) has to be understood
in an operator sense, i.e., the summations extend to all site
variables that match the indicated index. Here we have also
allowed for a site-specific chemical potential. It is our goal
to extract local packing information, not for each site, but
for all vertices within a specific hierarchy, where i(n) refers
to the chemical potential in the ith level that the vertex n is
associated with according to Eq. (1). Naturally, the sites at the

highest level k of the hierarchy (x0,x2k−1 ,x2k ) require special
consideration.

In this parametrization of the indices, the products in
Eq. (13) can be combined with those of the second factor in
Eq. (12). Both refer to the small-world edges in all levels of the
hierarchy and are naturally expressed in a hierarchy-conform
manner. Hence we find for the grand canonical partition
function defined in Eq. (6) on a Hanoi network with k levels
in the hierarchy

�
(k)
K (m1, . . . ,mk) =

∑
x0,x2k−1 ,x2k

m
−x0−x2k−1 −x2k

k SK(m2, . . . ,mk−1)
2k−2∏
j=1

�(m1,x2(2j−2),x2(2j−1),x2(2j )), (14)

where we have defined the operator for the weighted summation on HN3 and HN5, respectively,

SHN3 ≡
k−1∏
i=2

2k−i−1∏
l=1

∑
x2i−1(4l−3)

∑
x2i−1(4l−1)

m
−x2i−1(4l−3)−x2i−1(4l−1)

i (1 − x2i−1(4l−3)x2i−1(4l−1)),

SHN5 ≡
k−1∏
i=2

2k−i−1∏
l=1

∑
x2i−1(4l−3)

∑
x2i−1(4l−1)

m
−x2i−1(4l−3)−x2i−1(4l−1)

i (1 − x2i−1(4l−3)x2i−1(4l−1))

× (1 − x2i−1(4l−4)x2i−1(4l−3))(1 − x2i−1(4l−3)x2i−1(4l−2))(1 − x2i−1(4l−2)x2i−1(4l−1))(1 − x2i−1(4l−1)x2i−1(4l)).

Note that these operators only sum over all even-indexed variables (i.e., i � 2). To obtain a renormalizable form for the partition
function it is necessary to trace over the lowest level i = 1 of the hierarchy, i.e., to eliminate all odd-index variables. For both
HN3 and HN5, this results in an identical structure, defined as
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�(μ1,x2(2j−2),x2(2j−1),x2(2j )) =
∑
x4j−3

∑
x4j−1

m
−x4l−3−x4l−1
1 (1 − x4j−3x4j−1)

× (1 − x4j−4x4j−3)(1 − x4j−3x4j−2)(1 − x4j−2x4j−1)(1 − x4j−1x4j ),

= 1 + eμ1 (1 − x2(2j−1))(2 − x2(2j−2) − x2(2j )). (15)

In Appendix A we show how to recast � in an Ising-like form with a sufficient number of renormalizable parameters. We can
simplify the grand partition function in Eq. (14) further by combining the products and writing

�(k)(m1, . . . ,mk) =
∑

x0,x2k−1 ,x2k

m
−x0−x2k−1 −x2k

k

⎛⎝k−2∏
i=2

2k−i−2∏
l=1

∑
x2i (4l−3)

∑
x2i (4l−1)

⎞⎠ 2k−3∏
l=1

ζ l
1(x4(2l−2),x4(2l−1),x4(2l)), (16)

where the explicit expression for ζ l
1 is also derived in Appendix A for both HN3 and HN5, which allows us to drop the subscript

label. In either case, the RG recursion equations now result from imposing the recursive relation between hierarchies,

ζ l
i+1(x2i+1(2l−2),x2i+1(2l−1),x2i+1(2l)) =

∑
x2i (4l−3)

∑
x2i (4l−1)

ζ 2l−1
i (x2i (4l−4),x2i (4l−3),x2i (4l−2))ζ

2l
i (x2i (4l−2),x2i (4l−1),x2i (4l)), (17)

which are derived in Appendix A. There Figs. 15 and 16 also
provide a graphical representation of Eq. (17).

A. Analysis of the RG recursions

We find that the RG recursions that follow from the previous
discussion, which are given explicitly in Eqs. (A5) for HN3
and in Eqs. (A7) for HN5 for the hard-core lattice-gas model,
have only two trivial fixed points. There is a stable low-density
fixed point for all μ < ∞, i.e., m > 0, and an unstable fixed
point at full packing for μ = ∞, i.e., m = 0. Note that in this
part of the analysis we are concerned with global properties
and thus ignore differences between the hierarchical level by
setting mi ≡ m throughout.

1. Analysis for HN3

The limit m → 0 of the recursions in Eqs. (A5) for initial
conditions given in Eqs. (A3) is difficult to handle. Except for
κ1, all other parameters are either diverging or vanishing in
Eqs. (18) for that limit. To achieve a clearer picture, we evolve
the recursions once and obtain

η2 ∼ 24

5
, γ2 ∼ 8

3
, C2 ∼ m2

8
,

(18)

κ2 ∼ 15

8
, λ2 ∼ 25

24
, �2 ∼ 4

25m
.

In fact, further revolutions in the recursions seems to preserve
this picture: Ci scales with a rapidly growing power of m, while
all other parameters and �̄i = m�i become finite for m = 0
at any order i. Thus we replace � with �̄ and subsequently
set m → 0 in Eqs. (A5), yielding

Ci+1 ∼ mγiC
2
i

2
, γi+1 ∼ γiηiκi, ηi+1 ∼ 4κi

(1 + κi)2 ,

κi+1 ∼ λi

(1 + κi)

κi

, λi+1 ∼ (1 + κi)2

4κi

, (19)

�̄i+1 ∼ 2κ2
i �̄i(

2 + γiκ
2
i �̄i

)
(1 + κi)2 .

At its core, the two recursions for κ and λ have become
independent of all the others. The m = 0 fixed point itself
is then dominated solely by the stationary solution of their
recursions in Eqs. (19),

κ∗ = 1

22/3 − 1
, λ∗ = 1

22/3
(
22/3 − 1

) . (20)

Therefore, one finds a constant solution for η∗ =
4κ∗/ (1 + κ∗)2 = 1/λ∗ and the recursion γi+1 ∼ γi (κ∗/λ∗)
with the solution γi ∼ γ022i/3, which diverges for large i. The
situation for �̄i is more subtle. Numerics clearly indicates its
decay, but this could occur consistently in two ways. First, if
it were to decay such that γi�̄i still increases, then Eq. (19)
suggests �̄i+1 ∝ 1/γi , but that would render γi�̄i constant,
which is a contradiction. Alternatively, if both �̄i and γi�̄i

decay, then �̄i+1 ∼ �̄i [κ∗/ (1 + κ∗)]2, yielding �̄i ∼ 2−4i/3

in a consistent manner. Numerical studies verify that the latter
solution is indeed realized.

