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The concept and experimental results of a light source given in a recent paper by Adamo et al. [Phys. Rev. Lett.
103, 113901 (2009)] are very interesting and attractive. Our paper presents detailed theoretical investigations on
such a light source, and our results confirm that the mechanism of the light radiation experimentally detected in
the published paper is a special kind of diffraction radiation in a waveguide with nanoscale periodic structure
excited by an electron beam. The numerical calculations based on our theory and digital simulations agree well
with the experimental results. This mechanism of diffraction radiation is of significance in physics and optics,
and may bring good opportunities for the generation of electromagnetic waves from terahertz to light frequency
regimes.
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I. INTRODUCTION

Recently, two very important and interesting papers were
published [1,2], which present the concept of a light well and
demonstrate experimental results. The schematic system is
shown in Fig. 1 of [1]. It is a waveguide with nanoscale periodic
structure, and an electron beam is injected into the cylindrical
hole from the point of (r0,θ0) to excite light radiation. The
system is made of gold, the diameter is 700 nm, the period is
400 nm, and there are six periods with SiO2 filling in the gap.
Tunable light radiation around a frequency of 400 THz with
intensity of about 200 W/cm2 excited by an electron beam with
20–40 keV was detected experimentally, and the lateral size of
the structure is only a few hundred nanometers. Therefore, it is
a very interesting and attractive proposal, and the experimental
results are presented in these two papers. It is worth making
further theoretical investigation as deep as possible, which is
the goal of this paper.

A careful study of Ref. [1] revealed the following important
points:

(1) Since the nanoscale periodic structure is made of gold
and the operation wavelength is around 710 nm, the theoretical
study and digital simulations should take surface plasmons
(SPs) into account.

(2) The Brillouin diagram of the dispersion curve of
Fig. 3 in [1] is expanded and shown in Fig. 1 of our paper. We
can see there are five transverse electric (TE) and transverse
magnetic (TM) modes presented: TE11, TM01, TE21, TE01, and
TM11 modes (the last two modes are degenerate modes). The
excitation is by a uniformly moving electron beam traveling
along the axial direction, so only TM modes can be induced
in the structure.

(3) The intersection points marked by a circle in Fig. 3
of [1] are the coupling points of the modes and beams. The
frequencies of light radiation detected in [1] are close to that of
the intersection points of the dispersion curve with the electron
beam lines. Some of the points represent the backward waves,
and others represent the forward waves. The detected radiation
in the experiment of [1] should only be the backward waves.
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(4) The experimental results are very interesting and
important. However, it seems that there is no theoretical study
on the mechanism of the light radiation generation, and that is
the most significant problem.

The purpose of this paper is to explore the mechanism of
experimental results given in [1,2], and to develop a theory
on the physics of the mechanism so that the results can be
properly interpreted and analyzed in depth. And this work
certainly may lead to a concept for developing electromagnetic
radiation sources based on the combination of electronics
and photonics and the nanotechnique as well, especially for
frequencies higher than terahertz (THz).

This paper makes a detailed theoretical exploration of the
mechanism of the light well [1]. In Sec. II is the general
theoretical formulation to derive the expression of the incident
fields for diffraction radiation. Section III presents the theory
of the waveguide with nanoscale periodic structure and obtains
the dispersion equation of the structure. The theory of a
beam-wave interaction is shown in Sec. IV to prove that the
light-well mechanism [1] does not belong to the beam-wave
interaction. The theory of the diffraction radiation of the
nanoscale periodic structure excited by the electron beam is
given in Sec. V, and the numerical calculations are shown in
Sec. VI. The results given in Secs. V and VI confirm that
the light-radiation mechanism is a special kind of diffraction
radiation excited by the electron beam in a waveguide with a
periodical structure. Finally, Sec. VII presents the conclusion
and discussion.

