
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 84, 010102(R) (2011)

Nonuniversal behavior of the helicity modulus in a dense defect system
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An extensive Monte Carlo simulation has been performed on a two-dimensional modified XY model that
behaves like a dense defect system. Topological defects are shown to introduce disorder in the system, which makes
the helicity modulus jump nonuniversal. The results corroborate the experimental observation of a nonuniversal
jump of the superconducting density in high-Tc superconducting films.
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The two-dimensional (2D) XY model of planar spins has
been the subject of great interest for the past four decades.
It had long been thought that the 2D XY model was without
a phase transition until Kosterlitz and Thouless proved that a
phase transition indeed occurs and clarified its topological na-
ture [1,2]. The Kosterlitz-Thouless (KT) transition is a contin-
uous phase transition of infinite order from a high-temperature
isotropic phase with exponential decay of spin-spin correlation
functions to a low-temperature pseudo-long-range-order or
quasi-long-range-order (QLRO) phase with power-law decay
of spin-spin correlations. Kosterlitz and Thouless pictured this
transition in terms of vortex unbinding. In the low-temperature
phase the charges (vortices) are bound together into dipole
pairs, while in the high-temperature phase some dipole pairs
are broken. KT theory [2] leads to the well-known universal
jump prediction [3] of the helicity modulus [4] or, equivalently,
of the superfluid density [3,5]. Kosterlitz RG equations for the
2D Coulomb gas (CG) are constructed in the low-temperature
phase and are valid in the limit of small particle densities [6].
On the basis of a different set of RG equations for the 2D
CG, Minnhagen suggested that the conclusions based on the
Kosterlitz RG equations may break down for larger dipole-pair
fugacities [7,8]. As a result, a charge-unbinding transition with
nonuniversal jumps may, in principle, be possible and it was
shown that for higher particle densities, the charge-unbinding
transition is first order [9]. On the basis of sine-Gordon
field theory, Zhang et al. [10] showed that the nature of the
transition in the dense 2D classical CG is of discontinuous
first-order type. The evidence of a first-order phase transition
for higher particle densities was supported by Monte Carlo
(MC) simulations [11–13]. Such first-order phase transitions
are related to high-Tc superconductivity [14]. Leemann et al.,
in their experimental measurements of the inverse magnetic
penetration depth �−1 in thin films of YBa2Cu3O7 [15],
observed that the jump of the superconducting density (or,
equivalently, the helicity modulus) did not obey the universal
prediction of KT theory. These systems thus cannot be
described by the conventional XY model. Mila [16] attempted
to understand the nonuniversal jump of the superconducting
density in thin films of high-Tc superconductors in terms of
the XY model with a modified form of interaction potential.
Such kind of model was introduced by Domany et al. [17].
They introduced an extension of the 2D XY model where the
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classical spins (of unit length), located at the sites of a square
lattice and free to rotate in a plane, say, the XY plane (having
no Z component), interact with nearest neighbors through a
modified potential

V (θ ) = 2J

[
1 −

(
cos2 θ

2

)p2]
, (1)

where θ is the angle between the nearest-neighbor spins, J

is the coupling constant, and p2 is a parameter used to alter
the shape of the potential or, in other words, p2 controls the
nonlinearity of the potential well, although variation in p2

does not disturb the essential symmetry of the Hamiltonian.
For p2 = 1, the potential reproduces the conventional XY

model while; for large values of p2 (say p2 = 50), the model
behaves like a dense defect system [18] and gives rise to a
first-order phase transition as all the finite-size scaling rules
for a first-order phase transition were seen to be obeyed [19].
The first-order phase transition is associated with a sharp jump
in the average defect pair density [18,20]. The change in the
nature of the phase transition with the additional parameter
p2 is in contradiction with the prediction of RG theory,
according to which systems in the same universal class (having
the same symmetry of the order parameter and the same
lattice dimensionality) should exhibit the same type of phase
transition with identical values of the critical exponents. In this
context, I refer to the work of Curty and Beck [21] who showed
that in three dimension (3D), continuous phase transition can
be preempted by a first order one.

Finally, van Enter and Shlosman provided a rigorous
proof [22,23] of a first-order phase transition in various
SO(n)-invariant n-vector models that have a deep and narrow
potential well. The model defined by Eq. (1) is a member
of this general class of systems. Moreover, van Enter and
Shlosman argued that, in spite of the order parameter in the
2D systems with continuous energy spectrum being predicted
to vanish by Mermin-Wagner theorem [24], the first-order
transition is manifested by the long-range order in higher-order
correlation functions. Recently Sinha and Roy [19] verified
this argument by numerical simulations and showed that while
the lowest-order correlation function decays to zero, the next
higher-order correlation function has a finite plateau. The role
of topological defects on the phase transition exhibited by the
model described by Eq. (1) was then investigated by means
of extensive MC simulations and it was observed that the
system appears to remain ordered at all temperatures when
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FIG. 1. (Color online) Average defect pair density ρ plotted
against dimensionless temperature T for L = 64 for various values
of p2.

configurations containing topological defects are not allowed
to occur [18].

