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Single-file diffusion of particles with long-range interactions: Damping and finite-size effects
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We study the single file diffusion of a cyclic chain of particles that cannot cross each other, in a thermal
bath, with long-ranged interactions and arbitrary damping. We present simulations that exhibit new behaviors
specifically associated with systems of small numbers of particles and with small damping. In order to understand
those results, we present an original analysis based on the decomposition of the particles’ motion in the normal
modes of the chain. Our model explains all dynamic regimes observed in our simulations and provides convincing
estimates of the crossover times between those regimes.
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I. INTRODUCTION

When Brownian particles are confined along a line in a
quasi-one-dimensional channel so narrow that they cannot
cross each other, anomalous diffusion appears and strongly
subdiffusive behavior can be observed. This phenomenon
called single-file diffusion (SFD) was first noticed in 1955 by
Hodgkin and Keynes [1] who were studying water transport
through molecular-sized channels in biological membranes.
Since then, SFD also appeared in the diffusion of molecules in
porous materials like zeolites [2–5], of charges along polymer
chains [6], of ions in electrostatic traps [7], of vortices in band
superconductors [8,9], and of colloids in nanosized structures
[10–15] or optically generated channels [16,17]. Even though
SFD can be encountered in a lot of various physical systems,
most of the theoretical studies devoted to it are generally
restricted to the simplest case: an infinite overdamped system
with hard core interactions.

In this paper, we present simulation results concerning
finite systems of long-range interacting particles. In particular,
we focus on the dependency of the diffusion properties with
the number of particles N and the damping coefficient γ . We
exhibit new behaviors, specifically associated with systems of
small numbers of particles and with small damping. In order
to interpret those results, we present an original analysis based
on the decomposition of the particles’ motion in the normal
modes of the chain.

In the thermodynamic limit (infinite systems with finite den-
sity ρ), for overdamped dynamics with hard core interactions,
several analytical models [18–22] predict that at long times,
the mean square displacement [MSD; see below Eq. (13)] of a
particle of mass m grows as FH

√
t with the mobility FH given

by

FH = 2

ρ

√
D0

π
= 2

ρ

√
kBT

πmγ
, (1)

with D0 = kBT /(mγ ) being the single-particle free diffusion
coefficient at temperature T and kB being Boltzmann’s
constant. If the interactions are long ranged, only two ana-
lytical approaches have been undertaken so far [23,24], for
overdamped systems in the thermodynamic limit. There it is
proven that the MSD grows as FS

√
t at long times, with a

mobility FS that depends on the interaction potential, through

the isothermal compressibility κT [25] or the spring constant
K ≡ ρ/κT ,

FS = 2

ρ
S(0,0)

√
Deff

π
= 2kBT

√
κT

πmγρ
= 2kBT

1√
πmγK

,

(2)

where S(0,0) ≡ S(q → 0,t = 0) is the long-wavelength static
structure factor of the particles. The diffusivity Deff is the
effective diffusivity of a Brownian particle, taking into account
its interactions with the other Brownian particles [26], and
differs from the single-particle diffusivity D0. In its last
version, the expression (2) can be interpreted by considering
that we can derive FS from FH if we replace the interparticle
distance 1/ρ by the mean square displacement kBT /K of
a particle in the potential well due to its neighbors [25].
In Appendix B, we recover the formula (2) without the
assumption of overdamped Langevin dynamics (3).

In numerical simulations and experiments, the systems
are obviously finite. Periodic boundary conditions are used
in simulations, and annular geometries in experiments. As
a consequence of finite-size effects, the asymptotic behavior
at long time for the MSD is always DNt . All particles in
the system are then totally correlated and diffuse as a single
effective particle of mass Nm [20]. We recover it from our
analytical model and provide measurements of the diffusion
coefficient DN in good agreement with this interpretation. The
SFD regime may nevertheless be observed in finite systems if
the damping and the particles number are high enough, in a
manner that will be clarified by our approach of finite systems
dynamics.

However, most theoretical and experimental studies have
been performed for overdamped systems only. This is the
initial assumption in the existing models for long-range
interacting particles [23,24]. The relevant experiments were
generally done with solutions of colloids [10–17] for which
overdamping is a safe assumption. The simulations [27,28]
are shown in Ref. [25] to be in good agreement with the
theoretical prediction of Kollmann, but they also assume
overdamping in the choice of the simulation algorithm. In
order to explore underdamped systems, we have previously
studied the diffusion in a circular channel of millimetric steel
balls electrically charged [25]. In this experiment, identical
metallic beads are held in a plane horizontal condenser made
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FIG. 1. (Color online) Scheme of the system.

of a silicon wafer and a glass plate covered with an optically
transparent metallic layer. A constant voltage is applied to the
electrodes, inducing a charge distribution of the beads. The
condenser is fixed on loudspeakers excited with a white noise
voltage, and we have checked that this mechanical shaking
behaves as an effective thermal bath [25,29,30]. In this system
the measurement of the damping constant γ proved that the
balls’ diffusion is underdamped [29]. We have observed that
the MSD of the particles exhibit the SFD scaling predicted
for overdamped systems, with a prefactor that is only slightly
higher than the theoretical prediction (2). Unfortunately, we
were not able to tune the damping constant experimentally.
Thus, in order to investigate the specific role of damping on
the diffusion of finite systems we have developed numerical
simulations that allow easy changes of the damping constant.

The paper is organized as follows. Section II is devoted
to the description of the algorithm used in our numerical
simulation. In Sec. III, we present our numerical results and
exhibit new behaviors specific to systems of small numbers of
underdamped particles. We characterize the various regimes
for the MSD scaling with time and define the crossover
times between those regimes. In Sec. IV, we give a physical
interpretation of those regimes in the framework of our
analytical model. We recover the various scaling laws for
the MSD and provide estimates of the various crossover
times, showing their dependency on the damping and particle
numbers. We summarize our results in Sec. V. Two appendices
are devoted to complementary calculations.

II. DESCRIPTION OF THE SIMULATION

A. A line of particles with long-ranged interactions

We consider point particles of mass m located in the xy

plane, submitted to a thermal bath at temperature T . The
particles are confined by a quadratic potential in y in such a
way that they cannot cross each other, as if they were diffusing
in a narrow channel (see Fig. 1). This lateral confinement is
chosen to mimic as well as possible experimental situations.
We have checked that its strength does not influence the system
behavior provided the beads stay ordered.