II. GENERAL THEORETICAL FORMULATION

For an electron beam uniformly moving in a smooth
cylindrical waveguide, a space-charge wave can be excited
and sustained. The space-charge wave is a slow wave closely
accompanying the electron beam, and it cannot radiate. The
influence of the waveguide only leads to the “reduction factor”
to the space-charge wave (decreases the plasma frequency of
the electron beam) [3–5]. Therefore the electron beam cannot
excite the guided TE and TM modes in a smooth cylindrical
waveguide. The charged particles or electron bunch also cannot
excite the guided modes in a smooth waveguide, only the local
field moving together with them can be excited [6,7].
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FIG. 1. (Color online) Brillouin diagram of the guided modes
of infinite periodic cylindrical gold cavity with a radius of 350 nm
expanded from Fig. 3 in [1], where 1 eV = 241.5 THz. The a means
period and q is the longitude wave vector. The guided modes are
TE11, TM01, TE21, TE01 and TM11 modes (the last two modes are
degenerate modes).

Now we are going to deal with the mechanism problem and
we will show that in a cylindrical waveguide with periodic
structure, the diffraction radiation can be excited as the
guided modes propagating along the waveguide. The general
theoretical formulation is given below. The scheme to be
studied is shown in Fig. 2.

First, we should derive the expressions of the incident
fields for diffraction radiation. To do so, the following
inhomogeneous Helmholtz equation is used:

1

r

∂

∂r

(
r
∂Ez

∂r

)
+ 1

r2

∂2Ez

∂θ2
+ ∂2Ez

∂z2
− 1
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= jω

4π

c
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(1)

The current density Jz can be expressed as

Jz = qu0
δ(r − r0)

r
δ(θ − θ0)δ(z − u0t), (2)

where a uniformly moving electron beam is injected into the
waveguide at the point (r0,θ0) with velocity u0 and charge
quantity q.

FIG. 2. (Color online) Schematic model of the light well to be
studied in this paper. It can either be open or closed in the radiation
direction.

Substituting Eq. (2) into Eq. (1) and making use of the
Fourier transformation, Eq. (1) can be transformed into the
expression in the frequency domain:
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+
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Ez

= −j2k0q
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where k2
c = k2

0 − ki
z

2
, ki

z = ω/u0, k0 = ω/c, m (integer) de-
notes the azimuthal variation number of the field, and ω is
angular frequency.

Making use of the integral transformation, the Bessel-
Fourier series expansion, and the Wronskian approach,
Eq. (3) can be solved and the frequency component of the
incident field of the electron beam can be obtained:

Ei
z = −πk0q

∞∑
m

H (1)
m (kcr)Jm(kcr0)ejm(θ−θ0)+jki

zz, r � r0,

Ei
z = −πk0q

∞∑
m

H (1)
m (kcr0)Jm(kcr)ejm(θ−θ0)+jki

zz, r � r0,

(4)

where Jm(kcr) and H (1)
m (kcr) are the first kind of Bessel

function and Hankel function of the mth order, respectively.
Here, the wave factor e−jωt is ignored.

The theory given above is a general one, and for the
symmetrical mode (m = 0), we get

Ei
z = −πk0qH

(1)
0 (kcr)J0(kcr0)ejki

zz, r � r0,
(5)

Ei
z = −πk0qH

(1)
0 (kcr0)J0(kcr)ejki

zz, r � r0.

For the case of no electron beam injection, it is just for the
periodic electrodynamic system, so we only need to let q = 0,
and Eq. (3) becomes the homogeneous equation
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+
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r2

)
Ez = 0, (6)

where k2
ch = k2

0 − k2
z , kz = ω/vp, and vp is the phase velocity

of the fundamental wave. Solving this equation, the diffraction
radiation in the structure can be obtained, and the solutions will
be given in the following sections.

Now we get the longitudinal electric fields excited by
the electron beam. Making use of the Maxwell equations,
transverse fields can be expressed in terms of the longitudinal
fields as

Et = jkz

k2
0εr − k2

z

∇tEz,

Ht = −jk0εr

k2
0εr − k2

z

ez∇tEz. (7)

For the case of TM modes Hz = 0, all the electromagnetic
fields induced by the electron beam in the structure can be
obtained.

Therefore making use of the general theoretical formations
[Eqs. (4) and (5)], the theoretical exploration of the light-well
mechanism will be developed in the following sections.
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FIG. 3. (Color online) Scheme of the waveguide with nanoscale
periodic structure. Three regions are shown: region I is the cylindrical
hole; region II is SiO2 filling; and region III is gold. The period is L,
the width of region II is d , and a is the radius.