From the terms dropped in the m → 0 limit, we can extract a
crossover scale as follows: Achieving the limit m → 0 implies
that the widely occurring term mγi in Eqs. (A5) is considered
small enough to be discarded with respect to terms of order
unity. Hence, by identifying ξ =

√
2i(m) as the correlation

length within the small-world metric supplied by Eq. (2), using
γi(m) ∼ 1/m yields 2i(m) ∼ m−3/2 or

ξ ∼ e(3/4)μ. (21)

as the diverging length below which the systems orders
for a correspondingly diverging chemical potential μ → ∞.
Indeed, for m = 10−4, for example, we find numerically that
the solution veers off the unstable fixed point just below
the i = 10th iteration; Fig. 4 demonstrates the correctness of
Eq. (21) for any small m.

2. Analysis for HN5

The analysis for HN5 is surprisingly subtle. Although the
preceding fixed-point analysis for HN3 required the singular
limit m → 0 as part of the consideration, after the appropriate
rescaling of the parameters with m, the subsequent approach
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FIG. 4. (Color online) Plot of the value of κi after the ith RG step
for m = 10−2,10−4,10−6, and 10−8 (left to right). At a length scale
ξ (m) = 2i with i = − 3

4 log2 m, the behavior of κi crosses over from
the value at the unstable m = 0 fixed point, κ∗ = 1/(22/3 − 1) ≈ 1.70,
to the stable m = 1 (μ = 0) fixed point at which κ∗ = 1.

proceeds in a familiar fashion. HN5 obscures this approach
with an additional layer of complexity, resulting from strong
alternating effects order to order in the RG, as the numerics
reveals. Of course, the initial conditions here are identical
to those for HN3 in Eqs. (A3), with the same pathologies
in the m → 0 limit. However, whereas those problems were
essentially resolved for HN3 after one RG step and rescaling
[see Eqs. (18)], here we find

C2 ∼ m2

2
, γ2 ∼ 2, η2 ∼ 8

9
,

(22)

κ2 ∼ 3

8m
, λ2 ∼ 9

8
, �2 ∼ 8

9
,

C3 ∼ m5

16
, γ3 ∼ 16

9m
, η3 ∼ 16m,

(23)

κ3 ∼ 9

16
, λ3 ∼ 1

16m
, �3 ∼ 16m,

etc. This alternation between regular and singular behaviors
of each of the parameters persists thereafter. Leaving the
recursion for Ci aside for now, we notice that for even indices
γ2n, η2n, mκ2n, λ2n, and �2n remain finite for m → 0, but for
odd indices, this is true for mγ2n−1, η2n−1/m, κ2n−1, mλ2n−1,
and �2n−1/m. Defining γ̄2n−1 = mγ2n−1, η̄2n−1 = η2n−1/m,
κ̄2n = mκ2n, λ̄2n−1 = mλ2n−1, and �̄2n−1 = �2n−1/m, it is
useful to rewrite the recursions in Eqs. (A7) separately for
even and odd indices. In fact, the limit m → 0 on its explicit
appearance can now be taken to get

γ2n = η̄2n−1(2 + γ̄2n−1),

γ̄2n−1 = η2(n−1)(2 + mγ2(n−1)) ∼ 2η2(n−1),

η2n = γ̄2n−1
2 + γ̄2n−1

(1 + γ̄2n−1)2
,

η̄2n−1 = γ2(n−1)
2 + mγ2(n−1)

(1 + mγ2(n−1))2
∼ 2γ2(n−1),

κ̄2n = λ̄2n−1
(1 + γ̄2n−1)2

2 + γ̄2n−1
,

κ2n−1 = λ2(n−1)
1 + mγ2(n−1)

2 + mγ2(n−1)
∼ 1

2
λ2(n−1),

λ2n = (1 + γ̄2n−1)2

γ̄2n−1(2 + γ̄2n−1)
,

λ̄2n−1 = 1 + mγ2(n−1)

γ2(n−1)(2 + mγ2(n−1))
∼ 1

2γ2(n−1)
,

�2n = γ̄2n−1
2 + γ̄2n−1

(1 + γ̄2n−1)2
,

�̄2n−1 = γ2(n−1)
2 + mγ2(n−1)

(1 + mγ2(n−1))2
∼ 2γ2(n−1). (24)

Note that for the limit m → 0 we only assume that mγ2(n−1) �
1 for n → ∞ on the right-hand set of these relations, which
provides a correlation length from the crossover nco = n(m)
at γ2nco ∼ 1/m. Eliminating all odd-index quantities from the
equations yields

γ2n = 4γ2(n−1)(1 + η2(n−1)), η2n = 4η2(n−1)
1 + η2(n−1)

(1 + 2η2(n−1))2
,

κ̄2n = 1 + 2η2(n−1)

4γ2(n−1)(1 + η2(n−1))
, λ2n = (1 + 2η2(n−1))2

4η2(n−1)(1 + η2(n−1))
,

�2n = 4η2(n−1)
1 + η2(n−1)

(1 + 2η2(n−1))2
. (25)

These interlacing recursions now have a simple fixed point,
which derives from the only nontrivial solution of the self-
contained η equation:

η∗ =
√

3

2
. (26)

This implies the equally stationary value

�∗ = 1

λ∗ = 4η∗ (1 + η∗)

(1 + 2η∗)
= 3 + √

3

2
, (27)

but we also find the asymptotically scaling

γ2n ∼ γ0[2(2 +
√

3)]n ∝ 1

κ̄2n

. (28)

This provides the correlation length estimate

ξ = 2nco ∼ exp

(
μ

log2[2(2 + √
3)]

)
. (29)

B. Coverage and entropy

To understand the most pertinent features of the prob-
lem, such as the optimal packing (or coverage) and its
entropy, we have to consider the asymptotic behavior of the
renormalization-group parameter Ci , related to the growth of
the overall energy scale, in Eq. (19) for the initial condition
in Eq. (18). Clearly, the partition function at any finite system
size is a polynomial in eμ, i.e., in powers of m−1. Both of these
quantities, packing fraction and entropy, derive from the most
divergent power in m to be found in �. To wit, we can write,
for m → 0 with N = 2k + 1,