However, the connection of spin stiffness (the helicity
modulus) to topological defects has not yet been studied
for systems exhibiting a first-order transition. The present
Rapid Communication aims at studying this aspect of phase
transition, which allows one to check whether the universal
jump predicted in the KT picture is also valid in systems
defined by Eq. (1). The present work also explores how
disorder influences the properties of the phase transition in
these 2D systems. The effect of disorder on the KT transition
has become relevant since the experimental observation of
the superconductor-insulator transition in thin disordered films
[25,26].

The model defined by the interaction potential given by
Eq. (1) is chosen for the present investigation. It is found
that the transition is associated with a nonuniversal drop in the
helicity modulus. It is also found that when the number density
of topological defects increases rapidly, disorder is introduced
into the system. The additional parameter p2 plays the role of
disorder here.

The variation of the average defect pair density ρ with
the dimensionless temperature T for lattice size L = 64 is
shown in Fig. 1. The coupling constant J [in Eq. (1)] has been
conventionally set to unity. The method for calculating the
average defect pair density and the simulation techniques are
discussed in Ref. [18]. A sharp variation of ρ as T increases
through the transition temperature Tc(p2) is observed. ρ is
found to show a sharp jump at Tc(p2), particularly for large
values of p2. So, for strong enough nonlinearity, there is a
sudden proliferation in the average defect pair density and the
system under investigation behaves like a dense defect system
for large values of p2.

Next the average defect pair density ρ is plotted as a
function of the parameter p2 in Fig. 2. The plot is for three
different system sizes at a temperature T = 1.1200, which is
above the transition temperature of the model for p2 = 50.
The data for ρ versus p2 are nicely fitted by the expression

ρ(T ) = ρmax − α(T )exp(−δ
√

p
2). (2)
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FIG. 2. (Color online) Average defect pair density ρ plotted as
a function of p2 at T = 1.1200 for three system sizes. The best fit
corresponds to L = 64. The error bars are smaller than the dimension
of the symbols used for plotting.

Equation (2) takes into account both vortices and antivortices.
ρ increases monotonically with p2 and saturates to a maximum
value ρmax ≈ 0.28, which is independent of the temperature.
The values of ρmax for the three system sizes are listed in
Table I. There is no significant system size dependence of the
parameters, as is evident from Table I. The maximum defect
density ρmax is usually achieved in the high-temperature limit
T → ∞, but here it is achieved in the high-p2 limit p2 → ∞.
Therefore, it seems reasonable to interpret the parameter p2

as playing the role of disorder. In the high-p2 limit, the
system contains only vortex excitations. This means that in
the high-p2 limit, the system must be disordered even at
very low temperature; consequently, the transition temperature
decreases with increasing p2, which we observe in Fig. 1. In
other words, as we increase the nonlinearity p2, the influence
of disorder becomes stronger and a tendency of a first order
transition with a sudden proliferation of topological defects
develops.

The concentration is now focused on the behavior of
spin stiffness (the helicity modulus). The helicity modulus,
introduced by Fisher et al. [27], is a thermodynamic function
that measures the rigidity of an isotropic system under an
imposed phase twist. The free-energy difference between the
twisted and the periodic boundary conditions is proportional
to the helicity modulus γ . Thus the general definition of the
helicity modulus may be regarded as [28]

γ = lim
L→∞

2L2−d F (ω) − F (0)

ω2
, (3)

TABLE I. Parameters for the fit of ρ(T ) = ρmax −
α(T )exp(−δ

√
p

2) for different values of L.

L ρmax α(T ) δ

32 0.2866 ± 0.002 0.411 ± 0.005 0.301 ± 0.008
48 0.2876 ± 0.002 0.406 ± 0.006 0.297 ± 0.009
64 0.2878 ± 0.002 0.406 ± 0.006 0.296 ± 0.009
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FIG. 3. (Color online) Helicity modulus γ plotted against
temperature T for various lattice sizes for p2 = 50; error bars are
shown for three lattice sizes.

where ω is the angle of twist and d is the spatial dimension.
In the present case, in which the twisted boundary condition
is antiperiodic and d = 2, the definition of γ simplifies to

γ = 2
F (π ) − F (0)

π2
. (4)

Antiperiodic boundary condition is imposed only along one
direction, say, along the X direction. Our calculation of γ

involves a direct simulation of Eq. (4) using the multiple
reweighting histogram method, a sophisticated MC technique
proposed by Ferrenberg and Swendsen [29,30]. In the sim-
ulations, 107 MC steps per site were used to compute the
raw histograms and 106 MC steps per site were taken for
equilibration.

