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PT -symmetric oligomers: Analytical solutions, linear stability, and nonlinear dynamics
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In the present work we focus on the case of (few-site) configurations respecting the parity-time (PT ) symmetry,
i.e., with a spatially odd gain-loss profile. We examine the case of such “oligomers” with not only two sites, as in
earlier works, but also the cases of three and four sites. While in the former case of recent experimental interest
the picture of existing stationary solutions and their stability is fairly straightforward, the latter cases reveal a
considerable additional complexity of solutions, including ones that exist past the linear PT -symmetry breaking
point in the case of the trimer, and symmetry-breaking bifurcations, as well as more complex, even asymmetric
solutions in the case of the quadrimer with nontrivial properties in their linear stability and in their nonlinear
dynamics. The linearization around the obtained solutions and their dynamical evolution, when unstable, are
discussed.
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I. INTRODUCTION

Over the past decade, the examination of Hamiltonian
nonlinear dynamical lattices, as well as that of continuum
systems with periodic potentials, has been a subject of intense
investigation [1]. The motivation for such studies stems from
a variety of physical settings including, among others, the
themes of optical beam dynamics in coupled waveguide arrays
or optically induced photonic lattices in photorefractive crys-
tals [2], the temporal evolution of Bose-Einstein condensates
(BECs) in optical lattices [3], and the DNA double-strand
denaturation in biophysics [4]. One of the common focal points
among all of these areas has been the intense study of the
existence, stability, and dynamical properties of their nonlinear
(often localized in the form of solitary waves) solutions, which
are of principal interest and experimental observability within
various applications; see [5] for a relevant recent review.

On the other hand, as the understanding of the conservative
aspects of such systems comes to a point of maturation, a
number of interesting variants thereof arise. A canonical one
concerns the examination of the effects of damping and driving
that not only yield novel theoretical solutions (see, as an exam-
ple, [6]), but also are inherently relevant to applications (again,
see, for a recent example, [7]). A more exotic variant, however,
which in the past couple of years has gained considerable mo-
mentum, especially due to the recent experiments of [8], is that
of parity-time (PT )-symmetric dynamical lattices. This theme
follows the pioneering realization of Bender and coworkers [9]
that non-Hermitian Hamiltonians can still yield real spectra,
provided that they respect the parity (P) and time-reversal
(T ) symmetries. Practically, in the presence of a (generally
complex) potential, the relevant transformations imply that the
potential satisfies the condition V (x) = V �(−x). In nonlinear
optics, the interest in such applications was initiated by the key
contributions of Christodoulides and co-workers [10], which
considered solitary waves as well as linear (Floquet-Bloch)
eigenmodes in linear periodic potentials satisfying the above
condition, and also included the effects of Kerr nonlinearity
and observed how the properties of such waves were modified
by the genuinely complex, yet PT -symmetric potentials.
Such considerations have also been extended to the case of
PT -symmetric nonlinear lattices in [11].

Recently, motivated by the experimental possibilities and
the relevant realization of aPT “coupler” in [8], there has been
an interest in merging the experience of the above two areas,
leading to the consideration of PT -symmetric settings but
for genuinely discrete media. In that vein, the experimentally
probed two-site system has been considered in the work of
[12], where it was shown that it can operate as a unidirectional
optical valve, as well as in the study of [13] regarding the role
of nonlinearity in allowing (if sufficiently weak) or suppressing
(if sufficiently strong) time reversals of the exchanges of
optical power between the sites. Another recent example
consisted of the generalization of [14] where a lattice of
coupled gain-loss dimers was considered. This theme has also
been considered in the BEC literature and in the context of
the so-called leaky Bose-Hubbard dimers (allowing, e.g., the
tunneling escape of atoms from one of the wells of a double-
well potential). There, a variant of the model considered
below has been self-consistently derived in the mean-field
approximation [15] and the correspondence of its classical
with the full quantum behavior has been explored [16].

