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Thermal Casimir drag in fluctuating classical fields
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A uniformly moving inclusion which locally suppresses the fluctuations of a classical thermally excited field
is shown to experience a drag force that depends on the dynamics of the field. It is shown that in a number of
cases the linear friction coefficient is dominated by short distance fluctuations and takes a very simple form.
Examples where this drag can occur are for stiff objects, such as proteins, nonspecifically bound to more flexible
ones such as polymers and membranes.
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The Casimir force, both quantum and thermal (or pseudo-),
arises due to the imposition of boundary conditions on
quantum or thermal fields [1]; the influence of the field is
manifested by the force induced between two or more particles
or surfaces in the field. However, the presence of the field can
also be seen by looking at the force exerted on a single particle
when it is not at rest. A first example of this is the QED-induced
force experienced by a nonuniformly accelerating mirror [2].
However, quantum friction also arises and modifies the force
on a neutral atom moving at constant velocity parallel to
a dielectric surface [3] and for parallel surfaces in relative
constant motion [4]. Although the latter frictional forces
require the presence of a dielectric or conducting surface, it
has also been proposed that a frictional Casimir force can be
induced by the uniform motion of a polarizable molecule in a
volume of blackbody radiation which is in equilibrium in the
rest frame of a containing cavity [5]. Frictional forces acting on
impurities in superfluids and Bose-Einstein condensates have
also been studied; at low speeds no frictional force is found at
a mean field level below a critical velocity [6], however, the
scattering of quantum and thermal fluctuations can be shown
to generate a friction at arbitrarily small velocities.

For inclusions linearly coupled to classical fields driven by
thermal fluctuations (for example, a protein imposing a local
curvature in a lipid membrane or a colloid in a binary liquid
that is preferentially wetted by one of the phases) we recently
showed that the insertion experiences a drag force when it
moves at constant velocity [7]. The force arises because the
insertion causes a local polarization of the fluctuating field,
for instance, a local magnetization for a pointlike field moving
through a ferromagnet or a local nonzero curvature for a
curvature-inducing protein in a membrane. This polarization
is not symmetric about the particle; when it moves at constant
velocity a frictional force is induced. At low velocity the force
is typically linear in the velocity, f = −λv, where λ defines
an effective friction coefficient, and at large velocities the
force decays as |f | ∼ 1/v. The average value of the force
is in fact independent of the fluctuations of the field; it is
mean-field-like and induced by the local symmetry breaking
of the field by the inclusion. An electrodynamical analogy for
this linear coupling case is the drag on charged particles that
create an average polarization (the polaron) in the surrounding
medium. However, a neutral atom does not induce an average
polarization, but the fluctuations of the field induced by
the dipole interact with the fluctuations of the field in the

surrounding medium, and it is this that leads to a frictional
force. The soft matter analog of this is drag experienced by an
insertion in a classical field, driven by thermal fluctuations,
which does not break the local symmetry of the field. In
physical terms examples would be colloids in binary mixtures
that are not preferentially wetted or membrane inclusion that
flattens out membrane fluctuations, due to their stiffness, rather
than inducing a local mean curvature. We show that a drag force
is present for a variety of free fields undergoing stochastic
dissipative dynamics of a type often used to model dynamics
in soft condensed matter systems.

The model we consider is for a scalar field with Hamiltonian

H [φ,z] = 1

2

∫
dx dy φ(x)�(x − y)φ(y) + �H [φ(z)],

(1)

where � is a positive definite operator that is model dependent;
for instance, for �(x − y) = [−∇2 + m2]δ(x − y) the field
φ can represent the local magnetization in the Gaussian
(high-temperature) approximation for the field theory of a
ferromagnet [8]. Similar models can be used to represent the
height fluctuations of fluid-fluid/fluid-air interfaces [9] and
lipid membranes [10], and these models include operators
with higher-order derivatives due to the contribution of
bending energy. The second term �H represents the energy
of interaction between the field and an insertion at the point z.
In this paper we will consider interactions that are quadratic in
the field variable φ; the interaction with the insertion therefore
does not affect the mean value of the field φ about the inclusion
(which is zero) but, however, modifies the field fluctuations.
In this paper we will consider three interaction types:

�H = (a)
h

2
φ2(z) (b)

h

2
[∇φ(z)]2 (c)

h

2
[∇2φ(z)]2. (2)