We describe the dynamics with the Langevin equation. Let
ri = (xi,yi) be the position of the particle i. We do not take
into account the gravity, thus describing horizontal systems.
The particle is submitted to a confinement force −βyiey of
stiffness β and to the interaction potential U (ri), so that the
Langevin equation reads

r̈i + γ ṙi + ∇U (ri)

m
+ β

m
yiey = μ(t)

m
, (3)

with γ the damping constant and μ a random force. In our
simulations, the random force has the statistical properties of

a white Gaussian noise. Therefore, its components on both
axes must satisfy

〈μx(t)〉 = 0, 〈μy(t)〉 = 0, 〈μx(t)μy(t ′)〉 = 0, (4)

〈μx(t)μx(t ′)〉 = 〈μy(t)μy(t ′)〉 = 2kBT mγ δ(t − t ′), (5)

where 〈·〉 means statistical averaging.
It is suitable to put those equations in dimensionless form,

defining the following dimensionless variables: t = t̃/γ and
x = x̃

√
kBT /(mγ 2). It gives us

¨̃ri + ˙̃ri + ∇̃Ũ (r̃i) + β

mγ 2
ỹiey = μ̃(̃t), (6)

with the dimensionless quantities

Ũ (r̃i) = U (r̃i)

kBT
, μ̃(̃t) = μ(̃t)√

kBT mγ 2
, (7)

and the only nonzero correlation (5) now reads

〈μ̃x (̃t)μ̃x (̃t ′)〉 = 〈μ̃y (̃t)μ̃y (̃t ′)〉 = 2δ(̃t − t̃ ′). (8)

For the sake of simplicity, we drop the “tildes” (˜ ) in the rest
of this section.

In order to allow a direct comparison between simulations
and experiments, we take the same interaction potential as in
our experimental setup [25,29,30]. It reads

U (ri) = U0

∑
j �=i

K0

( |ri − rj |
λ

)
, (9)

where K0 is the modified Bessel function of second order and
index 0, and λ and U0 are two constants. In principle, the
sum extends to all particles, but in practice the summation
is limited to the first five neighbors of each particle, which
ensures a relative precision better than 10−7 and reduces the
calculation time.

To decrease the computation time further, we re-
place the Bessel functions in the expression of the force
F(ri )=−∇U (ri )=

∑
j �=i Fij (|ri−rj |) ri−rj

|ri−rj | by asymptotic expressions,⎧⎨⎩Fij (x) = U0
λ

[− 1
x

+ bx + cx ln(x)
]

for x � 1,

Fij (x) = U0
λ

[√
π
2x

e−x
(
1 + a

x

)]
for x � 1,

(10)

where a, b, and c are constants. They are chosen in such a way
that the force and its derivative are continuous for x = 1 and
that the force is equal to its actual value at this point. Those
two approximations fit very well the actual force (see Fig. 2).

B. Algorithm

The simulation is based on the Gillespie algorithm [31,32]
that allows a consistent time discretization of the Langevin
equation (6). We introduce a time step value 	t , which
for consistency has to be much smaller than any other
characteristic time scale of the system. In dimensionless units
	t = 10−3. Then the velocities ẋi(t + 	t) and ẏi(t + 	t) are
calculated from updating the formula derived from Eq. (6),
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⎧⎪⎪⎨⎪⎪⎩
ẋi(t + 	t) = ẋi(t) − [ẋi(t) + ∇U (ri(t)) · ex]	t + √

2	t μx(t),

ẏi(t + 	t) = ẏi(t) −
[
ẏi(t) + β

mγ 2
yi(t) + ∇U (ri(t)) · ey

]
	t +

√
2	t μy(t),

(11)

where ri(t) =
√

xi(t)2 + yi(t)2. The positions xi(t + 	t) and
yi(t + 	t) of all the particles are then calculated from

xi(t + 	t) = xi(t) + ẋi(t)	t,
(12)

yi(t + 	t) = yi(t) + ẏi(t)	t.

The components of the random noise μy and μx are sampled
in such a way that they have the properties given by Eqs. (4)
and (8); hence they are unit normal random numbers.

We simulate systems of N particles, with periodic boundary
conditions. We get from Eq. (12) N equivalent trajectories,
because all beads play the same role. The system is simulated
during a dimensionless time of 103, which means 106 time
steps. The quantity of interest is the MSD along the x direction,

〈	x2(t)〉 = 〈[x(t + t0) − x(t0) − 〈x(t + t0) − x(t0)〉]2〉, (13)

where t0 is an arbitrary initial time. The ensemble averaging
is done on every bead, since they all play an equivalent role.
Moreover, the phenomenon is assumed to be stationary, so that
	x2(t) do not depend on t0. For a given time t , it thus makes
sense to average on the initial time t0. Let n be the overall
number of time steps in one simulation, and nt = t/	t . Then
the averaging on the initial time t0 reads

〈〈	x2(t)〉e〉0 =
n−nt∑
i=0

{x[(nt + i)	t] − x(i	t)}2

n − nt + 1

−
(

n−nt∑
i=0

x[(nt + i)	t] − x(i	t)

n − nt + 1

)2

, (14)

where the index i is such that t0 = i	t , 〈·〉e means ensemble
averaging, and 〈·〉0 means averaging on the initial time t0.
This way of averaging greatly improves the statistics when nt

is smaller than n. We use it henceforward, denoting it with
the simplified notation 〈·〉 except in Appendix A where it is
specifically discussed.

C. Orders of magnitude of the various parameters

In our simulations, we work at densities ρ = 33, 100,
and 533 particles per meter. The temperature and interaction
strength are such that 
 ranges as in the experiments in
Refs. [10,16,17,25] and the numerical simulations in Refs.
[27,28,33]. The interest of the simulations is to get access
to parameter values that are difficult or impossible to obtain
experimentally. We vary the particle number N between 32
and 1024. This last value is comparable to some simulations
[27,28] but much greater than in experiments [10,16,17,25].
We vary the damping constant γ between 0.1 and 60 s−1,
extending the experimental range toward small values of γ .
This is to be compared to the cutoff frequency of the chain (see
Sec. IV A). With our damping constant range, we get access

to both the overdamped and the underdamped dynamics of
the particles and are thus able to exhibit the subtle behaviors
linked to underdamping.

We simulate the same system that was experimentally
studied in Ref. [25]. In the experiments, the bead number
N varies between 12 and 37, and the density ρ is 477, 566, or
654 particles per meter. The mean interparticle distance is thus
such that 1.53 < 1/ρ < 2.10 mm, to be compared to the range
λ = 0.48 mm of the potential. The dimensionless potential
energy is such that 6 < 
 < 55. The damping constant γ

ranges between 10 and 30 s−1 (see Ref. [29], Fig. 6). For the
experimental values of density and potential energy, the cutoff
frequency ranges between 21 and 37 s−1. Experimentally, we
are thus in the underdamped regime, as was already noticed in
Ref. [25].