Our aim in the present work is to revisit the examination of
the PT -symmetric coupler and to give a simple and complete
characterization of the existence and stability properties of its
stationary solutions. It should be noted that this aspect has been
partly addressed in both [12] and [13]. Nevertheless, we aim to
give a characterization thereof as a preamble toward the more
complex (and thus, arguably, more interesting) generalization
to what we call “PT -symmetric oligomers,” namely, the
consideration of a PT -symmetric trimer and a PT -symmetric
quadrimer. Our aim here is to explore how the complexity
of the problem expands as more sites are added in order to
offer a glimpse of how such oligomers gradually give way
to the elaborate phenomenology of a PT -symmetric lattice.
We illustrate, for example, how it is possible in the case of
a trimer to identify stationary solutions which exist past the
limit of linear PT -symmetry breaking (something which is
not possible in the dimer case). We then proceed to illustrate
how the phenomenology of the quadrimer is even richer and
more complex, featuring, among others, asymmetric solutions
with a reduced symmetry spectrum different from the case of
both the dimer and the trimer.
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Our presentation will be structured as follows. In Sec. II, we
consider the fundamental (and previously considered) dimer
case. We use this as a benchmark for the presentation of our
methods and results. We then turn to the more complex trimer
case in Sec. III (and the periodic variant thereof in Sec. IV) and
conclude with our results on the quadrimer in Sec. V. Finally,
Sec. VI summarizes our findings and presents some interesting
questions for further study.

II. DIMER

We start our considerations from the so-called PT -
symmetric coupler or dimer (as we will call it hereafter). In
this case, the dynamical equations are of the form

iu̇1 = −ku2 − |u1|2u1 − iγ u1,
(1)

iu̇2 = −ku1 − |u2|2u2 + iγ u2.

The model of Eq. (1) considers the linear PT -symmetric
dimer experimentally examined in [8], as augmented by the
Kerr nonlinearity relevant, e.g., to optical waveguides; see
also [12,13]. The overdot denotes the derivative with respect
to the evolution variable, which in optical applications is
the propagation distance. In what follows, we will denote
this variable by t (to indicate its evolutionary nature). We
seek stationary solutions of the form u1 = exp(iEt)a and
u2 = exp(iEt)b. Then the stationary equations arise:

Ea = kb + |a|2a + iγ a,
(2)

Eb = ka + |b|2b − iγ b.

Using a generic polar representation of the two “sites” a =
Aeiφa and b = Beiφb , we are led to the following algebraic
conditions for the two existing branches of solutions (notice
the ± sign distinguishing between them):

A2 = B2 = E ±
√

k2 − γ 2, (3)

sin(φb − φa) = −γ

k
. (4)

The fundamental difference of such solutions from their
standard Hamiltonian (γ = 0) counterpart is that the latter
were lacking the “flux condition” of Eq. (4). This dictated a
selection of the phases so that no phase current would arise
between the sites. On the contrary, in PT -symmetric settings,
the phase flux is nontrivial and must, in fact, be consonant with
the gain-loss pattern of the coupler.

Figure 1 shows the profile of the two branches. The first
branch u(1) corresponding to the (−) sign in Eq. (3) is stable
when γ 2 � k2 − E2/4, whereas the second branch u(2) is
always stable. The linearization around these branches can
be performed explicitly, yielding the nonzero eigenvalue pairs
±2i

√
2(k2−γ 2)−E

√
k2−γ 2 for the first and ±2i

√
2(k2−γ 2)+E

√
k2−γ 2

for the second (notice that the latter can never become real).
It is relevant to note here that the two branches “die” in

a saddle-center bifurcation at γ = k, as shown in the figure.
Importantly, this coincides with the linear limit γPT = k of
the PT symmetry breaking, since the eigenvalues of the linear
problem are λ = ±

√
k2 − γ 2. Hence, the nonlinear solutions

terminate where the linear problem eigenfunctions yield an
imaginary pair, predisposing us for an asymmetric evolution
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FIG. 1. (Color online) The two branches of solutions for the
dimer problem are shown for parameter values k = E = 1. (a) The
amplitude of the sites, (b) their relative phase, and (c) the (nontrivial)
squared eigenvalue of the two branches. The solid line corresponds
to the always stable branch u(2), while the dashed line corresponds to
the branch u(1), which acquires a real eigenvalue pair above a certain
γ = √

k2 − E2/4.