III. THEORY OF THE WAVEGUIDE WITH NANOSCALE
PERIODIC STRUCTURE

Before dealing with the mechanism of the light radiation
observed in [1], the waveguide with periodic structure should
be studied [8]. The scheme and structural parameters with
which we are now concerned are shown in Fig. 3. The
scheme has three regions: I. the hollow region; II. the
dielectric (SiO2 filling) region, nL � z � nL + d; and III.
the gold region nL + d � z � (n + 1)L, n = 0,1,2,3, . . .,
while L is the period, and d is the thickness of gold layers,
d = L/2. We can see that region II (SiO2 filling) is a radial
transmission line, and the waves are propagating along each
line as transverse electromagnetic (TEM) waves, since the
width of the gap is much smaller than the wavelength. The
light-well nanoscale structure is made of gold and the operation
wavelength is around 710 nm, so SPs should be taken into
account. The permittivity of the gold can be expressed as
εIII
r = 1 − ω2

p/(ω2 − jωγ ) according to Dude’s model [9].
Under this consideration, the expressions of the fields in
different regions can be obtained by solving the homogeneous
Eq. (6). The fields in region I can be expressed as (we only
consider the TM modes with azimuthally symmetric case, see
Sec. V)

EI
z =

+∞∑
n=−∞

AnJ0(kcnr)ejkznz,

(8)

HI
θ =

+∞∑
n=−∞

An

jk0

kcn

J1(kcnr)ejkznz,

where J0(kcnr) and J1(kcnr) are the first kind of Bessel function
of zeroth and first order, respectively, and k2

cn = k2
0 − k2

zn,
kzn = kz + 2nπ/L. Here, the Bloch-Flouquet theorem has
been used to satisfy the periodical boundary condition.

The electromagnetic fields in region II (SiO2 filling region)
are

EII
z = BK0(kcsr),

(9)
H II

θ = −√
εII
r BK1(kcsr),

where kcs = jk0

√
εII
r , and εII

r is the relative permittivity of the
SiO2 filling.

In region III (gold region), with the SPs taken into
consideration, the EM fields are

EIII
z = CK0(kct r),

(10)
H III

θ = −√
εIII
r CK1(kct r),

where kct = jk0

√
εIII
r , and εIII

r is the relative permittivity of the
gold as shown previously.

Using the boundary condition, the dispersion equation of
the nanoscale structure with SPs taken into account can be
obtained:
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III
r

kct
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,
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2

)
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d
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.

The above series is convergent.

FIG. 4. Calculated dispersion curves of the TM01 mode of the
structure shown in Fig. 3 at radius a = 375 nm, period L = 400 nm
and d = 200 nm. The calculations are carried out with SPs (dashed
line) and without SPs (solid line) taken into account. The shaded
regions are the fast waves, while outer regions are slow waves.
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In Eq. (11), if we assume εIII → −∞, we get the dispersion
equation without SPs:

+∞∑
n=−∞

K0(kcsa)M1

kcnJ0(kcna)L
J1(kcna)M3 + εII

r

kcs

K1(kcsa)d = 0. (12)

By numerically calculating Eqs. (11) and (12), we can obtain
the dispersion curves of the guided modes with and without
taking SPs into consideration. The results are shown in Fig. 4.

From Fig. 4 we can see that not only fast waves but also
slow waves can exist in the waveguide with periodic structure,
which is different from the case of a smooth waveguide as
shown in Fig. 1. Figure 4 also shows that the influence of SPs
tends to slightly decrease the cutoff frequency of the guided
mode. It can be understood that once SPs are excited, the skin

depth of the gold should be taken into account which will
enlarge the radius of the waveguide in effect. The skin depth
can be calculated by the expression of δ = λ

2π

√
ε′+1
ε′ [9]. For

the wavelength range around 700 nm, the skin depth in the
gold is about 42 nm.