III. SFD OF FINITE SYSTEMS: THE DIFFERENT
REGIMES

In this section, we present our results about the evolution
of the MSD 〈	x2(t)〉 as a function of the time t and focus on
the effects of the particle number N (at fixed density) and on
the damping constant γ . Two typical examples are provided
by Fig. 4. The evolution of the MSD may be described by the
power law 〈	x2(t)〉 ∝ tα , with an exponent α that depends
on the observation time. The interpretation detailed in Sec. IV
allows us to regroup them into three different regimes:

(i) During regime I, 0 � t � τball, the MSD grows accord-
ing to H1t

2.
(ii) during regime II, τball � t � τcoll, 〈	x2〉 may be pro-

portional to Dt only, to FS

√
t only, or to Dt and then FS

√
t ,

depending on the parameters of the simulation. The coefficient
D is not necessarily the free diffusion constant D0. When both

1 2 3 4 5 6
0

1

2

3

x

F
ij

x
λ

U
0

FIG. 2. (Color online) Force approximation. The thick black line
represents the actual force derived from Eq. (9), the open squares
and open circles are, respectively, the logarithmic and exponential
approximations in Eq. (10). The two approximations are matched at
x = 1.
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FIG. 3. (Color online) Evolution of the MSD (in mm2) according
to the time (in s) for a chain of 32 particles with density 533 m−1,
temperature T = 1012 K, and interaction potential 
 ≈ 7. The solid
line scales as t2, the dashed line scales as t , and the dotted line scales
as t1/2. (a) Damping constant γ = 0.1 s−1. In this low damping case,
regime II is characterized by a t scaling and regime III by a t2 then a
t scaling. (b) Damping constant γ = 60 s−1. In this strong damping
case, regime II is characterized by a

√
t scaling and regime III by a t

scaling.

scalings Dt and FS

√
t are observed, we define the crossover

time τsub between them.
(iii) A final regime, regime III, takes place for τcoll � t ,

〈	x2〉 = DNt at long times with DN �= D and DN �= D0. This
final asymptotic behavior is sometimes preceded by the scaling
HNt2 with HN �= H1, the crossover time being denoted as τlin.

A. The small-time regime (regime I)

Regime I is defined by an evolution, 〈	x2〉 = H1t
2. It is

observed in all data displayed in Fig. 4, and the prefactor H1

is independent of the damping constant [see Fig. 4(a)], of the
system size [see Fig. 4(b)], and of the interaction potential 
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FIG. 4. (Color online) Plot of 〈	x(t)2〉 (in mm2) according to the
time (in s) for a density ρ = 533 m−1. Unless otherwise specified,
the parameters are N = 32, T = 1012 K, 
 ≈ 6.8, and γ = 10 s−1.
Specific values are as follows: (a) γ = 0.1, 1, 10, and 60 s−1 (blue
diamonds, red squares, green triangles, and orange disks, respec-
tively). (b) γ = 1 s−1 and N = 4, 16, 64, and 128 (blue diamonds,
orange squares, red triangles, and green disks, respectively). (c) 
 ≈
4.4, 6.8, 9.8, and 13.4 (green disks, red squares, orange triangles,
and blue diamonds, respectively). (d) T = 1010, 1011, 1012, and 1013

K, (green disks, red squares, orange triangles, and blue diamonds,
respectively). The black thick line is Eq. (35), the dashed line is
FS

√
t with the mobility FS given by Eq. (2), and the dotted line is

either DNt with DN given by Eq. (18), in (a), (c), and (d) or Dt

with D given by Eq. (16) in (b). There are no free parameters in the
calculations.

[see Fig. 4(c)]. In this time range (0 � t � τball), each particle
behaves independently of the others and ensures a ballistic
flight at its thermal velocity

√
kBT /m, so that the constant

H1 should thus be equal to kBT /m. The duration of this first
ballistic regime is called τball. From our data summarized in
Fig. 4, we measure the constant H1 and show in Fig. 5(a) that
it is indeed in perfect agreement with its predicted value.

This behavior is obviously not observed in the simulations
of the overdamped Langevin equation [15,27,28,34], but
has already been seen in simulations of the full dynamics
[35,36].

B. The intermediate time regime (regime II)

If we consider now the second regime, two different
behaviors with distinct power laws can be observed: Fig. 4(a)
shows that for the highest values of γ , 〈	x2〉 only grows as√

t . When γ is decreased, a linear evolution in Dt appears
for τball < t < τsub. For the lowest values of γ = 1 s−1 and
γ = 0.1 s−1, the

√
t scaling completely disappears. This is

a finite-size effect, as demonstrated by Fig. 4(b). The data
displayed in this picture are recorded at a low value, γ = 1
s−1, and the

√
t scaling is indeed recovered at large numbers

of particles, typically N > 128. Data from simulations with
256, 512, and 1024 particles (at constant density) superimpose
exactly on the data for 128 particles.

We could be tempted to explain the linear evolution in Dt

by arguing that we observe the diffusion of a free particle that
needs a finite time to feel the effect of confinement. If this
should be the case, the diffusion coefficient D should be the
diffusion constant for a free particle, which is

D0 = kBT

mγ
. (15)

In Fig. 5(b), we compare our numerical values of D to D0.
It is obvious that D is very different from D0 except at the
lowest values of the density ρ (that is, low interactions). We
see in Sec. IV D that for high interactions the coefficient D

actually results from a collective behavior of the particles. In
our model [see Eq. (42)], when ρ is high (high interactions),
the coefficient D doesn’t depend upon γ and is given by

D = kBT

2π

√
κT

mρ
= kBT

2π
√

mK
. (16)

In Fig. 5(c), we see that at high density the coefficient D

is actually a function of kBT /
√

mK , but with a numerical
coefficient that is rather equal to 1/2. The dependency of
D on either the spring constant K = U ′′(1/ρ) or the com-
pressibility κT = ρ/K indicates that collective phenomena
are responsible of this behavior and that the “free particle”
hypothesis does not account for the linear behavior observed
in strongly interacting systems. The modified Bessel function
K0, which gives the behavior of the potential U (1/ρ) [see
(9)], is a very quickly increasing function of the density,
which explains why this behavior is typical of high density
systems.

When the subdiffusive regime 〈	x2〉 = F
√

t is observed,
as in Figs. 4(c) and Fig. 4(d), we may measure the mobility
F . As seen in Fig. 5(d), our numerical data are in excellent
agreement with the expression FS given in formula (2), even if
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FIG. 5. (Color online) All axes are in logarithmic scales. All dotted lines are of slope 1. (a) Coefficient H1 as a function of kBT /m (both in
mm2 s−2). (b) Coefficient of diffusion D according to kBT /(mγ ) [both in mm2 s−1; see Eq. (15)]. The green squares represent D for systems
of low densities (ρ ≈ 100 and 33 m−1) and the purple circles represent D for systems with higher densities (ρ ≈ 533 m−1). (c) Coefficient of
diffusion D according to kBT

√
κT /(2

√
mρ) [both in mm2 s−1; the numerical coefficient is slightly different from that of Eq. (16)]. The green

squares represent D for systems of low densities (ρ ≈ 100 and 33 m−1) and the purple circles represent D for systems with higher densities
(ρ ≈ 533 m−1). (d) Mobility FS according to 2kBT

√
κT /

√
πmγρ [both in mm2 s1/2; see Eq. (2)]. The blue disks correspond to overdamped

systems and the red triangles to underdamped systems. (e) Coefficient HN according to kBT /(Nm) [both in mm2 s−2; see Eq. (17)]. (f)
Coefficient of diffusion DN according to kBT /(Nγ ) [both in mm2 s−1; see Eq. (18)].

our system is underdamped. We discuss in Sec. IV D the case
of finite systems.

The numerical data displayed in Figs. 4(c) and Fig. 4(d)
are calculated for parameter values that are very close
(in particular, the system sizes are equal) to the relevant
parameters of the experiments reported in Ref. [25]. One
can check (see Fig. 5 of Ref. [25]) that the value of
the MSD is the same. The duration of the experiments is
insufficient to see the final DNt scaling described in the next
section.