past this critical point (for all initial data). The dynamical
evolution of the dimer is shown first for a case of γ < k (in
which u(1) is unstable, while u(2) is stable) in Fig. 2. The
evolution of the instability of u(1) leads to an asymmetric
distribution of the power in the coupler, despite the fact that
parametrically we are below the linear critical point (for the
PT -symmetry breaking). Notice that in all the cases, also
below, where a stationary solution exists for the parameter
values for which it is initialized, dynamical instabilities arise
only through the amplification of roundoff errors, i.e., a
numerically exact solution up to 10−8 is typically used as
an initial condition in the system. Naturally, beyond γ = k,
as shown in Fig. 3, all initial data yield such an asymmetric
evolution.

III. TRIMER

We now turn to the case of the trimer where the dynamical
equations are

iu̇1 = −ku2 − |u1|2u1 − iγ u1,

iu̇2 = −k(u1 + u3) − |u2|2u2,
(5)

iu̇3 = −ku2 − |u3|2u3 + iγ u3.
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FIG. 2. (Color online) Dynamical evolution of initial data
belonging to the two branches of stationary solutions of a dimer
in the case of γ = 0.9, E = k = 1, which is past the critical point for
the instability of the (a) first branch, while the (b) second branch is
still dynamically stable. Notice that (a) is plotted in semilog.
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FIG. 3. (Color online) Similar initialization as Fig. 2 of the dimer
based on the two branches of stationary solutions (for γ = 0.9), but
now for the case of γ = 1.1 (E = k = 1). The asymmetric evolution
of the coupler past the linear PT -symmetric threshold can be clearly
discerned. Both are plotted in semilog.

Seeking, once again, stationary solutions leads to the algebraic
equations

Ea = kb + |a|2a + iγ a,

Eb = k(a + c) + |b|2b,
(6)

Ec = kb + |c|2c − iγ c.

In this case too, it is helpful to use the polar representation
for the three sites in the form a = Aeiφa , b = Beiφb , c =
Ceiφc , which, in turn, leads to the algebraic equations of the
form

A = C, (7)

B4 − EB2 + 2EA2 − 2A4 = 0, (8)

sin(φb − φa) = − sin(φb − φc) = −γA

kB
, (9)

cos(φa − φb) = cos(φb − φc) = EA − A3

kB
. (10)

Notice how the presence of the gain-loss spatial profile along
the three sites induces a spatial phase distribution and enforces
the condition of a symmetric amplitude profile with the
first and third site sharing the same amplitude. This phase
distribution would be trivial (relative phases of 0 or π ) in the
γ = 0 case.

A typical example of the branches that may arise in the case
of the trimer is shown in Fig. 4 for E = k = 1. In this case,
we find three distinct branches in the considered interval of
parameter values. There are two branches which exist up to
the critical point γ = 1.043. In this interval, one of the two
branches, u(1), is mostly unstable (denoted by a dash-dotted
line) except for a small interval of γ ∈ [1,1.035]. The other
one, u(2), is mostly stable (denoted by a dashed line) except
for γ ∈ [1.035,1.043]. The eigenvalues of u(1) and u(2) in γ ∈
[1.035,1.043] are very close to each other but not identical.
Notice that u(1) is unstable due to a complex eigenvalue quartet
whose eigenvalues collide on the imaginary axis for γ = 1
and split into two imaginary pairs, one of which becomes
real for γ > 1.035. Finally, these two branches collide in
a saddle-center bifurcation (for γ = 1.043) and disappear
thereafter.