IV. BEAM-WAVE INTERACTION

At first, we need to make sure if the electron beam-wave
interaction can be considered as the mechanism of light
radiation in [1]. Making use of the Maxwell equations and
boundary conditions [10,11], the dispersion equation of the
interaction between the electron beam and the guided mode
in the waveguide with periodic structure can be obtained as
follows:
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(
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2

αz + jkzn

, M2 = e(−αz+jkzn) p

2 − e(−αz+jkzn) d
2

−αz + jkzn

, M3 = e−αzd/2 − e−αzp/2

αz

,

χ1 = [I0(kc2nr2)G1 + K0(kc2nr2)G2] K1(kc3nr2) + kc3nε2
kc2nε3

K0(kc3nr2) [I1(kc2nr2)G1 − K1(kc2nr2)G2]

I0(kc3nr2)K1(kc3nr2) + I1(kc3nr2)K0(kc3nr2)
,

χ2 = [I0(kc2nr2)G1 + K0(kc2nr2)G2] I1(kc3nr2) − kc3nε2
kc2nε3

I0(kc3nr2) [I1(kc2nr2)G1 − K1(kc2nr2)G2]

K0(kc3nr2)I1(kc3nr2) + K1(kc3nr2)I0(kc3nr2)
,

G1n =
I0(kc1nr1)K1(kc2nr1) + (kc2ε1)

(kc1ε2)K0(kc2nr1)I1(kc1nr1)

I0(kc2nr1)K1(kc2nr1) + I1(kc2nr0)K0(kc2nr1)
, G2n = K0(kc2nr1)I1(kc2nr1) + K1(kc2nr1)I0(kc2nr1)

I0(kc1nr1)I1(kc2nr1) − (kc2ε1)
(kc1ε2)I1(kc1nr1)I0(kc2nr1)

,

where r1 and r2 are the inner and the outer radius of the elec-
tron beam, respectively, and p = L − d. Also, kc1n = kc3n =√

−(ω
c

)2 + k2
zn, kc2n =

√
−(ω

c
)2(1 − ω2

p/ω2) + k2
zn, ε1 = ε3 =

1, and ε2 = 1 − ω2
p/ω2, here ωp is the plasma angular

frequency ω2
p = ρ0e

m0ε0
, and m0 is the electron mass and ρ0 is

the beam density.
By solving the above dispersion equation, the growth rate of

the beam-wave interaction can be obtained [12]. The numerical
calculations of this dispersion equation show that in order
to get the light radiation with frequency around 400 THz,
the starting current density should be larger than 107 A/cm2.
This value is much beyond the state of the art of cathode
technology. As a matter of fact, in the experiments of [1] the
current density is only 700 A/cm2 which is far from enough
to excite the interaction to generate light radiation. Therefore,
the results given above lead to the conclusion that the light
radiation observed in [1] does not belong to the mechanism of
beam-wave interaction.

V. DIFFRACTION RADIATION IN THE WAVEGUIDE
WITH NANOSCALE PERIODIC STRUCTURE

It is essential to find the mechanism of the light radiation
detected in [1]. It is well known that besides the beam-wave
interaction, there are the following mechanisms of the radiation
excited by a uniformly moving electron beam: Cherenkov
radiation, Smith-Purcell radiation, and transition radiation
[13,14]. Cherenkov radiation has nothing to do with the
light radiation concerned here. Smith-Purcell and transition
radiations were mentioned in [1]. However, Smith-Purcell
radiation is in an open free space and its dispersion relation
can be expressed as

λ = −L

n

(
1

β
− cos θ

)
, (14)

where λ is the wavelength of the diffraction radiation, n is the
order of the harmonics, β = u0/c is the relative velocity, and
θ is the radiation angle from the electron moving direction
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FIG. 5. Incident wave intensity of TM01 mode (black square line)
and TM11 mode (gray circle line).

[15–17]. Equation (14) shows that the radiation frequency
depends on both the order of harmonics and the radiation angle.
It is obvious that the light radiation observed in experiments
in [1] is not the Smith-Purcell radiation. As for transition
radiation, it also has frequency-angle dependence in the open
free space. In general it requires at least hundreds of periods
and rather high (above MeV) energy of the electron beam
[18,19]. So the light radiation observed in [1] cannot belong
to transition radiation either.

The above discussion indicates that there must be an alterna-
tive mechanism for the light radiation detected experimentally
in [1]. Therefore we will explore the mechanism of the
diffraction radiation in the light well next.

When the electron beam is injected into the waveguide with
nanoscale periodic structure the incident wave will be induced.
And this incident wave has to propagate along the waveguide
as the guided mode. It would appear that when the electron
beam is injected at the point (r0,θ0), the preferable mode to
be excited is the TM11 mode. But in fact, the fundamental
mode TM01 is much easier to be excited. We can see that
phenomenon in Fig. 5, which shows that the intensity of the
incident wave of the TM01 mode is much higher than that of
the TM11 mode.