The variation of γ with temperature for various lattice
sizes is displayed in Fig. 3. The transition is signaled by
an abrupt decrease of the helicity modulus in the vicinity
of the transition temperature as the temperature increases
and the drop at the transition becomes steeper as the system
size L increases. It is also manifested that instead of the
subtle and smooth KT transition, the transition coincides
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FIG. 4. (Color online) Derivative of 1
2 βγ (β) as a function of

temperature T for different lattice sizes for p2 = 50; error bars are
shown for three lattice sizes.
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FIG. 5. (Color online) Peak heights of τ plotted against L2 with
the linear fit represented by the straight line. The error bars for most
points are smaller than the dimension of the symbols used for plotting.

with a nonuniversal jump in γ . The physical picture can be
explained as follows. As p2 increases, short-scale fluctuations
(the rotation of separate spins by large angles) are favored
over long-wavelength fluctuations (spin waves and vortices),
which induces disordering at a lower temperature than the
KT transition temperature, but the vortex-vortex interaction
still remains stronger at that lower temperature, thus making
the helicity modulus jump nonuniversal. The ratio of γ /T

at T = Tc for different values of L is listed in Table II.
It should be noted that Minnhagen [7] also showed the
possibility of a KT transition in a 2D CG with a nonuniversal
jump in γ .

The temperature derivative τ of the helicity modulus
has also been computed. The internal energy difference
under antiperiodic and periodic boundary conditions gives the
derivative of the helicity modulus in the form

τ = 1

2

d

dβ
[βγ (β)] = 〈E〉a − 〈E〉p

π2
. (5)

The MC data for the right-hand size of Eq. (5) as a function
of temperature for different lattice sizes are shown in Fig. 4.
The transition is manifested by a huge peak height in τ and the
data display a divergent behavior with increasing L, which
is indicative of a discontinuous jump in γ in an infinite
lattice.

The finite-size scaling of τ is now presented. Since τ is a
response function like specific heat Cv or susceptibility χ , it
is expected to show scaling behavior that is identical to that
for Cv or χ . From Fig. 5, where the maxima of τ are plotted
against L2, it is clear that the peak heights of τ scale as Ld ,
which confirms the first-order nature of the present model for
p2 = 50. We recall here that for the first-order transition the
standard scaling rule for Cv goes like Cv ∼ Ld [31].

In this Rapid Communication an extensive MC simulation
has been used to show that for strong enough nonlinearity
(i.e., for large values of p2) in the interaction potential of
Eq. (1), there is a sudden proliferation of topological defects
that makes the system disordered. Consequently, the transition
is associated with a discontinuous nonuniversal jump in the
helicity modulus. Thus the present simulation has given some
support to the idea that the type of phase transition in thin
superconducting films may be changed due to the influence
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TABLE II. γ /T at T = Tc for different values of L.

L γ/T

16 0.5742
32 0.6049
48 0.6569
64 0.7192
80 0.6971
96 0.6454

of disorder. As high-Tc superconducting films are believed to
have an irregular structure, it seems reasonable to relate the
nonuniversal jump to disorder.

Some studies [16,32,33], however, mostly based on RG
analysis of the Migdal-Kadanoff type, contested the first-order
nature of the transition in the model defined by Eq. (1).
Since renormalization arguments hold only for small disorder,
the possibility that disorder may change the nature of the
phase transition always remains. Perhaps this is the reason

behind the different interpretation of results by the authors of
Refs. [16,32,33].

Finally, the present work could shed light on the nature
of 2D melting, which remains controversial for decades.
Experimental work and numerical simulations favor a KT-like
transition in some cases and a discontinuous transition in
others [34]. After all, it is possible that the nature of the melting
transition in two dimensions depends on the specific system
and the parameters of the model, which in turn translate into
different values of the nonlinearity parameter p2.

This Rapid Communication concludes with a comment. It
is observed in Fig. 3 that the graphs for the helicity modulus
γ against temperature for different lattice sizes intersect at a
point that is the transition temperature of the model (within
an error of 0.03%). No explanation is offered here for this
interesting result; this issue is left for future research.

The author is grateful to S. K. Roy for many fruitful
discussions and a number of suggestions after critically reading
this manuscript.
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