C. The long-time regime (regime III)

It is quite intuitive that, for very long times and finite
systems, all particles become fully correlated and behave as
a single effective particle of mass Nm. It is a property of

the translationally invariant mode (see Sec. IV A). For small
values of γ and N , the MSD grows according to HNt2, with a
prefactor HN that is different from the constant H1 introduced
in Sec. III A. HN should thus be given by the resolution of the
Langevin equation for a free particle of mass Nm:

HN = kBT

Nm
, (17)

which is in very good agreement with our simulations as shown
by Fig. 5(e).

At higher values of γ , and for larger systems, we only
observe a linear evolution of the MSD 〈	x2〉 = DNt as shown
by Figs. 4(c) and 4(d). Similarly, DN should be given by the
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FIG. 6. (Color online) All axes are in seconds. All dashed lines are of slope 1. (a) Measures of the transition time τball according to
2/γ [log scale; see Eq. (19)]. The green circles represent τball for systems of high densities (ρ ≈ 533 m−1) and the red squares represent
τball for systems with lower densities (ρ ≈ 100 and 33 m−1). (b) Measures of the transition time τball according to

√
κT m/ρ [log scale; see

Eq. (20)]. The green circles represent τball for systems of high densities (ρ ≈ 533 m−1) and the red squares represent τball for systems with lower
densities (ρ ≈ 100 and 33 m−1). (c) Measures of the transition time τcoll according to mγN2κT /πρ [log scale; see Eq. (21)]. The blue circles
represent τcoll for systems with (N/2π )

√
γ 2mκT /ρ > 1 and the purple diamonds represent τcoll for systems with (N/2π )

√
γ 2mκT /ρ < 1 [see

Eq. (40)]. (d) Measures of the transition time τcoll according to N
√

κT m/ρ [log scale; the numerical coefficient is slightly different from that
of Eq. (23)]. The blue circles represent τcoll for systems with (N/2π )

√
γ 2mκT /ρ > 1 and the purple diamonds represent τcoll for systems with

(N/2π )
√

γ 2mκT /ρ < 1 [see Eq. (40)].

resolution of the Langevin equation for a free particle of mass
Nm:

DN = kBT

Nmγ
. (18)

This expression is in very good agreement with our results in
Fig. 5(f). The Fickian behavior at very long times has already
been observed in numerical simulations of SFD in finite length
channels [37] and is also suggested in Ref. [38].

The interpretation of Sec. IV C shows that this regime is
dominated by the collective behavior of the particles, so that
we call τcoll the time at which these collective behaviors takes
place. We recover the values of DN and HN in Sec. IV C from
our analytical solution (34) and give an estimate showing that
the quadratic scaling is favored by small damping constants
and small particle number, as is the case in Figs. 4(a) and 4(b).

D. Crossover times

Now that we know the evolution of 〈	x(t)2〉 in the different
regimes, we can estimate the different crossover times. In this
section, we proceed heuristically, defining the crossover times
by requiring continuity of the MSD for successive scalings.

Following this method, the ballistic time τball will be
the time for which the curves of equations H1t

2 and 2Dt

will intersect. Depending on the expression of the diffusion
coefficient D, we obtain

kBT

m
τ 2

ball ∼ 2
kBT

mγ
τball =⇒ τball ∼ 2

γ
(19)

for weakly interacting systems. For strongly interacting sys-
tems, one has to consider the effective diffusion coefficient D

of Eq. (16), which gives

kBT

m
τ 2

ball ∼ kBT

π

√
κT

mρ
τball =⇒ τball ∼ 1

π

√
κT m

ρ
.

(20)

We performed measurements of τball for different values of
parameters and report them in Figs. 6(a) and 6(b). One
can clearly see that two different mechanisms are at stake:
the green circles that represent systems of high densities
(ρ ≈ 533 m−1), which are associated with strongly interacting
particles, can be easily distinguished from the red squares that
represent systems with lower densities (ρ ≈ 100 and 33 m−1),
thus weakly interacting particles. Formula (19) seems in good
agreement with the transition times of weakly interacting
systems, whereas formula (20) fits the values of τball for
strongly interacting ones.
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Let us now consider τcoll. For overdamped and large
systems, it will be the time for which the curves of equation
FS

√
t and DNt intersect, thus giving

FS

√
τcoll = 2DNτcoll =⇒ τcoll = F 2

4D2
N

= S(0,0)2

D2
0

Deff
N2

πρ2

= mγN2κT

πρ
. (21)

Note that starting from Eq. (2), using the fact that Deff =
D0/S(0,0), and introducing the length L = N/ρ of the chain,
we may recast this expression to obtain

τcoll = L2

πDeff
, (22)

which is interesting as it tells us that τcoll can be seen
as the time necessary for a given particle to diffuse over
the length of the system L, with the effective diffusion
coefficient that takes into account its interactions with the other
particles.

In the case of small damping and small systems, the SFD
behavior is not observed in the intermediate regime [see
Figs. 4(a) and 4(b)], being replaced by a Dt scaling with
D given by Eq. (16), and the collective regime begins by a t2

evolution [see Sec. III C and Eq. (17)]. The time τcoll may thus
be estimated by

2Dτcoll = HNτ 2
coll =⇒ kBT

π
√

mK
τcoll = kBT

Nm
τ 2

coll

=⇒ τcoll = N

π

√
m

K
. (23)

One can see in Fig. 6(c) that τcoll is in very good
agreement with Eq. (21) for large values of γN2. For
small values of γN2, the data rather follow Eq. (23),
according to the analysis provided in Sec. IV C, particularly
Eq. (38).

IV. THEORETICAL ANALYSIS

A. A chain of springs and point masses in a thermal bath

In order to analyze the results presented in Sec. III, we
have studied the Langevin dynamics of a chain of N beads
of mass m, aligned along the x axis, interacting with a pair
potential U (x), with nearest neighbor interactions. Those two
simplifying assumptions are, as we will see, in excellent
agreement with the actual dynamics.

Small oscillations around the equilibrium position are
described by linear springs of force constant K = U ′′(1/ρ),
where ρ is the particle density at equilibrium [39]. Let x(l,t)
be the position of particle l at time t . The equation of motion
reads

d2

dt2
x(l,t) = −γ

d

dt
x(l,t) + K

m
[x(l + 1,t) − 2x(l,t)

+ x(l − 1,t)] + μ(l,t)

m
, (24)

with the same notations as in Sec. II A. Let us consider a
chain with periodic boundary conditions. We may introduce
the discrete Fourier transform

X(q,t) =
N∑

l=1

eiqlx(l,t), x(l,t) = 1

N

N∑
k=1

e−iqk lX(qk,t),

(25)

with qk = −π + 2πk/N for k = 1, . . . ,N . From now on, we
simplify the notations, dropping the dependency of the modes
qk on the natural number k and replacing summations on k

by summations on q. The variance of the displacement x may
be calculated from the Fourier modes X(q,t) as 〈	x2(t)〉 =∑

q〈	X2(q,t)〉/N2, with

〈	X2(q,t)〉 ≡ 〈[X(q,t) − 〈X(q,t)〉][X(−q,t)

−〈X(−q,t)〉]〉. (26)