Therefore only the mode of TM01 needs to be considered
in detail. Based on Eqs. (1) and (4) in Sec. II, we can get
the analytical expression of the incident wave induced by the
electron beam:

Ei
z = −πk0qH

(1)
0 (kcr)J0(kcr0)ejki

zz,
(15)

Hi
θ = j

πk2
0q

kc

H
(1)
1 (kcr)J0(kcr0)ejki

zz.

Then the diffraction radiation will be excited in the waveguide
with periodic structure. These diffraction radiation waves also
have to propagate along the waveguide as the guided modes.
Obviously, only TM modes can be excited, and the TM01 mode
is the dominant part.

So, the diffraction radiation in the waveguide with periodic
structure should be expressed as

Ed
z =

+∞∑
n=−∞

AnJ0
(
kd
cnr

)
ejkd

znz,

(16)

Hd
θ =

+∞∑
n=−∞

jk0

kd
cn

AnJ1
(
kd
cnr

)
ejkd

znz.

Here, the Bloch-Flouquet theorem has been used to satisfy the
periodical boundary condition. And kd

cn

2 = k2
0 − kd

zn

2
, kd

zn =
ω/u0 + 2nπ/L.

The fields in the region II (SiO2 filling gaps) Es
z,H

s
θ and

region III (gold) E
g
z ,H

g

θ can be written as

Es
z = BK0(kcsr),

(17)

Hs
θ = −

√
εII
r BK1(kcsr),

E
g
z = CK0(kct r),

(18)
H

g

θ = −√
εIII
r CK1(kct r).

The coefficients An, B, C are determined by the incident fields
of Eq. (15) together with the following boundary conditions:

Ei
z

∣∣
r=a

+ Ed
z

∣∣
r=a

=
{

Es
z

∣∣
r=a

, 0 < z < d,

E
g
z

∣∣
r=a

, d < z < L,
(19)

∫ d

0
Hi

θdz

∣∣∣∣
r=a

+
∫ d

0
Hd

θ dz

∣∣∣∣
r=a

=
∫ d

0
Hs

θ dz

∣∣∣∣
r=a

,

(20)∫ L

d

H i
θ dz

∣∣∣∣
r=a

+
∫ L

d

Hd
θ dz

∣∣∣∣
r=a

=
∫ L

d

H
g

θ dz

∣∣∣∣
r=a

.

Here, the coefficients An, B, and C in Eqs. (16)–(18) can be
obtained:

An = B
K0(kcsa)M1

J0(kd
cna)L

+ C
K0(kcta)M2

J0(kd
cna)L

− Re

J0(kd
cna)L

,

B = Q2W11 − Q1W22

W11W22 − W21W12
, C = Q1W22 − Q2W12

W11W22 − W21W12
,

(21)

where

W11 =
+∞∑

n=−∞

K0(kcta)M2

kd
cnJ0(kd

cna)L
I1

(
kd
cna

)
M3,

W12 =
+∞∑

n=−∞

K0(kcsa)M1

kd
cnJ0(kd

cna)L
J1

(
kd
cna

)
M3 + εII

r

kcs

K1(kcsa)d,

W21 =
+∞∑

n=−∞

K0
(
kcta

)
M2

kd
cnJ0(kd

cna)L
J1

(
kd
cna

)
M4

+ εIII
r

kct

K1(kcta)(L − d),

W22 =
+∞∑

n=−∞

K0(kcsa)M1

kd
cnJ0(kd

cna)L
J1

(
kd
cna

)
M4,
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Q1 =
+∞∑

n=−∞

I1(kd
cna)

J0
(
kd
cna

)
kd
cnL

M3Re + j
1

ωε
Rh1,

Q2 =
+∞∑

n=−∞

Re

J0(kd
cna)kd

cnL
J1

(
kd
cna

)
M4 + j

1

ωε
Rh2,

Re = −πk0qH
(1)
0 (kca)J0(kcr0)L,

Rh1 = −πqd
k2

0

kc

H
(1)
1 (kca)J0(kcr0) sin c

(
ki
zd

2

)
ejki

z
d
2 ,

Rh2 = −πq
k2

0

kc

H
(1)
1 (kca)J0(kcr0)

ejki
zd − ejki

zL

ki
z

.