Interestingly, however, these are not the only branches
that arise in the trimer case. In particular, as can be seen
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FIG. 4. (Color online) Existence and stability of solutions for the
case of the trimer analogous to Fig. 1 with parameters E = 1 and φb

normalized to 0 (without loss of generality). There are three branches:
u(1) (dash-dotted line), u(2) (dashed line), and u(3) (solid line). For each
branch, two curves in (a) stand for A,B,C (since C = A), and two
curves in (b) stand for φa and φc. Panels (c) and (d) are the illustration
of both real and imaginary parts for the eigenvalues. Panels (e) and
(f) are zooms of (c) and (d), respectively.

in Fig. 4, there is a branch of solutions bifurcating from
zero (amplitude) for γ >

√
2k2 − E2, denoted by u(3), which

is the solid line in Fig. 4. In our case E = k = 1, this
branch is only stable for γ < 1.13, at which point two pairs
of imaginary eigenvalues collide and lead to a complex
quartet, which renders the branch unstable thereafter. Yet, this
branch of solutions has a remarkable trait. In the case of the
trimer, the underlying linear problem possesses the following
eigenvalues: 0, ±

√
2k2 − γ 2. Hence, the critical point for the

existence of real eigenvalues of the linear problem in the case of
thePT -symmetric trimer is γPT = √

2k (cf. with the γPT = k

limit of the dimer). Nevertheless, and contrary to the case
for the dimer, the third branch of solutions considered above
persists beyond this critical point (although it is unstable in that
regime).

The evolution of the three distinct branches of solutions,
namely, the chiefly unstable one, u(1), the chiefly stable one,
u(2), and finally the one persisting past the linearly unstable
limit, u(3), is shown, respectively, in Figs. 5, 6, and 7. It
can be seen that in accordance with the predictions of our
linear stability analysis, the first two branches are stable or
unstable in their corresponding regimes, while past the point
of existence of these branches (γ = 1.043), their evolution
gives rise to asymmetric dynamics favoring the growth of the
power in a single site [or, in some cases, even in two sites; see,
e.g., Figs. 5(c) and 6(c)]. On the other hand, for the branch
emerging at γ = 1 and persisting past the linear instability
limit, we indeed find it to be stable for γ < 1.13 and unstable
thereafter, again leading to an asymmetric distribution of the
power.
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FIG. 5. (Color online) The dynamical evolution of the amplitudes
of the three sites of the stationary solution u(1) in the case of E =
k = 1 for (a) γ = 0.5, (b) γ = 1.03, and (c) γ = 1.1. Panel (c) is
initialized with the exact stationary solution for γ = 1.04 (since for
γ = 1.1, the branch no longer exists as a stationary solution).

IV. PERIODIC TRIMER

The trimer problem has also been considered in the case
of periodic boundary conditions with the dynamical equations
being as follows:

iu̇1 = −k(u2 + u3) − |u1|2u1 − iγ u1,

iu̇2 = −k(u1 + u3) − |u2|2u2,
(11)

iu̇3 = −k(u1 + u2) − |u3|2u3 + iγ u3.

It is quite relevant to mention here that the linear version
of the problem, in the absence of gain and loss (i.e., for
γ = 0), possesses in this case a pair of degenerate eigenvalues.
Notably, as soon as γ �= 0, these eigenvalues lead to a complex-
conjugate pair. Hence, γPT = 0 in this setting. Nevertheless,
we can still mathematically pose (as above) the nonlinear
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FIG. 6. (Color online) Similar to Fig. 5, but for the case of u(2)

and for E = k = 1. Panel (c) is again initialized for γ = 1.04.
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FIG. 7. (Color online) The dynamical evolution for the case of
u(3) and for E = k = 1; (a) γ = 1.04 and (b) γ = 1.5.

problem. Seeking once again stationary solutions thereof leads
to the algebraic equations

Ea = k(b + c) + |a|2a + iγ a,

Eb = k(a + c) + |b|2b,
(12)

Ec = k(a + b) + |c|2c − iγ c.

We also use the polar representation for the three sites in
the form a = Aeiφa , b = Beiφb , c = Ceiφc . However, in this
case, the resulting algebraic equations are too tedious to write
down. The numerical results are shown in Fig. 8. Remarkably,
the results show that nonlinear branches of solutions (including
some which are stable) exist. In fact, there may exist up to four
such branches. In the case considered in Fig. 8 with parameters
k = E = 1, one of the relevant pairs of a stable and unstable
trimer state leads to a collision and annihilation through a
saddle-center bifurcation for γ = 0.252. On the other hand,
the second pair of branches exists and is stable for γ < 0.66,
but one of the two states becomes unstable thereafter, and a
branch-pair terminating saddle-center bifurcation ensues for
γ = 0.782. No solution has been identified for larger gain-
loss parameters. Nevertheless, in this case too, it is interesting
that stationary (and even stable) nonlinear solutions exist for
γ > γPT .