�(k) ∼ (σm−α)N (1 + am + bm2 + · · ·). (30)
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Then it is ∂μ ln � = −m∂m ln � ∼ Nα and we find, from
Eqs. (7) and (8),

ν = α,

s = ln σ

for N → ∞ at m = 0.
Equation (16) provides the grand canonical partition func-

tion �(k) for 2k + 1 site-occupation variables in terms of an
Ising-like canonical partition functionZ (k−1) for only 2k−1 + 1
(Boolean) spin variables. While �(k) depends only on the
hierarchical chemical potentials mi , ostensibly Z (k−1) depends
on a tuple �A1 of renormalizable couplings [see Eq. (A8)] in
addition to any explicit dependence on mi . Of course, the
couplings themselves are merely a function of the chemical
potentials, �A1 = �A1 (m1), through the RG initial conditions in
Eqs. (A3). Step by step in the RG, the couplings transform

according to Eq. (A9) each time the system size halves,
whereas the partition function stays invariant. Hence we can
expand on Eq. (16) and write

�(k)(m1, . . . ,mk) = Z (k−1)[ �A1(m1),m2, . . . ,mk]

= Z (k−2)[ �A2(m1,m2),m3, . . . ,mk]
...

= Z (1)[ �Ak−1(m1, . . . ,mk−1),mk], (31)

where Z (1) is simply a rudimentary Hanoi network consisting
of just three vertices.

1. Results for HN3

Specializing this discussion for HN3, we find for the
rudimentary partition function Z (1), in this case,

Z (1) = C−1
k−1

∑
x0

∑
x2k−1

∑
x2k

m
−(x0+x2k−1 +x2k )
k γ

−[(x0+x2k−1 )+(x2k−1 +x2k )/2]
k−1 η

−(x0+x2k )/2
k−1 κ

−(x0x2k−1 +x2k−1 x2k )
k−1 λ

−x0x2k

k−1 �
−x0x2k−1 x2k

k−1 . (32)

For a uniform chemical potential mi ≡ m for all i, one
finds that for m → 0 the partition function is dominated
overwhelmingly by the renormalized value of Ci , i.e.,

ln �(k) (μ) = lnZ (1)[ �Ak−1 (m) ,m] ∼ − ln Ck−1. (33)

Rewriting the recursion for Ci in Eq. (19) in this form yields

ln Ci+1 = 2 ln Ci + ln
(mγi

2

)
∼ 2 ln Ci + 2i

3
ln 2 + ln

(mγ0

2

)
,

(34)

which is easily summed up to give

ln Ck−1 = 2k−3 [ln C2 + ln (2mγ0)] . (35)

With C2 ∼ m2, as listed in Eq. (18), we get

1

2k
ln �(k) ∼ − 1

2k
ln Ck−1 ∼ −3

8
ln (m) − 1

8
ln (4γ0) ;

(36)

a comparison with Eq. (30) produces an exact prediction for
the maximal packing fraction of the lattice gas,

ν(μ → ∞) = 3

8
, (37)

i.e., for the minimal fraction of vertices needing cover in HN3,
it is

cmin = 5

8
. (38)

Note that the m dependence of C2 and of the recursion for Ci in
Eqs. (19) are crucial for this result, whereas γi is independent
of m and hence becomes irrelevant here. Unfortunately, the
entropy density in turn depends not only on the asymptotic
form for γi but on the nontrivial integration constant γ0, which
cannot be determined from the asymptotic behavior of the RG

flow; it is a global property of that flow and could depend on all
its details. However, the result suggest that, at least for HN3,
unlike for those lattices in Fig. 1, the entropy density does
not vanish but attains a non-trivial value. In fact, using the
recursions in Eqs. (A5) for arbitrary m and taking the m → 0
limit only in the end, we can exactly determine the constant σ

defined in Eq. (30) for the first few values of k (see Table I).
Finite-size extrapolation from the numerical evolution of the
RG flow up to k = 25 levels (i.e., system size N = 225) for a
finite but small value of m = 10−40 predicts that sVC(cmin) =
0.160 426(1). (Any variation of m over 10 decades does not
affect the extrapolation at this accuracy.) For smaller system
sizes we plot the packing fraction and the entropy density
for the entire range of the chemical potential in Fig. 5. In
the Appendix we describe how to evaluate derivatives of the
partition function, such as those leading to ν and s, within
the RG scheme. There we also develop a method to probe the
packing fraction for each level of the hierarchy; those results
are plotted in Fig. 6.

In the Appendix we derive a partial set of recursions to
approximate the number of solutions given in Table I. Our
failure to obtain a closed set of such equations (and an
asymptotic prediction) indicates the nontrivial origin of the
entropy density. Here we just plot the exact solutions for k = 3
and 4 for illustration in Figs. 7 and 8. As the numerical results
in Sec. V indicate, the optimal packing of the lattice gas at
any finite size N = 2k + 1 contains, for any k � 3, exactly
3 × 2k−3 + 1 particles.

2. Results for HN5

For HN5 we find that the rudimentary partition function
Z (1) is like that for HN3 in Eq. (39), except for additional
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FIG. 5. (Color online) Plot of (a) the packing fraction νVC and (b) its entropy density sVC for the lattice gas problem for HN3 for the first
few system sizes N = 2k + 1 with k = 2, . . . ,5 (top to bottom at m = 1) as a function of m.

repulsive terms:

Z (1) = C−1
k−1

∑
x0

∑
x2k−1

∑
x2k

m
−(x0+x2k−1 +x2k )
k

× γ
−[(x0+x2k−1 )+(x2k−1 +x2k )]/2
k−1

× η
−(x0+x2k )/2
k−1 κ

−(x0x2k−1 +x2k−1 x2k )
k−1 λ

−x0x2k

k−1 �
−x0x2k−1 x2k

k−1

× (1 − x0x2k−1 ) (1 − x2k−1x2k ) (1 − x0x2k ) . (39)

Hence Eq. (33) again applies, putting the focus on the analysis
of the recursion for Ci , which in its even and odd versions read

C2n = γ̄2n−1

2 + γ̄2n−1
C2

2n−1, C2n−1 = mγ2(n−1)

2 + mγ2(n−1)
C2

2(n−1).