For interaction (a) in the limit where h → ∞ the insertion
field coupling induces a pointlike Dirichlet boundary condition
where φ is energetically constrained to be zero at the inclu-
sion’s position z; an example of how this can occur is shown
in Fig. (1a), where a region of a polymer is pinned at a fixed
height 0; this could be due to an optical trap or due to a pore
that the polymer passes through. In the case (b) the gradient
of the field is suppressed, and in the limit h → ∞ pointlike
Neumann boundary conditions are imposed. Physically this
corresponds to a region where the surface energy per unit
area is large and the membrane is thus locally flattened; this
type of interaction also occurs in the nematic phase of liquid

010103-11539-3755/2011/84(1)/010103(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.010103


RAPID COMMUNICATIONS
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(a)

(b)

FIG. 1. (Color online) Effects of inclusion interactions (thicker
line) visualized on a one-dimensional polymer (thinner line): (a)
height constraint where the height of the polymer is fixed at zero to
pass through a pore; (b) a nonflexible inclusion bound to the polymer
that suppresses the local curvature.

crystals where inclusions suppress or enhance fluctuations of
the director field about its average orientation [11]. Shown
in Fig. (1 b) is the case (c), where stiff membrane inclusions
suppress the local membrane curvature.

The dynamics of the field will be of a generic stochastic
dissipative type:

∂φ(x)

∂t
= −

∫
R(x,y)

δH

δφ(y)
dy + η(x,t), (3)

where the thermal noise driving the field is white in time and
has a spatial correlation function obeying the local fluctuation
dissipation relation:

〈η(x,t)η(y,t ′)〉 = 2T δ(t − t ′)R(x,y), (4)

where T is the temperature, and we consider dynamical
operators R that are invariant with respect to spatial translation,
i.e., R(x,y) = R(x − y).

For Dirichlet-type insertion/field interactions of type in
Eq. (2a), the force on the particle is given by

f = −∇zH = −hφ(z)∇zφ(z), (5)

where z = vt is the position of the particle moving at constant
velocity v. The imposition of effective boundary conditions
via a local interaction with the field allows the force to be
written, as above, for any field configuration [12]; however,
the precise definition of the force in general depends on the
microscopic details of how the field varies when the particle
is moved [13].

The average value of the force may be written in terms of the
equal time correlation function of the field 〈φ(x,t)φ(y,t)〉 =
C(x,y,t) as

〈f〉 = −h ∇zC(z,w,t)|z=w=vt . (6)

From Eq. (3) in the comoving coordinates x′ = x − vt the
correlation function can be shown to obey

∂

∂t
C(x′,y′,t) − (v · ∇x′ + v · ∇y′ )C(x′,y′,t)

= −(R�x′ + R�y′)C(x′,y′,t) − hRx′C(x′,y′,t)δ(x′)
−hRy′C(x′,y′,t)δ(y′) + 2T R(x′ − y′), (7)

where AxC(x,y) = ∫
dwA(x,w)C(w,y) denotes operation on

the (first) argument x of the correlation function C. In
the steady-state regime the double Fourier transform of the
correlation function obeys

[
R̃(p)�̃(p) + R̃(q)�̃(q) − iv · (p + q)

]
C̃(p,q)

+hR̃(p)
∫

dq′

(2π )d
C̃(q′,q) + hR̃(q)

∫
dq′

(2π )d
C̃(q′,p)

= 2T (2π )dR̃(p)δ(p + q). (8)

In this notation the average force can be written as

〈f〉 = −ih

∫
dq

(2π )d
qA(q), (9)

where

A(q) =
∫

dq′

(2π )d
C̃(q′,q) (10)

and can be shown to obey

A(q) + h

∫
dp

(2π )d
R̃(p)A(q) + R̃(q)A(p)

R̃(p)�̃(p) + R̃(q)�̃(q) − iv · (p + q)

= T

�̃(q)
. (11)

We can solve Eq. (11) in two limiting cases to give a general
picture of how the frictional force behaves.