Let us first consider the mode q = 0, which will be noted
simply X(t). It follows that

d2

dt2
X(t) + γ

d

dt
X(t) = μ(q = 0,t)

m
. (27)

Physically, this is the equation for a free particle of mass m in a
thermal bath at temperature T , with damping constant γ . The
solution is composed of two parts: Xd (t), which corresponds
to the deterministic motion of the particle, and the fluctuating
part Xμ(t), which depends linearly on the random forcing
μ(q = 0,t). It reads

X(t) − X0 = Ẋ0

γ
[1 − e−γ t ] + 1

m

∫ t

0
dt ′

×
∫ t ′

0
dt ′′e−γ (t ′−t ′′)μ(q = 0,t ′′), (28)

where X0 ≡ X(t = 0) and Ẋ0 ≡ Ẋ(t = 0) are the initial con-
ditions. The corresponding contribution to the MSD measured
in the simulations is the double average defined by Eq. (14). It
is calculated in Appendix A and reads

〈	X2〉 = 2
NkBT

mγ

[
t − 1

γ
(1 − e−γ t )

]
. (29)

The translationally invariant mode q = 0 scales as t2 at small
time t � 1/γ and then scales as t when t  1/γ .

We now consider the modes q �= 0. Using the periodic
boundary conditions x(l,t) = x(l + N,t), we see that each
mode X(q,t) of wave number q �= 0 follows the equation

d2

dt2
X(q,t) + γ

d

dt
X(q,t) + 2K

m
(1 − cos q)X(q,t) = μ(q,t)

m
.

(30)

The roots of the characteristic polynomial associated with this
equation are

ω±(q) ≡ −γ

2
±
√

γ 2

4
− ω2

q, ω2
q ≡ 2

K

m
(1 − cos q).

(31)

Physically, the mode X(q,t) behaves as a particle of mass
m in a harmonic potential well with pulsation ωq , forced by
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0 π

γ 2

ωπ

q

ω
q

FIG. 7. (Color online) Dispersion relation ω(q) as a function of
q, for q � 0 (the curve is obviously symmetric for q � 0). The
continuous line is valid for the infinite chain; the dots represent the
modes for N = 32. The modes such that their frequency is less than
γ /2 are overdamped; the other ones are underdamped.

the random force μ(q,t). The solution of Eq. (30) is readily
obtained as

X(q,t) = Ẋ(q,0) + ω−(q)X(q,0)

ω+(q) − ω−(q)
eω+(q)t

+ ω+(q)X(q,0) − Ẋ(q,0)

ω+(q) − ω−(q)
eω−(q)t + Xμ(q,t). (32)

The modes with nonzero wave number scale as kBT t2/(Nm)
at small times and saturate toward the constant value
2kBT /(Nmω2

q) at very long times.
At intermediate time, the behavior of the modes q �= 0 is

determined by the relative values of ωq and γ /2, as illustrated
in Fig. 7.

(i) The modes such that ωq < γ/2 are overdamped. They
reach their saturation value at the time tsat ∼ 1/|ω+(q)|. The
shortest saturation time is associated with q = π and reads
tmin
sat ∼ γ /ω2

π if ωπ < γ/2 or tmin
sat ∼ 2/γ otherwise.

(ii) The modes such that ωq > γ/2 are underdamped. They
oscillate at the frequency ω(q) ≡√

ω2
q−γ 2/4. Below a time which

is roughly 1/ω(π ), all underdamped modes scale as t2.
We do not distinguish the overdamped (γ > 2ωq) and the

underdamped (γ < 2ωq) modes, because the final result (33) is

0.01 0.1 1 10 100 1000
0.001

0.1

10

1000

Time s

x2
m

m
2

τball τcoll

FIG. 8. (Color online) Plot of 〈	x(t)2〉 (in mm2) according to the
time (in s), in logarithmic scale, calculated from the analytical solution
(34) for a density ρ = 533 m−1, N = 32, T = 1012 K, 
 ≈ 6.8, and
γ = 0.1s−1. The solid line is of slope 2 and the dashed line is of
slope 1. This plot is to be compared to the relevant plot in Fig. 4(a).
We have indicated the times τball and τcoll, respectively, given by
Eqs. (36) and (38). We see that both equations provide lower bounds
for τcoll.

in both cases a real function with the same formal expression.
The averaging process is explained in Appendix A. One gets

〈	X2(q,t)〉 = 2NkBT

mω2
q

[
1 + ω−(q)eω+(q)t

ω+(q) − ω−(q)

− ω+(q)eω−(q)t

ω+(q) − ω−(q)

]
. (33)

We remark that the limit q → 0 is not singular, and by taking
it properly in this expression one recovers Eq. (29). We think
that it is nevertheless physically convenient to distinguish
between the translationally invariant mode q = 0 and the
others, because they lead to different asymptotic behaviors.

Using Eq. (33) together with Eq. (29), we obtain the MSD
as

〈	x2(t)〉 = 2kBT

Nm

{
t

γ
− 1

γ 2

(
1 − e−γ t

)
+
∑
q �=0

1

ω2
q

[
1 + ω−eω+t

ω+ − ω−
− ω+eω−t

ω+ − ω−

]⎫⎬⎭ , (34)

which is the basis for the following discussion.
In the limit of very large damping, that is in the absence

of the inertial term, a solution to Eq. (24) has been provided
by Sjögren [24]. We have thus extended his calculations to
underdamped systems1 and calculated the MSD in a different
way to take into account our peculiar way of averaging (14).
We also extend this discussion, in the rest of this section, to
the case of finite systems.

B. The ballistic regime (regime I)

Since the small-time behavior of each mode in Eq. (34) is
(kBT /Nm)t2, and there are N equivalent contributions to the
sum, we get

〈	x2(t)〉 t→0∼ kBT

m
t2. (35)

This result is independent of N and thus valid in the
thermodynamic limit too. Because of the inertial term in the
Langevin equation (24), at very small times each particle
behaves independently from the others and undergoes ballistic
flight at the thermal velocity

√
kBT /m.

In order to discuss the duration τball of this regime, let us
assume a finite, but large (in a sense to be defined later), particle
number N . The time evolution of 〈	x2(t)〉 is determined by
the mode q = 0 and a summation on all modes q �= 0. All
modes in the summation (34), hence the sum itself, behave as
t2 on a time scale such that

t � τball ≡ min

(
2

γ
,

1√
ω2

π − γ 2/4
,

γ

ω2
π

)
. (36)

1More precisely 〈	x2(t)〉 is equal to the correlation C(0,t) defined
by Sjögren [24] and to 2W (t) introduced by Kollmann [23]. This is
easily seen from the definition (13), because with the double averaging
on the initial conditions and on the random noise [see Appendix A and
Eqs. (28) and (32)] we get 〈〈x(t + t0) − x(t0)〉e〉0 = 0, and then sta-
tionarity ensures 〈〈[x(t + t0) − x(t0)]2〉〉 = 〈〈[x(t) − x(0)]2〉〉, which
is precisely the definition of Sjögren and Kollmann.
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For weakly interacting or equivalently low density systems
τball ≈ 2/γ , which was already heuristically derived in Eq. (19)
and is shown in Fig. 6(a). For strongly interacting or
equivalently high density systems, we get τball ≈ 1/ωπ ∝√

m/K ∝ √
mκT /ρ, in perfect agreement with our observa-

tions [Fig. 6(b)] and the heuristic derivations (16) and (20).