(40)

With the results from Sec. IV A 2 at hand, when put together
in the limit m → 0, both recursions combine into

C2n ∼ mC4
2(n−1)(Aγ2n). (41)

The factor Aγ2n, even though it grows exponentially with n,
can be ignored because it does not depend on m. It is again
easy to sum up the logarithm of this equation (for odd values
of k, in this case) to get

1

2k
ln Ck−1 ∼ 1

8
ln C2 + 1

12
ln m ∼ 1

3
ln m, (42)

TABLE I. Listing of the first few values of σ and sVC, defined
in Eqs. (30) and (10), for HN3 of size N = 2k + 1. The sequence
for the total number of optimal configurations, σN , soon develops
nontrivial prime factors. The entropy density for the coverage sVC

only converges slowly to its numerical limit.

k σN sVC = ln σ

2 1 0
3 7 0.243 239
4 37 0.225 682
5 718 0.205 515
6 193 284 0.190 186
7 8 651 040 480 0.178 757
8 11 491 993 035 377 280 000 0.171 438
...

...
...

∞ 0.160 426(1)

with C2 ∼ m2 from Eqs. (22). As for Eq. (36), for the maximal
packing fraction of hard-core gas particles this implies

ν (μ → ∞) = 1

3
, (43)

i.e., for the minimal fraction of vertices needing cover in HN5,
it is

cmin = 2

3
. (44)

In parallel to Sec. IVA 1, we can obtain only the constant σ

defined in Eq. (30) for the first few values of k (see Table II).
By the same procedure as for HN3 above, we predict here that
sVC(cmin) = 0.119 83(1). For smaller system sizes we plot the
packing fraction and the entropy density for the entire range
of the chemical potential in Fig. 9. Figure 10 illustrates the
strong alternating behavior between successive levels, here in
the form of their relative packing fraction.

FIG. 6. (Color online) Plot of the packing fraction per level 2iνi

on HN3 for various system sizes N = 2k + 1 with k = 7,12,17,22,
and 26, plotted also on a relative level-scale i/k at m → 0.
Asymptotically, in large systems, all vertices in higher levels i appear
to be just 50% packed (or covered), which is minimally necessary to
cover the one small-world edge connecting such vertices. (Of course,
each level contains half as many vertices as any preceding level and
thus contributes ever less to the overall coverage.) This packing may
well be random as such vertices are far separated between the higher
levels. A significantly lower packing (higher coverage) is attained
only at an ever small fraction of the lowest levels to account for the
overall packing fraction of 3

8 (coverage 5
8 ).
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FIG. 7. (Color online) Depiction of perfect coverings on HN3 for k = 3. Of all seven solutions, we omitted the three obtained by
reflection from these. Light-colored sites belong to the vertex cover, dark-colored sites mark particles with hard-core repulsion that prevents
nearest-neighbor occupation.

V. MONTE CARLO SIMULATIONS

We performed Monte Carlo simulations of the lattice gas by
using the grand canonical ensemble in Eq. (6). To achieve a fast
convergence of the Markov chains, we used the Metropolis-
coupled Markov-chain Monte Carlo (MCMCMC) approach
[29], also termed later parallel tempering [30] in the physics
community. The idea of the MCMCMC approach is to perform
Monte Carlo simulations for n independent replicas studied
at different values of the chemical potential μ = μ1, . . . ,μn

with μ1 = 0 < μ2 < · · · < μn. One allows that the replicas
are exchanged via two-replica Metropolis steps, such that an
overall detailed balance is achieved. Details of the Monte Carlo
moves have been given in previous works, e.g., Ref. [31]. The
parameters for the simulations performed for this work are
shown in Table III.

Monte Carlo simulation results

For comparison with the analytic calculations, we show the
numerical results for the density of particles. In Fig. 11 the
resulting largest density ν, measured at the highest value of

the chemical potential μ, is shown as a function of system
size N for HN3 and HN5, respectively. To extrapolate to an
infinite system size, we have fitted [32] the data to power laws
of the form

ν(N ) = ν∞ + b N−c. (45)

The resulting values are displayed in Table IV. Note that
for HN5 we fitted only even powers k since odd powers result
in highest densities of exactly ν = 1

3 . The resulting values ν∞
agree precisely with the analytical results 3

8 and 1
3 for HN3

and HN5, respectively. Also the coefficients describing the
finite-size corrections seem to be rational numbers: b = 5

8 and
c = −1 for HN3 and b = 1

3 and c = −1 for HN5. They can be
understood in the following way, e.g., for HN3: The number of
nodes is N = 2k + 1, i.e., exactly one more than a power of 2.
The number of occupied nodes for the highest density is exactly
3
8 of the 2k nodes plus one extra node, i.e., Nν(N ) = 3

8 2k +
1 = 3

8 (2k + 1) + 5
8 , which results in ν(N ) = 3

8 + 5
8 N−1. In a

similar way, the scaling for the HN5 graphs can be explained,
where N is not divisible by 3.

FIG. 8. (Color online) Depiction of perfect coverings on HN3 for k = 4. Of all 37 solutions, we omitted the 17 obtained by reflection from
these. Light-colored sites belong to the vertex cover, dark-colored sites mark particles with hard-core repulsion that prevents nearest-neighbor
occupation.
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TABLE II. Listing of the first few values of σ and sVC defined in
Eqs. (30) and (10) for HN5 of size N = 2k + 1. The sequence for σN

soon develops nontrivial prime factors. The entropy density for the
coverage sVC alternates and only converges slowly to its numerically
determined limit.

k σN sVC = ln σ

2 2 0.173 287
3 7 0.243 239
4 6 0.111 985
5 159 0.220 479
6 1350 0.112 623
7 21 268 575 0.131 818
...

...
...

∞ 0.119 83(1)

Next, we go beyond the analytical calculations by studying
the properties of the solution landscape via sampling con-
figurations of highest density. Hence one must ensure that
configurations exhibiting the same statistical weight in Eq. (6)
are sampled with the same probability or frequency. For many
systems exhibiting complex solution landscapes, this is quite
an effort [33–36].

To achieve unbiased sampling here, we always stored
a configuration of the highest density of a replica visiting
the highest value μmax of the chemical potential whenever
that replica previously had visited the value μ = 0 in the
MCMCMC scheme. It may be said that the replica has
performed a round-trip. This means that before a replica is
stored next time, it must again diffuse to μ = 0 and return to
the highest value of μ [37]. Typical round-trip times range from
∼20 for N = 17 to ∼20 000 for N = 2049. To test whether
this procedure yields unbiased sampling, we studied small
systems of size N = 33, where, in principle, all solutions can
be enumerated. For both systems HN3 and HN5, we sampled
106 configurations of highest density and counted how often
each configuration was found. The resulting histograms appear
very flat (see in Fig. 12). Hence the sampling seems to work
very well, at least for Hanoi graphs.