Substitute Eq. (21) into Eqs. (16)–(18) and the diffraction
radiation fields in the waveguide with periodic structure can
be achieved. Integrating the Poynting vector along the cross
section of the propagating region I, the output power of the
diffraction radiation in the longitudinal direction can also be
obtained:

Pz = 1

2
Re

{∫∫
Er

r

(
Hr

θ

)∗
r dr dθ

}

= π

2

∞∑
n

kd
znk

kd
cn

2
|An|2 a

kd
cn

{
kd
cna

[
J0

(
kd
cna

)]2

− 2J0
(
kd
cna

)
J1

(
kd
cna

) + kd
cna

[
J1

(
kd
cna

)]2}
. (22)

Equation (22) shows that the total output power is the sum
of that from the fundamental wave and all space harmonics. It
can be seen from Eq. (22) that the output power is proportional
to |An|2, and |An| is proportional to the beam current. So,
in principle, Eq. (22) is the special form of the kinetic
power theorem [20,21], which governs the balance of the
energy of electromagnetic radiation and the electron beam in
general.

VI. NUMERICAL CALCULATIONS

To verify that the mechanism of the light radiation detected
in the experiment of [1] is just the diffraction radiation in
the waveguide with periodic structure excited by the electron

FIG. 6. (Color online) Brillouin diagram of dispersion curve
(TM01 mode) of light-well structure with period L = 400 nm, radius
a = 375 nm, and the electron beam lines with energies of 20, 30, 35,
and 40 keV. The subscripts 0, − 1, − 2, . . . of the coupling points
indicate the order of the harmonics of the TM01 mode.

beam as shown in Sec. V, the results of numerical calculations
should agree with those of experiments. Now we will deal with
this in this section.

Figure 6 shows the calculated dispersion curve of the TM01

mode of the light well and the harmonics of the electron beam
lines with different energies. We can see that each harmonic
of the electron beam has the intersection point (A0,−1,−2,... and
B0,−1,−2,..., etc., shown in the figure) with the corresponding
harmonic branch of the dispersion curve. Based on the analysis
in Sec. V, these intersection points are the coupling points of
the diffraction radiation with the guided modes (TM01 mode).
We can see from the figure that the frequency and direction of
the diffraction radiation can all be determined by these points.
So we call them “working points” hereinafter.

From Fig. 6, we can also see that for the electron beam
with certain energy, the diffraction radiation frequency and
direction of all harmonics are the same. So the output
power of diffraction radiation should be the sum of that
from fundamental wave and all harmonics as indicated in
Eq. (22).

The spectrums of the diffraction radiation can then be
calculated based on Eq. (22) and the results are shown in
Fig. 7. We can see that for the beam energy of 40, 35, 30,
and 20 keV, the corresponding radiation peaks occur at the
frequencies of 448, 432, 413, and 368 THz, respectively. These
frequency peaks are very close to the experimental results
of [1] except that the widths of the peaks are narrower. The
reason for this discrepancy is due to the number of periods of
the structure used in our theoretical analysis and that in the
experiment of [1]. In our theoretical model, the period number
is supposed to be infinity. Yet, in the experiment of [1], only
six periods were used. It was indicated in [2] that the band
width of the radiation peaks decrease with the increase of the
period number. In this sense, the results we get by theoretical
analysis are in good agreement with experimental results [1].
The working points in the dispersion curve of Fig. 6 show
that all of these radiations are backward radiation which is the
same as the experimental results. Figure 8 indicates that the
calculated radiation intensity depends on the beam current and
beam location r0. We can see that the radiation intensity is

FIG. 7. (Color online) Diffraction radiation intensity exited by
the electron beam with different energies.
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FIG. 8. (a) Radiation intensity vs current density. (b) Rdiation
intensity vs beam location.

proportional to the square of the beam current density and the
square of the modified Bessel function [ [I0(|kc|r0)]2] with the
beam location. These results also agreed with the experimental
results [1].

FIG. 9. (Color online) Frequency vs beam energy of the light
radiation in the light well. It shows good agreement of the results
of theoretical calculations (solid circle line) and those of digital
simulation (dot-dash square line).

