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Analytical solitary-wave solutions of the generalized nonautonomous cubic-quintic nonlinear
Schrödinger equation with different external potentials
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A large family of analytical solitary wave solutions to the generalized nonautonomous cubic-quintic nonlinear
Schrödinger equation with time- and space-dependent distributed coefficients and external potentials are obtained
by using a similarity transformation technique. We use the cubic nonlinearity as an independent parameter
function, where a simple procedure is established to obtain different classes of potentials and solutions. The
solutions exist under certain conditions and impose constraints on the coefficients depicting dispersion, cubic and
quintic nonlinearities, and gain (or loss). We investigate the space-quadratic potential, optical lattice potential,
flying bird potential, and potential barrier (well). Some interesting periodic solitary wave solutions corresponding
to these potentials are then studied. Also, properties of a few solutions and physical applications of interest to the
field are discussed. Finally, the stability of the solitary wave solutions under slight disturbance of the constraint
conditions and initial perturbation of white noise is discussed numerically; the results reveal that the solitary waves
can propagate in a stable way under slight disturbance of the constraint conditions and the initial perturbation of
white noise.
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I. INTRODUCTION

The nonlinear Schrödinger (NLS) equation is one of the
most important nonlinear models of modern science. It appears
in many branches of physics, including plasma physics [1],
nonlinear optics [2], and Bose-Einstein condensates (BECs)
[3]. Theoretically, there have been many methods for solving
it, such as the inverse scattering transform (IST), the Darboux-
Bäcklund transform (DBT), the variational approach, and the
symmetrical reduction technique. In general, DBT and IST
require that the governing equation has to pass the Painlevé
PDE test. The best-known solutions of the NLS equation
are those for solitary waves or solitons. Properties of these
solutions are well studied in the literature [4,5].

It is known that the classical soliton concept emerges
from the autonomous systems who have constant distributed
coefficients. Generally, these systems have no significant
effects on the control of soliton’s shape. A general situation is
one in which a system receives some form of external time-
dependent or space-dependent force, namely a nonautonomous
system. Such situations support temporal or spatial solitons,
soliton lasers, and ultrafast soliton switches for experiments
[6,7]. Recently, a nonautonomous system with distributed
coefficients has attracted a lot of attention because of its
interesting features and potential applications [8–11]. More
generally, nonautonomous systems with time- and space-
dependent distributed coefficients also have very interesting
properties but have been the subject of relatively fewer studies.

On the other hand, when the intensity of the optical pulse
propagating inside nonlinear medium exceeds a certain value
or the two- and three-body interactions in BECs are considered,
the governing equation should still include the cubic and
quintic (CQ) nonlinearities. Thus, in nonautonomous systems,
a generalized nonautonomous NLS equation with the CQ
nonlinearities as well as the gain or loss is presented. Recently,
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the CQ model has received much attention [12] due to intensive
research in nonlinear optics [13], not only the one-dimensional
model [14,15] but also the corresponding two-dimensional
vortex solitons in nonlinear media [16,17].

Based on the above discussions, in this paper we con-
sider a generalized nonautonomous cubic-quintic nonlinear
Schrödinger (CQNLS) equation with an external potentials
describing soliton management in nonlinear optics [18]. We
provide the analytical solutions of it, and most of them differ
from the conventional solutions in many aspects because both
amplitudes and speeds of the soliton solutions vary with time
and space. In the one-dimensional case, the generalized nonau-
tonomous CQNLS equation can be given by the following
dimensionless form:

i
∂ψ

∂t
+ f (x,t)

∂2ψ

∂x2
+ g(x,t)|ψ |2ψ + G(x,t)|ψ |4ψ

+V (x,t)ψ + iγ (x,t)ψ = 0, (1)

where ψ(x,t) is the complex envelope of the electric field, x

is the transverse variable, and t is the longitudinal variable. In
the case of temporal solitons in optical fibers, t and x represent
the propagation distance and the retarded time, respectively.
f (x,t) is the dispersion management parameter related to
the linear refractive index n0 and then g(x,t) and G(x,t) are
related to the cubic nonlinearity coefficient n2 and the quintic
nonlinearity coefficient n4, respectively. V (x,t) is the external
potential and γ (x,t) is the gain or loss function. The linear
refractive index n0 is usually nonuniform distribution in the
longitudinal direction (propagation direction) in nonlinear
media, which leads the dispersion coefficient varies with
the longitudinal variable. If the transverse direction of the
nonlinear medium is also inhomogeneous, the linear refractive
index n0 can also be function of transverse variable, that is,
n0 = n0(x,t) in our model. Then the corresponding dispersion
coefficient and other management coefficients can be function
both in transverse and longitudinal directions. Recently, a
novel type of Bloch cavity solitons existing in nonlinear
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resonators with the refractive index modulated in
both transverse and longitudinal directions have been
presented [19]. This may provide a physical motivation for
the purpose of our work.

