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Scaling of cluster heterogeneity in percolation transitions
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We investigate a critical scaling law for the cluster heterogeneity H in site and bond percolations in d-
dimensional lattices with d = 2, . . . ,6. The cluster heterogeneity is defined as the number of distinct cluster
sizes. As an occupation probability p increases, the cluster size distribution evolves from a monodisperse
distribution to a polydisperse one in the subcritical phase, and back to a monodisperse one in the supercritical
phase. We show analytically that H diverges algebraically, approaching the percolation critical point pc as
H ∼ |p − pc|−1/σ with the critical exponent σ associated with the characteristic cluster size. Interestingly, its
finite-size-scaling behavior is governed by a new exponent νH = (1 + df /d)ν, where df is the fractal dimension
of the critical percolating cluster and ν is the correlation length exponent. The corresponding scaling variable
defines a singular path to the critical point. All results are confirmed by numerical simulations.
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Percolation is a geometric phase transition for connectivity
[1,2]. Suppose that a fraction p of sites or bonds is occupied
in an infinite lattice. When p is less than a threshold pc, any
site is connected to others up to a finite distance via occupied
sites or bonds. As p increases, clusters (sets of connected sites)
grow until there emerges a spanning, giant, or infinite cluster
to which a finite fraction of sites belong.

The percolation transition is manifested in several quan-
tities. The order parameter m, given by the fraction of sites
belonging to the giant cluster, becomes nonzero beyond the
transition. The mean cluster size S, defined as the average
size of finite clusters which include a randomly selected
site, diverges at the transition. Their scaling properties, such
as the exact critical exponents in two dimensions [3] and the
upper critical dimensionality du = 6 [1], are well understood.

Recently, the cluster heterogeneity H , defined as the
number of distinct cluster sizes, has been suggested as a useful
indicator of a percolation transition [4]. Consider a cluster size
distribution function ns that is defined as the number of clusters
of size s per site. When p = 0, the distribution is monodisperse
with H = 1. As p increases, clusters nucleate and aggregate
into larger ones. Consequently, in the subcritical phase, the
cluster size distribution becomes broader. In the supercritical
phase, finite clusters are absorbed into the giant cluster to
decrease H . Hence one expects that the cluster heterogeneity
may be maximal at the transition.

Lee et al. [4] found that the maximum heterogeneity
points indeed converge to a percolation threshold in the
thermodynamic limit in the study of the so-called explosive
percolation [5]. Exploiting the finite-size-scaling (FSS) prop-
erty at the maximum heterogeneity points, they could clarify
the nature of the explosive percolation transition. However, the
scaling property of H by itself has not been fully understood
even in the ordinary random percolations. In this Rapid
Communication, we establish the critical scaling law for H

with emphasis on its FSS theory.
We begin with a brief review for the scaling theory. For

a detailed review, we refer readers to Refs. [1] and [2].
The ordinary percolation exhibits a continuous transition [6].
The correlation length diverges algebraically as ξ ∼ |ε|−ν ,
where ε ≡ p − pc and ν is the correlation length exponent. At

p = pc, the giant cluster is a fractal characterized with a fractal
dimension df . Physical quantities have a singular dependence
on ε. For example, the order parameter scales as m ∼ εβ for
p � pc with the order parameter exponent β. The mean cluster
size S diverges as S ∼ |ε|−γ with the susceptibility exponent
γ . The cluster size distribution function ns(p) for finite s scales
as

ns(p) ∼ s−τ e−s/sc , (1)

where τ is called the Fisher exponent and sc is the characteristic
cluster size. It diverges as sc ∼ |ε|−1/σ with a critical exponent
σ . There exist scaling relations among those critical exponents.
So, any exponent can be written in terms of two independent
ones, say ν and df . The scaling relations read β = ν(d − df ),
γ = ν(2df − d), σ = 1/(νdf ), and τ = 1 + d/df .

In finite systems of linear size L, the scaling laws are
modified because the correlation length ξ is limited by L.
The FSS hypothesis assumes that a finite-size effect comes
into play through the ratio between L and ξ [7]. This leads to
the FSS ansatz for an observable Q(p,L):

Q(p,L) = LXQFQ(εL1/ν), (2)

where XQ is a scaling exponent andFQ(x) is a scaling function
for Q [7]. The FSS ansatz claims that a finite system suffers
from a finite-size effect in the region |ε| < L−1/ν , whereas it
behaves as an infinite one elsewhere. The aim of this Rapid
Communication is to find a scaling law for H .

First, we present numerical data for H in site and bond
percolations in two-dimensional (2D) square and triangular
lattices, which shows that the standard FSS form (2) is not valid
for H . Next, we derive the central result of Eq. (14) and present
numerical data in d = 2, . . . ,6 dimensional hypercubic lattices
to confirm it. This is followed by our summary and conclusion.