V. QUADRIMER

Finally, we briefly turn to the case of the quadrimer. Here
the equations are

iu̇1 = −ku2 − |u1|2u1 − iγ u1,
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FIG. 8. Similar to Fig. 4 but with the four branches of the periodic
trimer in this case. One pair (thicker lines) disappears at γ = 0.252.
The other pair (thinner lines) ends at γ = 0.782. One of the solutions
of this latter pair already 5 becomes unstable for γ > 0.66.
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iu̇2 = −k(u1 + u3) − |u2|2u2 − iγ u2,
(13)

iu̇3 = −k(u2 + u4) − |u3|2u3 + iγ u3,

iu̇4 = −ku3 − |u4|2u4 + iγ u4.

Notice here that we only consider the case where the first
two sites have the same loss and the latter two the same
gain. This is by no means necessary, and the gain-loss profile
can be generalized to involve two parameters (e.g., ±γ1 and
±γ2 distinct between the different corresponding sites, i.e.,
the first and fourth ones, as well as the second and third
ones). We do not consider this latter case here, due to its
more complicated algebraic structure that does not permit the
direct analytical results given below. More specifically, in our
considered special case, the stationary equations read

Ea = kb + |a|2a + iγ a,

Eb = k(a + c) + |b|2b + iγ b,
(14)

Ec = k(b + d) + |c|2c − iγ c,

Ed = kc + |d|2d − iγ d.

The polar representation of the form a = Aeiφa , b =
Beiφb , c = Ceiφc , d = Deiφd now allows the following re-
duced algebraic equations:

A2 + B2 = C2 + D2 = E, (15)

A2B4 + γ 2A2 − k2B2 = 0, (16)

D2C4 + γ 2D2 − k2C2 = 0, (17)

sin(φb − φa) = −γA

kB
, (18)

sin(φc − φb) = − γE

kBC
= −1, (19)

sin(φd − φc) = −γD

kC
. (20)

Notice that in this case not only do we have the customary
phase profile, but in fact one of the phase differences becomes
locked to π/2 due to the presence of the gain-loss pattern.

Upon reducing the algebraic equations, we obtain

(E − B2)B4 + γ 2(E − B2) − k2B2 = 0, (21)

(E − C2)C4 + γ 2(E − C2) − k2C2 = 0, (22)

γE = kBC. (23)

This leads to the important conclusion that for this gain-loss
profile in the case of the quadrimer, in contrast to the cases
of the dimer and trimer, one of the parameters E, k, or γ

is determined by the other two; i.e., not all three of these
parameters can be picked independently in order to give rise
to a solution of the quadrimer.

We hereby set E = 1, and increase γ from 0 as before; then
k can be obtained self-consistently from the above equations.
Therefore, once E and γ are fixed, the solutions of the
quadrimer problem are fully determined. We now present three
branches of solutions that arise in this setting as we increase
γ . These are shown in the panels of Fig. 9. There are two
classes of solutions here. The solid curve u(1) corresponds to
a fully asymmetric, always unstable branch with A, B, C,
D distinct, i.e., something that is unique (among the settings
considered herein) to the quadrimer. On the other hand, the
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FIG. 9. (Color online) Three branches of solutions for the
quadrimer problem with parameters E = 1 and φa normalized to
0: the solid lines denote the asymmetric branch u(1), while the dashed
and dash-dotted lines denote the symmetric branches u(2) and u(3),
respectively. For each branch, four curves in (a) stand for A,B,C,D

(only two curves for u(2) and u(3) since A = D,B = C in these cases),
and three curves in (b) stand for φb, φc, φd . Panel (e) and (f) are zooms
of (c) and (d), respectively.

dashed curve of the branch u(2) and the dash-dotted curve
of the branch u(3) correspond to symmetric branches with
amplitudes A = D and B = C. Among the two symmetric
branches u(2) and u(3) that collide and disappear together in a
saddle-center bifurcation at γ = 0.362, we can observe that
the former has a real and two imaginary pairs of eigenvalues
being always unstable, while the latter starts out stable, but
the collision of two of its imaginary pairs will render it
unstable past the critical point of γ = 0.023. Interestingly the
asymmetric branch u(1) and the symmetric branch u(3) appear
to collide in a subcritical pitchfork bifurcation that imparts the
instability of the asymmetric branch to the symmetric one for
γ > 0.193.