It is noted that Eq. (1) can also describe the dynamics of
matter-wave solitons in BECs where the soliton management
can be realized by adjusting the related control parameters
via the technique of Feshbach resonance [20,21]. In this
case, t and x represent the time and spatial coordinate,
respectively. If f (x,t) = 1,γ (x,t) = 0, Eq. (1) can be reduced
into the CQNLS equation with external potential, which has
been studied in Refs. [22,23]. When f (x,t) �= 1,γ (x,t) �= 0,
Eq. (1) cannot pass the Painlevé PDE test, and the DBT or
IST method fail to solve it. To resolve this problem, we give a
similarity transformation technique to deal with Eq. (1) in this
paper.

During the past several years, there has been a great
deal of attention focused on the similarity transformation
technique [22,24]. This method has been applied successfully
to the NLS equations with varied coefficients. Recent studies
in Ref. [25] are the most typical ones among them. More
recently, in the work by He et al. [26], the generalized
nonautonomous cubic NLS equation [Eq. (1) when G(x,t) =
0] is dealt with by using the Painlevé analysis, and the
soliton solutions under integrability conditions is found when
the dissipation or gain is vanishing (γ = 0). They obtained
that the external potential is the quadratic coordinate term
[V (x,t) = V0(t) + V1(t)x + V2(t)x2], while the coefficients
depicting dispersion, CQ nonlinearities, and gain (or loss) can
be only functions of time. Until now, no attempts had been
made to find nontrivial laws of soliton adaptation in external
potentials when management parameters and the confining
potential in Eq. (1) complement each other. On the basis
of this motivation, we extend the similarity transformation
method to solve our model (1). The results allow one to
obtain exact solutions under certain conditions and impose
constraint conditions on the management parameters depicting
dispersion, CQ nonlinearities, and gain (or loss). It should be
pointed out that with the similarity transformation method
used in this paper, a more general expression of the external
potential containing the case in Ref. [26] can be obtained
although we have the quintic nonlinearity item. That is, we
extend the situations in Ref. [26] and obtain more general
results without using any Painlevé analysis. This may provide
the way to design external potential in nonlinear systems and
to make soliton control more possible.

Equation (1) can be viewed as the evolution equation ψt =
δH

δ(iψ∗) , where H is the Hamiltonian function

H = −
∫ ∞

−∞
[ψ∗f (x,t)�ψ + g(x,t)|ψ |4 + G(x,t)|ψ |6

+V (x,t)|ψ |2 + iγ (x,t)|ψ |2]dx.

Generally speaking, the Hamiltonian H in our model (1) is not
conserved. It will be seen that this situation would be changed
by employing a similarity transformation technique, and the
Hamiltonian H can be conserved under some cases.

The paper is organized as follows: In Sec. II, we provide
the similarity transformation to change the generalized nonau-
tonomous CQNLS equation to an autonomous one, which is

easier to solve. At the same time, the required integrability
conditions, including explicit expression of external potential
for exact solutions, are found. Solutions of the autonomous
CQNLS equation are given. In Sec. III, we present two classes
of solutions. First, in the absence of an external potential,
Eq. (1) can have standard and periodic solitary wave solutions.
Second, four types of periodic potentials are discussed,
including the space-quadratic (SQ) potential [22,24,27,28],
the optical lattice (OL) potential [29], the flying bird (FB)
potential [23], and the potential barrier (well) [30]. It is shown
that Eq. (1) can reduce to the generalized nonautonomous
CQNLS equation with time-dependent coefficients under SQ
potential and the Hamiltonian H can conserve in this equation
when some parameters are chose properly. Exact solitary wave
solutions corresponding to different potentials are presented
under certain conditions. Representative properties of some
solutions are studied, such as width, wave center position,
and amplitude. Finally, the stability of the solitary waves
under slight disturbance of the constraint conditions and initial
perturbation of white noise is discussed numerically; the
results reveal that the solitary waves can propagate in a stable
way under slight disturbance of the constraint conditions and
the initial perturbation of white noise. In Sec. IV, the main
results of the paper are summarized.