Next we study the configuration landscape of the hard-
core lattice gas at the highest density. For this purpose
we take, for each value N of the system size, a set of

FIG. 10. (Color online) Plot of the packing fraction per level 2iνi

on HN5 for various system sizes N = 2k + 1 with k = 7,12,17,22,
and 26, plotted also on a relative level-scale i/k for m → 0. In an
alternating fashion, levels attain an interlaced higher or lower relative
packing (lower or higher coverage), which varies very little between
the levels and seems to converge to nontrivial values. Notice that
the apparent closing of the gap at the highest levels results from the
numerical evaluation of the RG recursions at very small but still finite
chemical activity (here m = 10−9).

K = 200 randomly sampled configurations of highest density.
We apply a clustering algorithm to each set to generate a
hierarchical tree (dendrogram) representation such that similar
configurations are grouped closer to each other than less
similar configurations. As a measure of similarity between two
configurations {x(α)

i } and {x(β)
i } we simply use the normalized

Hamming distance

d
({

x
(α)
i

}
,
{
x

(β)
i

}) = 1

N

∑
i

δ
x

(α)
i ,x

(β)
i

. (46)

We apply the clustering algorithm of Ward [21], which
has already been applied to the analysis of phase-space
structures [31,36,38] (see Ref. [38] for details). The resulting
dendrograms are shown in Fig. 13. The configurations are
located at the leaves of the dendrogram, at the top of each
dendrogram. Arranging the configurations from left to right as
they appear in a dendrogram, a certain order of configurations
is given. Note that the order is not unique, since for any node of
the tree the two subtrees can be exchanged without changing
the clustering. Nevertheless, exchanging two subtrees has no
effect on the final results. Note that any set of vectors can

FIG. 9. (Color online) Plot of (a) the packing fraction νVC and (b) its entropy density sVC for the lattice gas problem for HN5 for the first few
system sizes N = 2k + 1 with k = 2, . . . ,5 (with alternating behavior) as a function of m. Each entropy drops noticeably in the limit m → 0.
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TABLE III. Parameters of the MCMCMC simulations: N is the
system size, n is the number of different values of the chemical
potential μ, μmax is the maximum value of μ, and tMCS is the total
number of Monte Carlo sweeps, where in each sweep each variable
is on average allowed to flip once and n − 1 times a replica exchange
is attempted.

N n μmax tMCS

17 5 6 2 × 104

33 5 6 2 × 104

65 8 6 4 × 104

129 10 7 1 × 105

257 17 8 1 × 105

513 21 8 2 × 105

1025 33 10 1 × 106

2049 53 30 2 × 107

be clustered and represented hierarchically in this way. This is
possible even for a set of purely random binary-valued vectors.

Whether this hierarchical clustering represents the original
landscape structure well can be investigated in the following
way. One draws the matrix of Hamming distances by using the
order of the configurations to order the rows and columns
of the matrix. If, e.g., one takes a set of suitably large,
random Boolean-valued vectors, the resulting matrices would
appear basically gray, showing that the order imposed by the
clustering is artificial in this case. In Fig. 13 the Hamming-
distance matrices are shown for a couple of sample systems.
For both cases HN3 and HN5, at small system sizes, a complex
block-diagonal structures is visible such that each visible block

10 100 1000
N

0.35

0.4

0.45

0.5

ν

HN3
fit

10 100 1000
0.32

0.33

0.34

0.35

0.36

0.37

0.38

HN5
fit
1/3

FIG. 11. Highest density ν of the lattice gas on Hanoi networks
found in the Monte Carlo simulation as a function of system size
N . The main plot shows HN3, the inset shows HN5. The solid lines
represent fits to powers laws according to Eq. (45) (see Table IV).
The dashed horizontal line in the inset marks the value 1/3.

TABLE IV. Result of power law fits to the ν(N ) data show in
Fig. 11 according to Eq. (45). Note that for HN5 only the data for
even powers k were used.

Network ν∞ b c

HN3 0.375 000 0(2) 0.625 00(2) −1.000 00(1)
HN5 (k even) 0.333 333(7) 0.3333(1) −1.0000(1)

exhibits a similar substructure. This gives the impression of a
complex hierarchical organization of the configuration space.
Nevertheless, when going to larger system sizes, the matrices
exhibit much less contrast, which strongly indicates that for
N → ∞ the solution landscape will be similar to a set of
random vectors, i.e., without any complex organization.

This result is supported when computing the cophenetic
correlations, which measure the correlation between the
Hamming distances d and the distances dc along the den-
drogram,

K ≡ [d dc] − [d][dc], (47)

where [· · ·] is the average over pairs of configurations. Note
that dc is the sum of the Hamming distances along a path in
the tree connecting a pair configurations, respectively.

The resulting cophenetic correlation K as a function of
system size is displayed in Fig. 14. For both cases HN3 and
HN5, K decreases strongly as a function of system size, taking
the difference between even and odd powers k for HN5 into
account. For HN3 the data are compatible with a power law
K(N ) = 3.25N−0.68. Hence, in the limit of infinite system
sizes, the hierarchical structure imposed by the clustering
is not correlated to the actual Hamming distances. This
shows that the landscape of highest-density configurations

0 200 400 600
config ID
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5000

6000

7000

n fo
un

d

HN3, N=33

0 50 100 150
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7000

8000

HN5, N=33

FIG. 12. Histogram of how often each configuration of highest
density is sampled during the MCMCMC simulation of a N = 33
node graph for HN3 (main plot) and HN5 (inset). The total number
of sampled configurations was 106 in both cases.
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FIG. 13. Distance-distance matrices for sets of K = 200 ran-
domly sampled highest-density configurations. The columns and rows
are labeled by configurations; the order of the configurations in the
rows and columns is the same and is obtained via a clustering approach
(see the text). The clustering structure is visible by way of the trees
(dendrograms), which are shown below the matrices. The entries of
each matrix are normalized Hamming distances between different
configurations, shown in grayscale (black indicates distance 0 and
white indicates distance 1).

appears to be simple for both HN3 and HN5, in strong
contrast to the vertex-cover or lattice-gas problem on random
graphs [31].

VI. CONCLUSION

We have succeeded in obtaining the optimal vertex coverage
or packing fraction for the Hanoi networks HN3 and HN5 using
the renormalization group. Our Monte Carlo simulations al-
lowed us to confirm those results and extend them to any finite
size. We have also obtained the entropy to arbitrary accuracy.
We have shown that it is extensive and likely non-trivial in the
sense that there is no simple generator to provide the set of all
optimal configurations, a remarkable result for such a simple,
planar network. It is even more remarkable that for each given
size the set of all possible solutions has a complex hierarchical
structure, as visible from clustering the states and considering
distance-distance matrices. Nevertheless, an analysis of the
cophenetic correlations shows that in the thermodynamic limit,

10 100 1000
N

0

0.1

0.2

0.3

0.4

0.5

κ

HN3
fit

10 100 1000
0

1

2

3

4

5

6

7

8

HN5, k=even
HN5, k=odd

FIG. 14. Cophenetic correlations in Eq. (47) as a function of
system size for HN3 (main plot) and HN5 (inset). The solid line
displays the function K(N ) = 3.25N−0.68.

a set of random-vector-like solutions dominates entropically
and makes the solution landscape thermodynamically simple.