As an aside, we should also note here that in its linear
dynamics, the PT -symmetric quadrimer has an interesting
difference from the dimer and trimer. In particular, the four
linear eigenvalues of the system are

λ1,2 = ±
√

−γ 2 + k

2
(3k −

√
−16γ 2 + 5k2), (24)

λ3,4 = ±
√

−γ 2 + k

2
(3k +

√
−16γ 2 + 5k2). (25)

The fundamental difference of this case from the dimer and
regular trimer considered above is that these eigenvalues do not
become imaginary by crossing through zero. Instead, they be-
come genuinely complex through their collision that occurs for
γPT = √

5k/4, a critical point which is lower than that of the
trimer. This could be an experimentally observable signature
of the difference of the near linear dynamics of the quadrimer.

The dynamics of these different branches was also consid-
ered in Fig. 10. In this case, it can be clearly observed that
all three branches tend toward an asymmetric distribution of
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FIG. 10. (Color online) The profile of the dynamical evolution
of the three different branches: (a) u(1), (b) u(2), and (c) u(3) of a
quadrimer in the case of E = 1 and γ = 0.1.

the power. This favors the two sites (third and fourth) with the
gain, although some case examples can be found [see, e.g.,
Fig. 10(a) for the asymmetric branch] where only one of the
two gain sites is favored by the mass evolution.

VI. CONCLUSIONS

In the present work, we considered the existence, stability,
and dynamics ofPT -symmetric oligomers, i.e., configurations
with few sites. Similar to the recent works of [12,13] and
also the experimental investigation of [8], we have started
our considerations by a complete characterization of the
dimer case, where the two obtained branches of solutions
terminate at the critical point of the linear case. However,
we illustrated that the trimer and quadrimer feature a number
of fundamental differences in comparison with this dimer
behavior. In particular, the trimer features branches which exist
past the linear critical point (although unstable).
On the other hand, the quadrimer has even richer features:
in particular, it possesses completely asymmetric solutions.
The bifurcation structure is also richer in the latter problem,

featuring symmetry-breaking pitchfork bifurcations. Another
notable feature is that solutions do not exist for arbitrary com-
binations of coupling, gain-loss parameter, and propagation
constant; instead, these parameters appear to be interconnected
(at least in the case of a single gain-loss parameter considered
herein). Finally, even the linear problem presents interesting
variations in this case, featuring the breaking of the real nature
of the eigenvalues through two colliding pairs that lead to a
quartet occurring for smaller gain-loss parameter values than
in the trimer case.

This investigation may be a first step toward obtaining
a deeper analytical understanding of the features of PT -
symmetric lattices. In such settings, it would be relevant
to obtain general conclusions both for the linear dynamics
(and how it depends on the gain-loss profile parameters), as
well as more importantly for the nonlinear modes, includ-
ing the solitary waves that may arise. The understanding
of such modes and the comparison of their properties to
the continuum ones, as well as to the discrete ones in the ab-
sence of the gain-loss, would be important directions for future
study. From the perspective of oligomers, an additional theme
meriting further investigation is the consideration of higher
than quadrimer chains and the introduction of elementary
topology (i.e., quasi-two-dimensionality) in them. In this case,
the topology of the quadrimer may enable additional potential
states, including ones that may carry “discrete vorticity”
over the plaquette, by analogy to corresponding forms of
such states in the standard discrete nonlinear Schrödinger
equation (DNLS) setting without gain or loss [1,5]. A detailed
understanding of the interplay between topology and the
gain-loss symmetry would be of particular value in the context
of such states.
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