II. GENERAL SIMILARITY TRANSFORMATION

In this work, we use a similarity transformation to construct
explicit solutions for Eq. (1), as explained below.

The idea is to write the solution of (1) as

ψ(x,t) = ρ(x,t)�(X(x,t),T (t))eiφ(x,t) (2)

and then reduce (1) to the autonomous CQNLS equation

i
∂

∂T
� + 1

2

∂2

∂X2
� + g0|�|2� + G0|�|4� = 0, (3)

where ρ(x,t),φ(x,t),X(x,t),T (t) are real functions to be
determined, �(X,T ) is the solution of Eq. (3), and g0 and
G0 are real constants.

We take X(x,t) = ∫ ξ

0 F [ξ ′(x,t)]dξ ′ with ξ (x,t) = α(t)x,
where F (ξ ) is a key function to be elected and α(t) is an
positive definite function of time. For this choice, we can
determine the width of some solutions in the form 1/α(t),
which will be discussed in detail below. In order to look for
exact solutions of (1), we suppose that the cubic nonlinearity
is given of the form

g(x,t) = α(t)F (ξ ). (4)

This choice is appropriate and necessary because it will lead
external potential and other coefficients to be expressed well.

Substituting Eq. (2) into Eq. (1) by considering the ansatz
of X(x,t) and g(x,t), and requiring that �(X,T ) to satisfy
Eq. (3), we have a system of partial differential equations
(PDEs). By solving these PDEs, one finds the following
solutions:

ρ(x,t) =
√

a

αF (ξ )
, (5a)

T (t) = g−1
0

∫ t

0
a(t ′) dt ′ + T0, (5b)
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φ(x,t) = −g0a
−1ααt

∫ x

0
F 2(ξ )x ′ dx ′, (5c)

where a = a(t) is arbitrary function of time and T0 is arbitrary
real constant. Note that the integral function of time in
Eq. (5c) is chose to be zero. It should be pointed out that
g(x,t),G(x,t),f (x,t), and γ (x,t) are not arbitrary but have
the relationship:

γ = αt

α

(
gx

g
x + 1

)
− g2

0ftG

G0
− gt

g
(6)

with

f = a

2g0α2F (ξ )2
, G = G0α

2F (ξ )2

g0a
, (7)

where g0 �= 0,G0 �= 0. Therefore, as long as one chooses the
parameters a(t),α(t), F (ξ ), one obtains the expressions of the
coefficients in Eq. (1).

Now the expression of the potential is given by

V (x,t) = q1(ξ,t)x2 +
∫ x

0
[ q2(ξ,t)x ′ − q3(ξ,t)x ′2]dx ′

+ q4(ξ,t) (8)

with

q1(ξ,t) = g0α
2
t F

2(ξ )

2a
,

q2(ξ,t) = g0F
2(ξ )

(
ααtat − aααtt − aα2

t

)
a2

,

q3(ξ,t) = 2g0F (ξ )F ′(ξ )αα2
t

a
,

q4(ξ,t) = a[2F (ξ )F ′′(ξ ) − 3F ′2(ξ )]

8g0F 4(ξ )
,

where F ′(ξ ) = dF/dξ,F ′′(ξ ) = d2F/dξ 2. From the above
equations one can see that the external potential V (x,t) is also
not arbitrary but related to g(x,t),G(x,t),f (x,t), and γ (x,t)
via the parameters a(t), α(t), and F (ξ ). Thus, Eqs. (6)–(8) can
be understood as integrability conditions on Eq. (1) for exact
solutions by the method used in the paper.

Expression (8) can give rise to many sets of external
potentials and CQ nonlinearities by the choices of independent
parameters α(t),F (ξ ). Note that we can also obtain the
potential in Ref. [26]. For example, we can obtain V (x,t) =
V0(t) by choosing α(t) = α0, and F (ξ ) satisfy 2F (ξ )F ′′(ξ ) −
3F ′2(ξ ) − 8g0F

4(ξ ) = 0, with V0(t) = a; V (x,t) = V1(t)x by
choosing α(t) = 1, and F (ξ ) satisfy 2F (ξ )F ′′(ξ ) − 3F ′2(ξ ) −
8g0ξF 4(ξ ) = 0 (in this case, ξ = x), with V1(t) = a; V (x,t) =
V2(t)x2 by choosing F (ξ ) = F0, with V2(t) = θ2(t) [see
Eq. (15) below]. Besides, some other interesting external
potentials can be obtained, such as the OL potential, the
FB potential, and the potential barrier (well), which will be
discussed in detail below. To summarize in one sentence,
the most important feature that distinguishes our situation
from that reported in the literature [26] is that a more
general expression (8) is obtained, which not only contains
the previous case but also generates some other interesting
specific external potentials.