While there are no phase transitions in this problem,
the Hanoi networks would allow one to study analytically
an interesting percolation transition when considering an
interpolation between the network’s one-dimensional back-
bone alone (a simple bipartite lattice with just two perfect
solutions of 1/2 coverage) and the full network (with an
extensive set of frustrated optimal solutions of coverage
5/8 for HN3 or 2/3 for HN5) by adding the small-world
edges with a probability p. As a technical achievement we
derived the renormalization-group equations for hierarchy-
dependent observables to obtain, for instance, the packing
fraction provided by each level of the hierarchy in the
network. Here these observables merely revealed that higher
levels of the hierarchy become uniform (even if alternating)
in packing fraction, while most of the interesting structure
resides with the majority of variables at a few lowest levels,
in accordance with the numerical study of the ultrametric
relation between solutions. Nevertheless, similar techniques
might be useful to provide insight into the patchy nature of
ordering of whole classes of hierarchical networks in other
problems [12,25,26,39,40].
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APPENDIX A: DETERMINING THE RG RECURSION EQUATIONS

In the derivation of the recursive form of the partition function in Sec. IV we use Eq. (15) to transform � into the Ising-like
form with Boolean variables x,y,z

� (μ1,x,y,z) = 1 + eμ1 (1 − y) (2 − x − z) .

= exp
{
2I + 1

2G [(x + y) + (y + z)] + 1
2H (x + z) + K (xy + yz) + Lxz + Dxyz

}
= C−2

1 γ
−[(x+y)+(y+z)]/2
1 η

−(x+z)/2
1 κ

−(xy+yz)
1 λ−xz

1 �
−xyz

1 , (A1)

where we have defined the convenient activity parameters

C = e−I , γ = e−G, η = e−H ,
(A2)

κ = e−K, λ = e−L, � = e−D.

Equation (A1) matches Eq. (15) for the choice of

C1 = m1

2 + m1
, γ1 = 2 + m1

m1
, η1 = m1 (2 + m1)

(1 + m1)2 ,

(A3)

κ1 = 1 + m1

2 + m1
, λ1 = (1 + m1)2

m1 (2 + m1)
, �1 = m1 (2 + m1)

(1 + m1)2

(with m1 = e−μ1 ), which serve as the initial conditions for the renormalization-group flow for both HN3 and HN5.
In terms of these renormalization-group parameters one can then show for HN3 that the sectional partition functions ζ have

to be written as

ζ l
i (x,y,z) =

∑
a

∑
b

C−2
i m−a−b

i+1 γ
−[(x+a)+(a+y)+(y+b)+(b+z)]/2
i η

−[(x+y)+(y+z)]/2
i κ

−(xa+ay+yb+bz)
i λ

−(xy+yz)
i �

−(xay+ybz)
i (1 − ab)

= C−1
i+1γ

−[(x+y)+(y+z)]/2
i+1 η

−(x+z)/2
i+1 κ

−(xy+yz)
i+1 λ−xz

i+1 �
−xyz

i+1 , (A4)

for which we have depicted the tracing operation graphically in Fig. 15. This operation requires that, for HN3, the renormalized
quantities at i + 1 be expressed in terms of those at i with the RG recursions

Ci+1 = mi+1γiC
2
i

2 + mi+1γi

,

γi+1 = γiηiκi

2 + mi+1γi

2 + mi+1γiκi

,

ηi+1 = κi

(2 + mi+1γi) (2 + mi+1γiκi)

(1 + κi + mi+1γiκi)2 ,

κi+1 = λi�i

(2 + mi+1γiκi) (1 + κi + mi+1γiκi)

(2 + mi+1γi)
(
1 + κi�i + mi+1γiκ

2
i �i

) ,
λi+1 = (1 + κi + mi+1γiκi)2

κi (2 + mi+1γi) (2 + mi+1γiκi)
,

�i+1 = (2 + mi+1γi)
(
1 + κi�i + mi+1γiκ

2
i �i

)2

�i

(
2 + mi+1γiκ

2
i �i

)
(1 + κi + mi+1γiκi)2 .

(A5)

For HN5, we obtain, correspondingly,

ζ l
i (x,y,z) =

∑
a

∑
b

C−2
i m−a−b

i+1 γ
−[(x+a)+(a+y)+(y+b)+(b+z)]/2
i η

−[(x+y)+(y+z)]/2
i

×κ
−(xa+ay+yb+bz)
i λ

−(xy+yz)
i �

−(xay+ybz)
i (1 − ab)(1 − xa)(1 − ay)(1 − yb)(1 − bz), (A6)

= C−1
i+1γ

−[(x+y)+(y+z)]/2
i+1 η

−(x+z)/2
i+1 κ

−(xy+yz)
i+1 λ−xz

i+1 �
−xyz

i+1 ,
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FIG. 15. (Color online) Depiction of the graphlets associated with
the sectional partition function ζ l

i in Eq. (A4) during one RG step on
HN3. The step consists of (a) tracing out odd-labeled variables xn±1

(taking into account the hard-core constraint relevant at this level)
and (b) expressing the renormalized couplings (γ ′,η′,κ ′,λ′,�′) in
terms of the old couplings (γ,η,κ,λ,�). To save space, the one-point
couplings (bond magnetizations [41]) γ and η have been omitted.
These drawings summarize the calculations in Eqs. (A4) and (A5).

a procedure that is graphically depicted in Fig. 16. Those extra
repulsion terms in HN5 then lead to dramatically simpler RG
recursions than in Eq. (A5):

Ci+1 = mi+1γiC
2
i

2 + mi+1γi

, γi+1 = ηi

2 + mi+1γi

m
,

ηi+1 = mi+1γi (2 + mi+1γi)

(1 + mi+1γi)2 , κi+1 = λi

(1 + mi+1γiκi)

(2 + mi+1γi)
,

λi+1 = (1 + mi+1γi)2

mi+1γi (2 + mi+1γi)
, �i+1 = mi+1γi (2 + mi+1γi)

(1 + mi+1γi)2 .