C. The collective regime (regime III)

This collective regime (regime III of Fig. 3, see Sec. III C) is
a property of finite systems only. This asymptotic behavior may
be easily deduced from the sum (34), which is dominated by the
contribution of the mode q = 0 that scales as [2kBT /(Nmγ )]t .
This corresponds to the free diffusion of a particle of mass
Nm in a thermal bath at temperature T . At very long times,
the particles are completely correlated and behave as a single
particle of effective mass, the sum of all masses. The same
result has been obtained in Ref. [20].

It is not difficult to estimate the time τcoll. It is the time at
which the contribution of the mode q = 0 dominates the sum
of the contributions of all N − 1 other modes. Let us use the
simplifying Debye approximation ω2

q = (K/m)q2. We thus
get

2kBT

Nmγ
τcoll ∼

∑
q �=0

2kBT

Nmω2
q

∼ 2NkBT

4π2K

(N−1)/2∑
i=1

1

i2

=⇒ τcoll ∼ N2mγ

12K
, (37)

where we have used the fact that the sum is the generalized
harmonic number H(N−1)/2,2 which is equal to π2/6 up to
corrections of order 1/N . The fact that this time scales as
N2 explains why this long time regime is seldom seen in
simulations (see, however, Refs. [33] and [36]) or experiments.
This is clearly illustrated by our Fig. 4(b), where we show
that increasing N shifts the long time regime toward longer
times. This expression of τcoll is equal to our previous heuristic
estimate (21). It means that the reasoning at the basis of the
derivation of Eq. (37) includes in the right way the physical
origin of the long-time collective behavior of the finite chain.

As was already quoted in Sec. III C, at very small damping
constant it is possible to observe at long times the evolution
〈	x2(t)〉 = HNt2. This is possible if the modes q �= 0 are
saturated while the mode q = 0 still evolves as [kBT /(Nm)]t2.
This requires t < 1/γ (otherwise the mode q = 0 scales as t)
and that the contribution of the q �= 0 modes to the sum in
Eq. (34) be less than that of the mode q = 0. Roughly speaking,
we get

〈
	x2

(
t = 1

γ

)〉∣∣∣∣
q=0

∼ kBT

Nm

(
1

γ

)2

>
∑
q �=0

2kBT

Nmω2
q

∼ NmkBT

12K

=⇒ γ 2 <
12K

N2m
, (38)

where we have used the Debye approximation to estimate the
contribution of the q �= 0 modes. This means that this regime
is to be observed at small damping γ and small particle number

N , which is precisely the case in Figs. 4(a) and 4(b). In this
case, the estimate (37) should be replaced by

kBT

Nm
τ 2

coll ∼
∑
q �=0

2kBT

Nmω2
q

∼ 2NkBT

4π2K

(N−1)/2∑
i=1

1

i2

=⇒ τcoll ∼ N

√
m

6K
. (39)

This expression of τcoll is equal to our previous heuristic
estimate (23), allowing us to interpret the t2 scaling at long
time, in systems of few particles with small damping, as
a collective behavior linked to the translationally invariant
mode. This regime takes place when the greatest saturation
time of the mode q �= 0 is smaller than the time above which
the mode q = 0 evolves as t rather than t2. The behavior
〈	x2(t)〉 = HNt2 may thus be observable when

1

ω2π/N

<
1

γ
=⇒ N

2π

√
γ 2mκT

ρ
< 1. (40)

The relevance of this estimate is proved by Figs. 6(c) and 6(d).
It also shows that the time τlin introduced in Sec. IV is equal
to 1/γ .

D. The correlated regime (regime II)

Let us now discuss the intermediate regime2 which,
between the individual ballistic regime (regime I) and the col-
lective behavior (regime III), exhibits the correlated behavior
of the particles. While at asymptotically long times, all modes
with finite (nonzero) wave numbers have reached a constant
value, in the intermediate regime, the physical behavior of the
chain at a given time t results from a subtle balance between
the modes that are already saturated and those that still evolve.
To simplify somewhat the discussion, we consider the limit
γ � 2ω2π/N when all modes are oscillating (underdamped)
and the limit γ  2ωπ when all modes are overdamped.

Let us first assume a very low damping. The modes
oscillate until they reach a stationary value. The time evolution
of 〈	x2(t)〉 is due to the progressive disappearance of the
contributions of the first oscillation of those modes q �= 0
that have reached their maximum value. In Fig. 9(a) this
is graphically illustrated with several underdamped modes
(γ /2 = 0.05 s−1 � ωπ = 25 s−1), together with the complete
sum (34). As a first approximation,

1

N2

〈
	X2(q,t)

〉 ∼ 2kBT

Nmω2
q

[
1 − e−γ t/2 cos ω(q)t

] ∼ kBT

Nm
t2.

(41)

At a given time t , the sum is dominated by the contributions
of the modes that have not reached their first maximum, that
is, those modes such that t < 1/ωq . Let n(t) be the number of
such modes. In the Debye approximation ωq = q

√
K/m, the

maximum wave number of those modes is 1/t
√

K/m so that
an estimate of n(t) is given by n(t) ∼ 2(N/2π )(1/t

√
K/m)

2In simulations of the overdamped Langevin equation, for which
the ballistic regime cannot be seen, this intermediate regime is the
first to be observed [15,27,28,34].
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FIG. 9. (Color online) Thick solid line: Plot of 〈	x(t)2〉 (in mm2) according to the time (in s), in logarithmic scale, for a density ρ = 533 m−1,
N = 32, T = 1012 K, and 
 ≈ 6.8, calculated from (34) for the relevant damping constant. (a) Underdamped regime, γ = 1 s−1. The blue
(gray) curves are, from top to bottom, the modes q = π/16, q = π/4, and q = 7π/16. The dashed lines are, from left to right, of slopes 2
and 1. (b) Overdamped regime, γ = 60 s−1. The blue (gray) curves are, from top to bottom, the modes q = π/16, q = π/4, q = 7π/16, and
q = 5π/8. The dashed lines are, from left to right, of slopes 2, 1/2, and 1.

(the factor 2 takes into account the modes ±|q|). The variance
may thus be estimated as

〈	x2(t)〉 ∼ kBT

Nm
t2 n(t) ∼ kBT

π
√

mK
t. (42)

This is a normal diffusion with a diffusivity kBT /(2π
√

mK)
that depends on the stiffness of the interaction K , showing
that it is a collective effect. This is in agreement with our
observations, see Fig. 5(c).

In the opposite limit of a very strong damping, all modes
evolve monotonously toward their saturation value. As a first
approximation,

1

N2
〈	X2(q,t)〉 ∼ 2kBT

Nmω2
q

{
1 + ω−(q)[1 − ω+(q)t]

ω+(q) − ω−(q)

}
∼ 2kBT

Nmγ
t, (43)

where we have used ω+(q) − ω−(q) ≈ γ and ω+(q) ≈ ω2
q/γ

and ω−(q) ≈ −γ . A mode is saturated at a time t > γ/ω2
q .