We have performed Monte Carlo simulations of site and
bond percolations in 2D square and triangular lattices of L × L

sites under the periodic boundary condition using the Newman
and Ziff algorithm [8]. This algorithm allows an efficient and
fast measurement of a quantity Q as a function of the number
n of occupied sites or bonds. A corresponding quantity as a
function of the occupation probability p is then obtained by
the convolution Q(p) = ∑

n B(N,n,p)Q(n), where N is the
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FIG. 1. (Color online) Cluster heterogeneity in site percolations
in (a) and (c), and bond percolations in (b) and (d) on 2D square
lattices in (a) and (b) and triangular lattices in (c) and (d). The dotted
lines represent the critical percolation threshold. Lattice sizes are
L = 25, . . . ,212 for the square lattices and L = 27 × 20, . . . ,27 × 27

for the triangular lattices. The larger the value of L, the higher the
value of H .

total number of sites or bonds and B(N,n,p) ≡ N!
n!(N−n)!p

n(1 −
p)N−n is the binomial distribution function [8,9].

The cluster heterogeneity, averaged over NS = 105 sam-
ples, is presented in Fig. 1. In all cases, the curves have a
diverging peak (maximum cluster heterogeneity) at a position
denoted by (p∗,H ∗). The peak position seems to approach
from below the critical point, which is pc = 0.592746 for the
square lattice site percolation [8], 1/2 for the square lattice
bond percolation and the triangular lattice site percolation,
and 2 sin(π/18) for the triangular lattice bond percolation [10].
FSS properties are analyzed in Fig. 2. We find that (pc − p∗)
and H ∗ scale algebraically with L with apparently universal
exponents.

It is noteworthy that (pc − p∗) does not scale as L−1/ν with
the correlation length exponent ν = 4/3 in two dimensions.
Such a scaling would be natural from the FSS hypothesis
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FIG. 2. FSS of (pc − p∗) in (a) and H ∗ in (b) for the site
(open symbols) and the bond (filled symbols) percolations on 2D
square (square symbols) and triangular (triangle symbols) lattices.
All straight lines are guides to the eye. The slopes of the solid lines
are explained in the text. In (a), the dashed line has a slope of 1/ν =
3/4.

of Eq. (2). However, Fig. 2(a) excludes such a possibility
definitely. It calls for an appropriate FSS theory for H .

In order to characterize the cluster heterogeneity, one needs
to specify the size of each cluster. Jan et al. [11] considered
a FSS behavior of the rth largest cluster size at the critical
point where the cluster size distribution follows a power law
ns ∼ s−τ . The rth cluster size sr is estimated from the relation
r ∼ Ld

∫
sr

ds s−τ , which yields

sr ∼ r− 1
τ−1 L

d
τ−1 = r− 1

τ−1 Ldf . (3)

We extend their idea to the off-critical region to derive the FSS
theory for H .

For p � pc, the cluster size distribution function is given by
Eq. (1) [12]. Then, the size of an rth largest cluster is obtained
from

r = Ld

∫
sr

ds ns ∼ Lds1−τ
c 
(1 − τ,sr/sc), (4)

where the function 
(u,x) ≡ ∫ ∞
x

dt tu−1e−t is the incomplete
gamma function. The characteristic size itself displays a FSS
behavior [2]:

sc ∼
{|ε|−1/σ for |ε| � L−1/ν,

Ldf for |ε| � L−1/ν .
(5)

We now compare the average size of the rth and the
(r + 1)th clusters. Using Eq. (4), one finds that

�rs = sr − sr+1 ∼ L−dsτ es/sc . (6)

The distribution is dense when �rs < 1 and sparse when
�rs > 1. The two regions are separated at s = s0, satisfying

L−dsτ
0 es0/sc = O(1). (7)

The rank of a cluster of size s0 is given by

r0 ∼ Lds1−τ
c 
(1 − τ,s0/sc). (8)

Note that Ldns0 = O(1). This implies that there are at least
O(1) clusters of all sizes s < s0. On the other hand, there
are r0 clusters in the region s > s0, whose sizes are distinct
because �rs > 1. Therefore we find that

H � s0 + r0. (9)

To obtain the solution of Eq. (7) for s0, we first assume
that s0 � sc. Then, the exponential term is negligible and the
solution is given by

s0 ∼ Ld/τ . (10)

Using the asymptotic behavior 
(u,x → 0) ∼ − 1
u
xu, one also

finds that r0 ∼ s0. This solution is self-consistent when Ld/τ �
|ε|−1/σ or

|ε| � L−1/νH , (11)

where the exponent variable is

νH = τ

dσ
= τ

τ − 1
ν =

(
1 + df

d

)
ν. (12)

In the opposite case s0 � sc, the leading-order solution of
Eq. (7) is given by

s0 ∼ sc ln L. (13)
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FIG. 3. (Color online) Scaling analysis of H for the site [(a) and
(c)] and bond [(b) and (d)] percolations on 2D square [(a) and (b)]
and triangular [(c) and (d)] lattices. The same data sets are used as in
Fig. 1.

From the asymptotic behavior 
(u,x → ∞) ∼ xu−1e−x , one
also finds that r0 ∼ sc. This solution is self-consistent when
|ε| � L−1/νH .