(A7)

For the discussion in Appendix B it is useful to define the
vector of renormalizable parameters,

�Ai (m1, . . . ,mi) = (Ci,γi,ηi,κi,λi,�i) , (A8)

where at each level of the RG i depends implicitly, through
the renormalized parameters, on the first i values of the
chemical potentials, as in Eq. (18) for the initial case i = 1, for
example. In the analysis presented herein we will symbolically
refer to these renormalization-group equations formally as a
(nonlinear) operator,

�Ai+1 (m1, . . . ,mi+1) = �Rmi+1 [ �Ai (m1, . . . ,mi)], (A9)

highlighting the fact that the RG transforms depend explicitly
on the parameters mi+1.

FIG. 16. (Color online) Depiction of the (exact) RG step on HN5.
This step is identical to that for HN3 in Fig. 15 aside from the
additional hard-core repulsive terms (a) between xn±2 and xn, which
is relevant for the current RG step, and (b) between xn−2 and xn+2,
which contributes at the next level of the RG.

APPENDIX B: HIERARCHICAL PACKING FRACTION

For later use, we follow convention in defining the Jacobian
matrix derived from a formal derivation of the renormalization-
group equations as defined in Eqs. (A8) and (A9),

↔
W

(
�Ai

)
= ∂ �Ai+1

∂ �Ai

=
∂ �Rμi+1

(
�Ai

)
∂ �Ai

= ∂ (Ci+1,γi+1,ηi+1,κi+1,λi+1,�i+1)

∂ (Ci,γi,ηi,κi,λi,�i)
. (B1)

Using the fundamental statement for the grand partition
function �(k) of the unrenormalized system (or the free
energy f (k) = 2−k ln �(k) instead) in terms of the renormalized
partition functions Z(i<k) in Eq. (32), we can find, for the
specific packing fraction in the ith level of the hierarchy,

νi( �μ) = 1

2k

〈
2k−i∑
j=1

x2i (2j−1)

〉
= ∂f (k)

∂μi

= −2−kmi

d

dmi

ln �(k),

(B2)

implicitly defining the hierarchy-specific chemical potential
mi = eμi in the form of the vector

�m = (m1,m2, . . . ,mk). (B3)

Applying such a derivative to the sequence in Eq. (31), we
obtain, for 1 � i < k,

d

dmi

ln �(k)(m1,m2, . . . ,mk)

= d

dmi

ln Z(1)[ �Ak−1 (m1, . . . ,mk−1) ,mk]

= ∂ ln Z(1)[ �Ak−1,mk]

∂ �Ak−1

◦ d �Ak−1

dmi

. (B4)

We can understand the progression of derivatives in Eq. (B4)
from the result in Eq. (A9),

d �Al

dmi

= d

dmi

�Rml
[ �Al−1 (m1, . . . ,ml−1)]

=

⎧⎪⎪⎨⎪⎪⎩
∂ �Rmi

∂mi
[ �Ai−1 (m1, . . . ,mi−1)], i = l

W↔( �Al−1) ◦ d �Al−1(m1,...,ml−1)
dmi

, i < l

0, i > l,

(B5)

using, from Eq. (B1), the matrix

↔
W

(
�Al

)
= ∂ �Rml+1

∂ �A [ �Al (m1, . . . ,ml)]. (B6)

Note that the distinction between the implicit and explicit
derivatives in Eq. (B5) results from the explicit occurrence
of mi just that once in the ith RG step in the recursions
and that afterward the parameters being renormalized depend
implicitly on mi . Thus application of the relation in Eq. (B5),
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repeatedly for all l > i and once, finally, for l = i, yields

d

dmi

ln �(k)(m1, . . . ,mk) = ∂ ln Z(1)

∂ �A ( �Ak−1,mk) ◦ ↔
W ( �Ak−2) ◦ . . . ◦ ↔

W ( �Ai) ◦ ∂ �Rm

∂m
[ �Ai−1(m1, . . . ,mi−1)]. (B7)

Now it is easy to set all chemical activities equal, mi = m, with 1 � i � k, irrespective of which hierarchy was targeted,
to get

d

dmi

ln �(k) (m1, . . . ,mk)

∣∣∣∣
mi≡m

=

⎧⎪⎪⎨⎪⎪⎩
∂ ln Z(1)

∂ �A ( �Ak−1,m) ◦ ↔
W ( �Ak−2) ◦ · · · ◦ ↔

W ( �Ai) ◦ ∂ �Rm

∂m
( �Ai−1), 1 � i < k

∂ ln Z(1)

∂m
( �Ak−1,m), i = k.

(B8)

We can relate this procedure to that for the total occupation
defined in Eq. (7) using a uniform m. To this end, we define an
extended vector of parameters with an explicit m dependence

�A′
i = ( �Ai,m) = (Ci,γi,ηi,κi,λi,�i,m) . (B9)

Then

d

dm
�A′

i =
(

d

dm
�Ai,

dm

dm

)
=
(

↔
W ( �Ai−1) ◦ d

dm
�Ai−1 + ∂ �Rm

∂m
( �Ai−1),1

)

=
↔
W ′( �Ai−1) ◦ d

dm
�A′

i−1, (B10)

with the extended Jacobian matrix

↔
W ′( �Ai−1) =

⎡⎢⎢⎢⎣
∂ �Ai

∂ �Ai−1

∂ �Ai

∂m

∂m

∂ �Ai−1

∂m

∂m

⎤⎥⎥⎥⎦

=
⎡⎣ ↔

W ( �Ai−1)
∂ �Rm

∂m
( �Ai−1)

0 1

⎤⎦ . (B11)

According to Eqs. (7) and (B2) we have ν = ∑k
i=1 νi , so

d

dm
ln �(k)(m) =

k∑
i=1

d

dmi

ln �(k)(m1, . . . ,mk)

∣∣∣∣
mi≡m

= ∂ ln Z(1)

∂m
( �Ak−1,m) + ∂ ln Z(1)

∂ �A ( �Ak−1,m) ◦
k−1∑
i=1

↔
W ( �Ak−2) ◦ . . . ◦ ↔

W ( �Ai) ◦ ∂ �Rm

∂m
( �Ai−1)

= ∂ ln Z(1)

∂m
( �Ak−1,m) + ∂ ln Z(1)

∂ �A ( �Ak−1,m)

◦
[

↔
W ( �Ak−2) ◦

[
. . .

[
↔
W ( �A2) ◦

[
↔
W ( �A1) ◦ ∂ �Rm

∂m
( �A0) + ∂ �Rm

∂m
( �A1)

]
+ ∂ �Rm

∂m
( �A2)

]
. . .