At a given time t , in the Debye approximation, the modes
that increase with time are such that q <

√
mγ/(Kt). This

reasoning is graphically illustrated in Fig. 9(a) where we
show several overdamped modes (γ /2 = 30 s−1 > ωπ =
25 s−1), together with the complete sum (34). Their number
is thus n(t) ∼ 2(N/2π )

√
mγ/(Kt). The contributions of all

such modes thus give

〈	x2(t)〉 ∼ 2kBT

Nmγ
t n(t) ∼ 2kBT

Nmγ
t
2N

2π

√
mγ

Kt

= 2kBT

π
√

mKγ
t1/2 = 2kBT

π

√
κT

mργ
t1/2, (44)

where we have introduced the isothermal compressibility κT

in the last expression to ease the comparison with the exact
expression of FS (2). Taking into account the crudeness of our
approximations, this estimate is extremely satisfactory because
we recover the SFD behavior 〈	x2(t)〉 ∝ t1/2, with a prefactor
that is almost the exact one.

In the general case, the modes with wave number q such
that γ < 2ωq contribute to a t scaling of the MSD, whereas
the modes such that γ > 2ωq contribute to the SFD behavior,
that is, a t1/2 scaling of the MSD. The typical time τsub at

which the subdiffusive SFD behavior takes place is thus the
inverse of this cutoff frequency, τsub = 2/γ . At a given particle
number N , the minimum nonzero frequency is ω2π/N . If the
damping constant is so small that all modes are underdamped
(γ < 2ω2π/N ), the MSD scales as t in the collective regime II.
Increasing the damping, at fixed N , amounts to an increase in
the number of overdamped modes and favors the subdiffusive
t1/2 scaling for the MSD. This is exemplified by Fig. 4(a).
Increasing the particle number N , at fixed γ , amounts to a
decrease in the frequency ω2π/N , and hence to an increase in
the number of overdamped modes, and favors the subdiffusive
t1/2 scaling for the MSD. This is exemplified by Fig. 4(b).

The result (44) is only approximate, so that the numerical
prefactor cannot be trusted, but it explains under which
conditions the SFD regime may be seen in finite systems with
periodic boundary conditions [we remind the reader that this
latter is the key assumption leading to Eq. (30)]. In Appendix B,
we prove that the expression (2) for the mobility of long-ranged
interacting systems is valid in the underdamped case γ < 2ωπ

too, in the thermodynamic limit.

V. CONCLUSION

In this paper, we study the SFD of a chain of particles with
long-ranged interactions, without the simplifying assumption
of overdamped dynamics. We have focused our discussion
on finite-size effects and the influence of low damping. We
use numerical simulations of the Langevin equation with the
Gillespie algorithm [31,32] and model the system as a chain
of linear springs (spring constant K) and point masses (m) in
a thermal bath at temperature T .

In our simulation’s data, we have identified several regimes
for the time evolution of the MSD〈	x(t)2〉. At small times
(0 � t � τball), it evolves as 〈	x(t)2〉 = (kBT /m)t2. This is
a ballistic flight that traces back to the inertial effects and is
observed whatever the damping γ or the particle number N .
We recover this behavior in the thermodynamic limit (N → ∞
at finite density) from our model. The prefactor of the t2 scaling
measured in our simulations is in excellent agreement with the
theory.

For finite systems with periodic boundary conditions, an
intermediate regime (τball � t � τcoll) takes place. Depending
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on the respective values of the damping constant and the
number of particles, we may observe a diffusive behavior,
a SFD behavior, or successively both. We provide a physical
explanation of those observations when we express the motion
of the chain in terms of normal modes of oscillations. The
MSD of the chain results from the superposition of all those
modes. The mode associated with the null wave number is
always overdamped, and is similar to the motion of a free
particle in a thermal bath, since no restoring force is exerted
on it. The modes of finite (nonzero) wave numbers have the
same dynamics as an oscillator in a harmonic well. At long
time, the MSD of all modes with nonzero wave numbers
saturates toward a constant value. The overdamped modes,
which do not oscillate until they saturate, contribute to the SFD
scaling 〈	x(t)2〉 ∝ t1/2. The underdamped modes oscillate
before their saturation and contribute to the linear scaling
〈	x(t)2〉 ∝ t .

In the thermodynamic limit, for systems of infinite num-
ber of particles, we exhibit analytically the SFD behavior
〈	x(t)2〉 = FSt

1/2 at asymptotically long times. We recover
the mobility FS that was previously calculated for long-ranged
interactions and overdamped dynamics [23,24], thus extending
the previous calculation to systems with arbitrary damping.

At asymptotically long times (t  τcoll), for a finite number
of particles with periodic boundary conditions, the system
behaves as an effective particle of mass Nm. The physical
origin of this behavior is the motion of the collective mode
of null wave number, which is linked to the translational
invariance of the system. For t � τlin � τcoll, the system
undergoes a linear diffusion with a diffusion coefficient DN =
2kBT /(Nmγ ). We show that this regime takes place whatever
the value of γ . The duration of our simulations allows us to
see this regime, and the measured diffusivity is in excellent
agreement with its predicted value. We provide estimates of
the time τcoll ∼ N2mγ/K at large damping and τlin ∼ 1/γ at
small damping. Those estimates are in good agreement with
our simulation’s data. At small particle number and small
damping, a new regime takes place at times τlin � t � τcoll.
It corresponds to the ballistic flight of the effective particle
of mass Nm, with 〈	x(t)2〉 = (kBT /Nm)t2. In this case, the
time τcoll ∼ N

√
m/K .
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APPENDIX A: AVERAGING

In this appendix, we calculate the averages used in our
analysis of the simulation’s data. As explained in Sec. II B [see
Eq. (14)], we perform a double averaging. The first averaging
is ensemble averaging, done on the statistical distribution of
the random force μ(t), and is denoted in this appendix as
〈·〉e for the sake of clarity. This averaging is involved in
Eqs. (4), (5), and (8). The second averaging is performed on the
statistical distributions of X0 and Ẋ0 and is denoted as 〈·〉0.
It is obvious that those two averaging operations commute
and that 〈Xμ(t)〉0 = Xμ(t) and 〈Xd (t)〉e = Xd (t). In Eq. (26),

the ensemble averaging is made on the random force μ(t) so
that

〈	X2(q,t)〉e ≡ 〈[X(q,t) − 〈X(q,t)〉e][X(−q,t)

−〈X(−q,t)〉e]〉e. (A1)

1. The mode q = 0

For the translational invariant mode q = 0, all trajectories
beginning at a given time t0 are equivalent, so that all
initial positions X0 are equivalent. It is easy to check that
〈〈X(t) − X0〉e〉0 = 〈Xd (t)〉0 + 〈Xμ(t)〉e = 0. For the same
reason, the double average 〈〈Xd (t)Xμ(t)〉e〉0 = 0 because
this term is linear in Ẋ0 and in μ(0,t). The variance is
thus

〈〈	X2〉e〉0 = 〈〈[X(t) − X0]2〉e〉0 = 〈[Xd (t) − X0]2〉0

+〈Xμ(t)2〉e. (A2)

The variance for the deterministic part of the displacement is

〈〈	X2
d (q,t)〉e〉0 = 〈|Ẋ0|2〉0

γ 2
[1 − e−γ t ]2

= NkBT

mγ 2
[1 − e−γ t ]2, (A3)

where the last expression is provided by the equipartition
theorem for the potential energy.