Weak interaction limit: In the case where h is small we
can compute A via a perturbation expansion in h; writing
A = A0 + hA1 + O(h2) we find that

A0(q) = T

�̃(q)
(12)

and

A1(q) = −T

∫
dp

(2π )d
R̃(p)�̃(p) + R̃(q)�̃(q)

�̃(q)�̃(p)[R̃(p)�̃(p) + R̃(q)�̃(q) − iv · (p + q)]
. (13)

To this lowest order the force is given by

〈f〉 = −T h2

2

∫
dp dq
(2π )2d

a(p,q)(p + q) v · (p + q)
[
R̃(p)�̃(p) + R̃(q)�̃(q)

]
�̃(q)�̃(p){[R̃(p)�̃(p) + R̃(q)�̃(q)]2 + [v · (p + q)]2} (14)
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with a(p,q) = 1. The equivalent of Eq. (14) can also be derived
for the case of the Neumann-type interaction [Eq. (2b)] and
curvature-suppressing interactions [Eq. (2c)], and the corre-
sponding results have a(p,q) = (p · q)2 and a(p,q) = p4q4,
respectively. In the above expressions the Fourier integrals may
diverge, and they are naturally regularized by an ultraviolet
cutoff 	 = π/a, where a corresponds to a microscopic size
below which the field cannot fluctuate. In principle the cutoff
could also be the size of the inclusion; however, for simplicity
in this study we consider inclusions of the same size as the
microscopic cutoff. Here it is clear that for small v the force is
generically linear in v, but for large v we have |f | ∼ 1/v as
in the case of linear couplings to the field [7]. Finally we see
that the force is fluctuation induced as it is proportional to T

and is a second-order effect in the coupling h.
The small velocity regime: When v = 0 we find that

A0(q) = T

�̃(q)

1

1 + h
∫

dq′
(2π)d

1
�̃(q′)

. (15)

For small v we assume that A(q) has a correction term A1(q),
which is of order v:

A(q) = A0(q) + A1(q) + O(v2), (16)

from which we find that A1 is given by

A1(q) = −ihv · q

∫
dp

(2π)d
R̃(p)A0(q)+R̃(q)A0(p)

[R̃(p)�̃(p)+R̃(q)�̃(q)]2

1 + h
∫

dp
(2π)d

R̃(p)
R̃(p)�̃(p)+R̃(q)�̃(q)

. (17)

For simplicity we consider the limit of a Dirichlet point
boundary condition where h → ∞ to find

λ = cT

d
∫

dq′ qα

�̃(q′)

∫
dqq2+α

∫
dppα

�̃(q)�̃(p)[R̃(p)�̃(p)+R̃(q)�̃(q)]∫
dppα R̃(p)

R̃(p)�̃(p)+R̃(q)�̃(q)

(18)

for the friction coefficient, with c = 1 and α = 0. In the same
limit h → ∞ we find a result of the same form with c = d

and α = 2 for the Neumann case and c = 1 and α = 4 for the
curvature-suppressing case.

As the operators � and R are isotropic, their Fourier
transforms are functions of q = |q|, from Eq. (18), and the
forms for α given thereafter, we find that all of these results
are related as a function of the spatial dimension d via

λN (d) = λD(d + 2)d and λC(d) = λD(d + 4), (19)

the subscripts D, N, and C denoting Dirichlet, Neumann, and
curvature suppressing, respectively.

Model A ferromagnet: Here we consider a simple fluctuat-
ing field where �̃(q) = q2 + m2, and we take simple diffusive
dynamics for the field, characterized by a diffusion constant
D0 so that R̃(q) = D0. For d � 3 for Dirichlet and d � 1 in
the Neumann case and all d for the curvature-suppressing case,
the friction coefficient takes a simple form in the limit where
ma → 0, i.e., where the microscopic cutoff a is much smaller
than the correlation length ξ = 1/m of the field

λD(d) = T

D0
Q(d), (20)

where Q(d) can be expressed as integrals independent of a and
m. For example, Q(3) ≈ 0.479 in the case of a sharp cutoff as
used here. However, Q(d) will generally depend precisely on
how the theory is regularized at short distances; there could be a
sharp cutoff corresponding to say the lipid size in membranes,
or an effective cutoff generated by higher derivative terms in
the field energy.

For d = 1 and 2 the friction coefficient takes the form
λD = Tf (ma)/D0, where f (x) = −2 ln(x)/π and f (x) =
ln[− ln(x)]/2, respectively.

Model B ferromagnet: Here we again take the Gaussian
ferromagnet but consider the case of model B dynamics, which
conserves the total magnetization and where R̃(q) = D0a

2q2,
where D0 is again a diffusion constant and the dynamical
operator is given the correct physical dimensions via its
dependence on the cutoff length scale a. In this notation we
find for the Dirichlet interaction that for d � 4 λD takes the
form of Eq. (20) (the dependence on the cutoff a cancels with
the factor of a2 appearing in the definition of R̃ and ultraviolet
divergences in the integrals in the expression for λ). For d =
3 λ ∼ −T ln(ma)/D0, λ ∼ T/{D0[ma ln(ma)]2} for d = 2
and for d = 1 we have λ ∼ T/[D0(ma)2].