Using the solution for s0 and r0, we can summarize the
scaling property of H with the FSS form

H (p,L) = Ld/τFH (εL1/νH ). (14)

The scaling function has a limiting behavior

FH (x) ∼
{|x|−1/σ ln |x| for |x| � 1,

constant for |x| � 1,
(15)

so that H ∼ (ln L)|ε|−1/σ for |ε| � L−1/νH and H ∼ Ld/τ for
|ε| � L−1/νH .

Remarkably, the FSS exponent νH for the cluster hetero-
geneity is distinct from the correlation length exponent ν. This
explains why (pc − p∗) does not scale as L−1/ν in Fig. 2(a).
Instead, the numerical data are consistent with the scaling
(pc − p∗) ∼ L−1/νH with νH = 187/72 in two dimensions
(see Table I). The solid lines in Fig. 2(a) have a slope of
1/νH . The maximum heterogeneity is expected to scale as
H ∗ ∼ Ld/τ with d/τ = 182/187 in two dimensions. The solid
line in Fig. 2(b) has this slope and is in agreement with the
numerical data. The FSS scaling form is tested in Fig. 3, where
we replot the data in Fig. 1 according to Eq. (14). All the data
from different sizes collapse perfectly onto a single curve.
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FIG. 4. (Color online) (a) (pc − p∗) vs 1/L. The solid lines have
a slope of 1/νH , while the dotted lines have a slope of 1/ν. (b) H ∗ vs
L with the solid lines having a slope of d/τ .

We examine whether the FSS form in Eq. (14) for H is
valid universally in higher dimensions up to the upper critical
dimension du = 6. We have performed extensive numerical
simulations of site and bond percolations to measure H in
hypercubic lattices in d = 2, . . . ,6 dimensions under the peri-
odic boundary condition. The system sizes are L = 23, . . . ,28

in three dimensions, L = 23, . . . ,L6 in four dimensions, L =
8, . . . ,28 with �L = 4 for five dimensions, and L = 6, . . . ,16
with �L = 2 for six dimensions. The number of samples is
NS = 105 in all cases.

In Fig. 4(a), (pc − p∗) is plotted against 1/L for the site
percolations. Also drawn are the straight lines corresponding
to the scalings L1/ν and L1/νH . The parameter values used in
the plot are collected from the literature and listed in Table I.
In all dimensions, (pc − p∗) scales with the exponent 1/νH

instead of 1/ν. Figure 4(b) shows the plot of H ∗ against L,
which also confirms the scaling H ∗ ∼ Ld/τ . We have obtained
the same result for the bond percolations, for which data are
not shown here.

We have shown that the cluster heterogeneity diverges
at the percolation critical point and that it satisfies the FSS
form in Eq. (14). The FSS is governed not by the correlation
length exponent ν but by the new exponent νH = (1 + df /d)ν.
Consequently, the maximum cluster heterogeneity points
follow the scaling [pc − p∗(L)] ∼ L−1/νH . This is contrasted
with the standard L−1/ν scaling of the effective critical points
obtained from the order parameter data and the average cluster
size data.

Since νH > ν, the maximum heterogeneity points p∗(L)
constitute a singular path of ε ∼ −L−1/νH in the subcritical
phase to the critical point. Although they converge to pc in the

TABLE I. Critical points and critical exponents in the site percolations in d-dimensional hypercubic lattices. The mean field (MF) exponent
values are given for d = 6.

d = 2 d = 3 d = 4 d = 5 d = 6

pc (site) 0.592746 [8] 0.3116077 [13] 0.196889 [16] 0.140765 [17] 0.109017 [17]
ν 4/3 0.875 [14] 0.689 [15] 0.51 [18] 1/2 (MF)
df 91/48 2.523 [14] 3.05 [16] 3.54 [16] 4 (MF)
νH = (1 + df /d)ν 187/72 1.611 1.21 0.87 5/6 (MF)
d/τ = d/(1 + d/df ) 182/187 1.370 1.73 2.07 12/5 (MF)
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L → ∞ limit, the system along the path remains outside the
critical region defined by the condition |ε| � L−1/ν . Physical
quantities along a singular path may exhibit a peculiar FSS
behavior.

Consider, for example, the order parameter m, which
follows the FSS form in Eq. (2) with Xm = −β/ν. In the
subcritical phase, it scales with L as m ∼ L−d in the leading
order [19], which requires that the scaling function should
have a limiting behavior Fm(x � −1) ∼ |x|−(dν−β). So the
order parameter m∗, evaluated at the maximum heterogeneity
points, follows the scaling m∗ ∼ L−β/νFm(−L−1/νH +1/ν) ∼
L−β/ν−df (1−ν/νH ), instead of the standard critical scaling
m∗ ∼ L−β/ν . In fact, this is a manifestation of the crossover

phenomena near a multicritical point [20] in the context of the
FSS [21]. In general, when there exist multiple relevant scaling
fields for a critical point, scaling behaviors become dependent
on a path approaching it. Since 1/L is one such relevant scaling
variable [7,22], one can naturally expect a nontrivial FSS along
a singular path. The maximum cluster heterogeneity condition
indeed allows us to access a singular path to the percolation
critical point.
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