To verify the theoretical analysis, the digital simulations
are also carried out to check the radiation frequency as
shown in Fig. 9. We can see that the results of the numerical
calculations and digital simulation agree with each other very
well.

Our theoretical analysis is also valid for the model and
size given in [2]. The results of numerical calculation based
on our theory are in good agreement with those of the
simulation [2].

VII. CONCLUSION AND DISCUSSION

Summarizing the detailed analysis and results in our paper,
we confirm that the mechanism of light radiation in the
light well [1] is a special kind of diffraction radiation in the
waveguide with nanoscale periodic structure. The mechanism
of this kind of diffraction radiation can be characterized as
below:

(1) It does not require the electron beam current density
to be higher than the starting current density. That means this
kind of diffraction radiation can work at any value of current
density.

(2) The diffraction radiation can be either fast wave or slow
wave, and its direction can be either forward or backward. The
characteristics of the radiation are determined by the working
points on the dispersion curve of the waveguide with periodic
structure.

(3) The diffraction radiation is from the whole guided mode
including the fundamental wave and all space harmonics.

The requirement of the starting current density is one
of the principal bases in traditional vacuum electronics and
becomes a crucial problem of the development of higher
frequency radiation sources for not only light radiation but
also THz radiation. As known, THz science and technology
are developing rapidly for there are many important and
interesting potential applications [22–27]. However, devel-
oping the desired THz radiation sources and devices is still
an urgent problem, although a variety of approaches have
been researched [28–32]. To combine photonics, electronics,
and nanotechnology might be a promising effort. Early in
the 1990s, it was suggested to use quantum dots or wires
to form an array to interact with the electron beam to
generate THz radiation shown in Fig. 1 of [33]. However,
this approach has not been successful yet. The special kind
of mechanism of diffraction radiation presented in this paper
together with advanced nanotechnology will greatly push
forward the development of THz radiation sources.

To conclude: a special kind of diffraction mechanism has
been presented and detailed theoretical exploration has been
carried out, and the results of the numerical calculations and
the digital simulation are in good agreement with that given
in the experiments [1]. This kind of diffraction radiation
is of significance in physics, optics, and THz science and
technology.

ACKNOWLEDGMENTS

Authors extend their sincere thanks to Prof. Isabelle Yu
for her kind help and comments. This work is supported by

066609-7



LIU, HU, ZHANG, LIU, ZHANG, AND ZHOU PHYSICAL REVIEW E 83, 066609 (2011)

the National Key Program of Fundamental Research of China
under Contract No. 2007CB310401, and the National Natural

Science Foundation of China under Contracts No. 10676110,
No. 10911120058, and No.61001031.

[1] G. Adamo, K. F. MacDonald, N. I. Zheludev, Y. H. Fu, C.-M.
Wang, D. P. Tsai, and F. J. Garcı́a de Abajo, Phys. Rev. Lett.
103, 113901 (2009).

[2] G. Adamo, K. F. MacDonald, Y. H. Fu, D. P. Tsai, F. J. Garcı́a
de Abaj, and N. I. Zheludev, J. Opt. 12, 024012 (2010).

[3] S. Ramo, Phys. Rev. 56, 276 (1939).
[4] G. Branch and T. Mihran, IRE Trans. Electron Devices 2, 3

(1955).
[5] L. Shenggang, Y. Yang, M. Jie, and D. M. Manos, Phys. Rev. E

65, 036411 (2002).
[6] V. V. G. Miano, L. Verolino, Nuovo Cimento B 111, 659 (1996).
[7] R. S. ELLIOTT, Electromagnetism (McGraw-Hill, New York,

1966).
[8] I. Tigelis, J. Vomvoridis, and S. Tzima, IEEE Trans. Plasma Sci.

26, 922 (1998).
[9] R. Heinz, Surface Plasmons on Smooth and Rough Surfaces and

on Gratings (Springer-Velag, Berlin, 1988).
[10] Y. Zhang, M. Hu, Y. Yang, R. Zhong, and S. Liu, J. Phys. D 42,

045211 (2009).
[11] M. Hu, Y.-X. Zhang, Y. Yan, R.-B. Zhong, and S.-G. Liu, Chin.

Phys. B 18, 3877 (2009).
[12] J. A. Swegle, J. W. Poukey, and G. T. Leifeste, Phys. Fluids 28,

2882 (1985).
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