Rigid inclusion in lipid bilayers: Here we consider the case
of a rigid inclusion in a lipid bilayer that locally suppresses
the membrane curvature. The interaction term is of the form
in Eq. (2c), and using the Helfrich Hamiltonian [10] gives
�̃(q) = κq4 + σq2, where κ and σ are, respectively, the
membrane bending rigidity and surface tension. Membrane
fluctuation dynamics is dominated by the surrounding fluid,
and we have R̃(q) = 1/4ηq, where η is the viscosity of
the surrounding fluid [14]. Here the drag is dominated by
short-distance behavior, and we find the result λC ∼ T ηa/κ ,
in the limit where a 
 ξ = √

κ/σ , (the correlation length of
the membrane fluctuations). Note that in addition to this drag
there will also be additional drag forces due to molecular
friction [15], and the drag computed here is an additional one.

Equation (11) can also be solved numerically for any
h and v. We performed this numerical computation for a
model A ferromagnet in d = 1, with a Dirichlet inclusion/field
interaction and setting ma = 0.1, The computation was done
with 101 Fourier modes. The mean drag force as a function
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h = 1
h = 10
h = 100
h = 1000

FIG. 2. (Color online) Drag force vs velocity for a model A
ferromagnet in d = 1 (on a log-log scale), with different values of h.
The solid line is the analytical result λDv.
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of the velocity is plotted in Fig. (2) for different values of
h. We see that for small v 〈f 〉 is linear in v (and for large
h the coefficient agrees with our analytical result) and that
for large v it decays as 1/v. It is also interesting to note that
the regime in v where linear frictional forces arise is very
large, and its range increases upon increasing the interaction
strength h.

We have seen that in a number of cases, in particular when
the insertion coupling depends on higher derivatives of the
field and when the spatial dimension is high, the friction is
dominated by the short wave length fluctuations of the field.
In these cases it can be shown from Eq. (18) (and dimensional
analysis) that

λ ∼ T 	2τ (	), (21)

where τ (	) = [R̃(	)�̃(	)]−1 is the relaxation time of the
shortest wave length. The scaling of all the short-distance-
dominated results above can be deduced from this formula.
The frictional force in this case is thus increased as the
relaxation time of the short wave length modes is increased.
The dependence of the friction coefficient on the microscopic
cutoff is rather subtle. In the low-dimensional ferromagnets
with model A and B dynamics the friction coefficient increases
as the cutoff decreases, but for curvature-suppressing proteins
in a Helfrich model membrane driven by stochastic hydrody-
namics, the drag increases as the cutoff size increases.

In the study [5] of the drag on a polarizable molecule in
blackbody radiation, one can see that the classical contribution
to this drag is also proportional to T , as found in here.

However, in Ref. [5], the drag is of first order in the molecule’s
polarizability, whereas the effect here is second order in the
parameter h characterizing the interaction strength between
the field and the particle. The drag experienced by impurities
in one-dimensional Bose Einstein condensates [6] shows a
similar behavior to our result; in the high-temperature regime
the force is proportional to T , and perturbatively the force
is second order in the coupling h of the impurity to the
condensate. Physically the mechanism for drag creation is
quite different in the dissipative systems studied here; in
the models presented here the inclusion is repelled from
regions where the field fluctuates. The region behind a moving
inclusion fluctuates less than that ahead as the passage of the
inclusion has flattened out the fluctuations. The field behind
the inclusion is thus calmer than that ahead, thus making it
energetically favorable for the inclusion to move backward
and thereby inducing the drag force.

The experimental observation of this drag requires a system
where the fluctuation-induced drag is not swamped by other
drags, such as hydrodynamic Stokes’ drag. Our result for
drag on a curvature-suppressing membrane protein appears
to be only 1% of the hydrodynamic drag given by the
Saffman-Delbrück formula [16] for insertions of the size of the
membrane thickness. This is because the former is dominated
by the viscosity of the embedding fluid and the latter by the
membrane viscosity. The addition of glycerol to the external
solution can increase its viscosity by a factor of up to 50, and
the fluctuation-induced drag will then be of the same order as
the hydrodynamic one and may be observable.
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