We then have to calculate the variance for the fluctuating
part, 〈Xμ(t)2〉e. We begin by calculating the following time
derivative:

d

dt

〈
	X2

μ

〉
e

= d

dt
〈Xμ(t)Xμ(t)〉e

= 〈Xμ(t)Ẋμ(t)〉e + 〈Ẋμ(t)Xμ(t)〉e
= 2Re〈Xμ(t)Ẋμ(t)〉e. (A4)

From Eq. (28), we get

〈Xμ(t)Ẋμ(t)〉e = 1

m2

t∫
0

dt ′
t ′∫

0

dt ′′e−γ (t ′−t ′′)

t∫
0

dt ′′′e−γ (t−t ′′′)

×〈μ(q = 0,t ′′)μ(q = 0,t ′′′)〉e. (A5)

The correlation for the random noise is 〈μ(l,t)μ(l′,t ′)〉e =
gδll′δ(t − t ′), with g = 2mkBT γ . Besides, μ(q = 0,t) =∑N

l=1 μ(l,t); hence

〈μ(q = 0,t)μ(q = 0,t ′)〉e =
N∑

l=1

N∑
l′=1

〈μ(l,t)μ(l′,t ′)〉e

= 2NmkBT γ δ(t − t ′). (A6)

Performing the integrations in Eq. (A5), we get

d

dt
〈	X2

μ〉e = 2
NkBT

mγ
(1 + e−2γ t − 2e−γ t ), (A7)

and a last integration gives the final result

〈	X2
μ〉e = 2

NkBT

mγ

(
t + 1 − e−2γ t

2γ
− 2

1 − e−γ t

γ

)
. (A8)

Injecting this result and Eq. (A3) in Eq. (A2) gives the final
result, Eq. (29), as stated in the text.
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A. 2. The modes q �= 0

Physically, the dynamics of the mode X(q,t) with
q �= 0 is identical to the motion of a damped har-
monic oscillator (30). In this case, the initial values
X(q,0) correspond to an initial position in a potential
well and are thus not equivalent. On the other hand,
the stationary state is quickly reached and the statis-
tical distribution on X(q,0) is readily described taking
different trajectories. In the data analysis, a trajectory
is given by looking at values X(q,t + t0) − X(q,t0) and
varying the time t0 amount to varying the initial value
X(q,0). The expression (26) of the variance is thus
replaced by

〈〈	X2(q,t)〉e〉0

≡ 〈〈[X(q,t) − X(q,0) − 〈〈X(q,t) − X(q,0)〉e〉0][X(−q,t)

−X(−q,0) − 〈〈X(−q,t) − X(q,0)〉e〉0]〉e〉0, (A9)

As shown by Eq. (34), X(q,t) = Xd (q,t) + Xμ(q,t), where
Xd (q,t) is the deterministic part, linear in X(q,0) and
Ẋ(q,0), and Xμ(q,t) is the random part. It is not
necessary to give explicitly the random part, all we
need to know is that it is linear in the random
force μ(q,t). Since 〈X(q,0)〉0 = 0, 〈Ẋ(q,0)〉0 = 0, and
〈Xμ(q,t)〉e = 0, we have 〈〈X(q,t) − X(q,0)〉e〉0 = 0. The
cumbersome expression (A9) may thus be simplified to
give

〈〈	X2(q,t)〉e〉0

= 〈〈[X(q,t) − X(q,0)][X(−q,t) − X(−q,0)]〉e〉0

= 〈〈X(q,t)X(−q,t)〉e〉0 + 〈〈X(q,0)X(−q,0)〉e〉0 −
−2Re[〈〈X(q,t)X(−q,0)〉e〉0]. (A10)

This may be simplified further, because the stationarity
implies 〈〈X(q,t)X(−q,t)〉e〉0 = 〈〈X(q,0)X(−q,0)〉e〉0 =
NkBT/K . Moreover, since X(−q,0) does not depend on
μ we have 〈〈X(q,t)X(−q,0)〉e〉0 = 〈Xd (q,t)X(−q,0)〉0.
The averaging is thus easily performed to
give Eq. (33).

APPENDIX B: THE CHAIN OF SPRINGS IN THE
THERMODYNAMIC LIMIT

In the thermodynamic limit N → ∞, the discrete sum in
Eq. (34) may be replaced by an integral (taking advantage of
the fact that the expressions for q �= 0 are valid in the limit

q → 0),

〈	x2(t)〉 = 2kBT

m

1

π

π∫
0

dq
1

ω2
q

[1 + ω−(q)eω+(q)t

ω+(q) − ω−(q)

− ω+(q)eω−(q)t

ω+(q) − ω−(q)
], (B1)

where we used the rule (1/N )
∑

q −→ (1/2π )
∫ π

−π
and the

invariance q → −q.
In the limit γ  2ωπ , this integral may be expressed in

closed form [24]. This is not possible in the general case, but
we may obtain its asymptotic behavior at long times using
the Laplace method [40]. To this end, we express the time
derivative

∂〈	x2(t)〉
∂t

= 2kBT

m

1

π

π∫
0

dq
eω+(q)t − eω−(q)t

ω+(q) − ω−(q)
. (B2)

For underdamped modes, ω± = −γ /2 ± i
√

ω2
q − γ 2/4, the

long-time behavior is dominated by exp[−γ t/2]. Since
lim
q→0

ωq = 0, the modes with small wave numbers are always

overdamped. The asymptotic behavior of the integral is
dominated by the neighborhood of the maximum of ω+(q) at
q = 0, with ω+(0) = 0, ω′

+(0) = 0 and ω′′
+(0) = −2K/(mγ ).

The leading term in Eq. (B2) is thus [40]

∂〈	x2(t)〉
∂t

t→∞∼ 2kBT

πm

1

2
[

2

−tω′′+(0)
]1/2 1

γ
eω+(0)t
(

1

2
)

= 2[
(kBT )2

πmγK
]1/2 1

2t1/2
. (B3)

The leading behavior of the variance, at long times, is thus

〈	x2(t)〉 t→∞∼ 2(
kBT D0κT

πρ
)1/2t1/2. (B4)

To get the last expression, we have used the relation mγD0 =
kBT and introduced the isothermal compressibility of the
chain, which is κT = ρ/K [39].

We recover the behavior for SFD of particles interacting
with a long-ranged potential, as was shown by Kollmann [23]
(see [25] for a rewriting of Kollmann’s result in terms of the
isothermal compressibility) and Sjögren [24]. Those previous
calculations were done under the simplifying assumption of
overdamped dynamics (γ  2ωπ ). We nevertheless recover
the same result because the asymptotics of integral (B2) is
dominated by the modes of small wave numbers q � 1.
Whatever the finite value of the damping constant γ , they
are always overdamped because ωq→0 = 0.
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