]
+ ∂ �Rm

∂m
( �Ak−2)

]

= ∂ ln Z(1)

∂m
( �A′

k−1) + ∂ ln Z(1)

∂ �A ( �A′
k−1) ◦

↔
W ′( �Ak−2) ◦ . . . ◦

↔
W ′( �A1) ◦ ∂ �A′

0

∂m
, (B12)

where the last equality follows from Eqs. (B10) and (B11).

[Note that ∂ �A′
0

∂m
= (0,1).]

APPENDIX C: COUNTING OPTIMAL PACKINGS

In this section we attempt to determine a set of recursions
to count the number of optimal packings in HN3. In the end,
we merely succeed in providing a rigorous lower bound on the

entropy density. This exercise is interesting in its own right
as it highlights the surprising complexity in the structure of
vertex covers or particle packings on this network. The key
ingredients to provide such an approach originate with the
depictions of the solutions for k = 3 and 4 in Figs. 7 and 8 and
with the observation, in Sec. V, that at each finite system size
N = 2k + 1, exactly 3 × 2k−3 + 1 particles can be maximally
packed into the network. Let us imagine we would try to
assemble the k = 4 solutions from those of size k = 3. We
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TABLE V. Distinct classes (see the text) of solutions for HN3 for
each system size N = 2k + 1. For each k, the total count adds up to
the number of solutions given in Table I.

k (011) (110) (101) (111)

3 1 1 3 2
4 3 3 10 21
5 30 30 138 520
6 4140 4140 22 440 162 564

would have to join any two solutions at one end point and add
a long link between their respective midpoints; the merging
point becomes the new midpoint and the respective open end
points remain just that. In the process (k − 1) → k, we have
to remove a single particle overall, as

2[3 × 2(k−1)−3 + 1] − 1 = 3 × 2k−3 + 1. (C1)

In this construction, it appears that only the state of midpoints

and end points is relevant, which we can denote by
(
n0nN/2nN

)
with ni ∈ {0,1}, depending on whether that site is (1) or is not
(0) occupied by a particle. For instance, the four solutions in
Fig. 8 would be labeled (110), (111), (101), (101) from left to
right and then from top to bottom; we omit the reflection (011)
of (110). In fact, a glance at Fig. 8 suggests these are the only
four possibilities realized. We have directly enumerated these
classes in Table V.

To construct solutions of size k from those at size k − 1 we
consider all 16 pairings of these classes, which we symbolize
by ̂(n0nN/4nN/2)(nN/2n3N/2nN )

k−1 → (n0nN/2nN )k, (C2)

where the overcaret corresponds to the extra long-range edge
added to connect the two former midpoints, prohibiting them
from being simultaneously occupied. With that, we find the
following rules. (i) Merging two end points into a new
midpoint is possible (a) at no cost, when both are empty,
i.e., ̂(xx0)(0xx)k−1 → (x0x)k , making a new midpoint that
is empty, or (b) at the expense of one particle otherwise, i.e.,̂(xx0)(1xx)k−1, ̂(xx1)(0xx)k−1 or ̂(xx1)(1xx)k−1 → (x1x)k .2

(ii) Linking the two midpoints with an edge is possible (a) at
no cost, when at least one of the two midpoints is empty, or
(b) at the expense of one particle, from either the left or the
right midpoint, if both midpoints are occupied. The merger
can proceed only when exactly one particle gets expended,
due to Eq. (C1). Hence the combinations of (i a) with (ii b)
and (i b) with (ii a) are allowed. The eight permissible
mergers that are left exactly map these four classes onto
themselves: ̂(011)(101)k−1 → (011)k , (C3a)̂(101)(110)k−1 → (110)k , (C3b)̂(101)(011)k−1 → (101)k , (C3c)

2One might have thought that a combination of an occupied and
an unoccupied end point would permit the new midpoint to also be
occupied, but it would adjoin the neighbor of the unoccupied end
point, which is always occupied.

̂(110)(101)k−1 → (101)k , (C3d)̂(110)(011)k−1 → (101)k , (C3e)̂(101)(101)k−1 → (111)k , (C3f)̂(101)(111)k−1 → (111)k , (C3g)̂(111)(101)k−1 → (111)k . (C3h)

It seems straightforward now to deduce the recursions for the
number of configurations in each class, from one size to the
next. We define the cardinality for each set as xk ≡ |(011)k| ≡
|(110)k|, yk ≡ |(101)k|, and zk ≡ |(111)k| to obtain, from the
rules in Eqs. (C3),

xk = xk−1yk−1,

yk = 2fk−1xk−1yk−1 + 2gk−1x
2
k−1, (C4)

zk = y2
k−1 + 2yk−1zk−1,

with the initial conditions provided by Table V: x3 = 1, y3 = 3,
and z3 = 2. The recursions for xk and zk are exact, as is
illustrated by evolving from one row to the next in Table V.
The recursion for yk , though, can provide only a lower bound
on its growth. The factor of 2 in front of both terms arises
from Eqs. (C3a), as the maps in Eqs. (C3c) and (C3d) provide
two contributions to the first while the map in Eq. (C3e),
in applying rule (ii b), gives us two ways of removing a
particle in the second term. We insert variable factors fk and
gk to account for fact that in each of these cases (and only
these) the particle removal eliminates constraints on other
particles in the respective subgraph, opening the door for
an undetermined number of further combinations from less
than optimally packed subgraphs. All we know is that these
factors are larger than unity, but they could vary with k to
an unbounded size. For further analysis, we assume that they
can at least be approximated by constants f and g. Then we
divide the second recursion by the first in Eq. (C4) to find
yk/xk ∼ λ for k → ∞, with λ ≡ f +

√
f 2 + 2g � 1 + √

3.
It is then easy to obtain asymptotically yk ∼ λxk ∼ (λx3)2k−3

and zk ∼ 2k−3 (λx3)2k−3
(1 + z3/y3). The total number of opti-

mal packings is then �k � 2xk + yk + zk ∼ zk , which reduces
to the entropy density

sk ∼ ln �k

2k
� 1

8
ln(λx3) � ln(1 + √

3)

8
≈ 0.1256, (C5)

using x3 = 1 and the lowest value of λ. While this is a
poor lower bound, it nonetheless establishes the extensivity
of the solution space entropy.3 However, its derivation also
demonstrates that the structure of optimal packings is quite
nontrivial in this network.

3In fact, using initial conditions at k = 4,5, . . . instead provides a
monotonically increasing sequence that presumably converges to the
exact result.
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