It has been proven that exact solutions of Eq. (3) can exist
under the solvable condition G0 = −β0g

2
0 [31], where β0 is

the arbitrary real constant. In this case, Eq. (3) has brightlike
and darklike soliton solutions, depending on the sign of g0 that
controls the cubic nonlinearity in a specific system. If g0 > 0,
the brightlike soliton solution of Eq. (3) can be written in the
form

�B(X,T ) = M√
g0

exp[iwX + i(σ − w2/2)T ]√
1 + N cosh[p(X − wT )]

, (9)

where σ = 3
16β0

(1 − N2),M = 2
√

σ ,p = 2
√

2σ , and N is
real number. Here w, p, and M are relative to the group
velocity, the pulse width, and the amplitude, respectively.

When g0 < 0, the darklike soliton solution can be given by

�D(X,T ) = M√−g0

sinh[p(X − wT )]√
1 + N sinh2[p(X − wT )]

× exp[iwX − i(σ + w2/2)T ], (10)

where σ = (3N−1)p2

2 , M =
√

(3N − 2)p2N , and p =√
3(N−1)

2β0(3N−2)2 . It is clear that, to ensure the parameters to be

real, we must have N > 1.
With the solutions of the autonomous CQNLS equation (3)

given above, one can obtain the exact solitary wave solutions
of Eq. (1). As can be seen, Eq. (9) leads to the wave function
that solves Eq. (1) in a bright solitary wave solution

ψB(x,t) = ρ(x,t)�B(X,T )eiφ(x,t) (g0 > 0), (11)

and Eq. (10) leads to a dark solitary wave solution

ψD(x,t) = ρ(x,t)�D(X,T )eiφ(x,t) (g0 < 0). (12)

In our solutions, as long as one chooses the forms of the
arbitrary functions a(t),α(t), and F (ξ ), one obtains the exact
solitary wave solutions to the generalized nonautonomous
CQNLS equation (1).

As can be seen from Eqs. (2), (4), and (5), when∫ ∞
−∞ |ψ |2dx = const, we must have

a(t)

g(x,t)2
= const, (13)

that is, the dispersion f (x,t) is a constant. This requires that
the function F (ξ ) is time dependent or a constant. In this
case, ρ(x,t) is time dependent and the phase φ(x,t) has the
quadratic nature with respect to the coordinate x. Therefore,
the Hamiltonian H can be conserved under Eq. (13). This
phenomena will be clearly shown in Sec. III.

It is worth pointing out that we can obtain the moving
solutions and directly controlling them by changing Eq. (1) to
the nonlinear Eq. (3), which is a partial differential equation
possessing periodic solutions even without the time and space
modulations of the potentials and coefficients.

III. SOME CHARACTERISTIC ANALYTICAL SOLITARY
WAVE SOLUTIONS

In this section, we cite examples to illustrate some features
of our exact analytic solutions (11) and (12) by considering
the cubic nonlinearity distribution of special forms. For this,
some interesting and useful external potentials are given with
the choices of a(t), α(t), and F (ξ ), and the corresponding
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management coefficients are presented. We have four cases of
the external potential according to α(t) or F (ξ ):

(i) α(t) = α0,F (ξ ) = F0, leading vanishing potential.
(ii) F (ξ ) = F0, leading SQ potential.
(iii) α(t) = α0, leading OL potential.
(iv) α(t) and F (ξ ) are general functions, leading FB

potential and potential barrier (well).
Interest for research on these external potentials has never

stopped and has attracted wide attention [22,24,27,30]. We will
discuss these cases in detail below. Then, some interesting
explicit analytical solitary wave solutions are generated, in-
cluding decaying solitary waves, snakelike solitary waves, and
solitary waves in an OL potential. Representative properties
of some solutions are studied, such as width, wave center
position, and amplitude, and most of them can be controlled
by some parameters management [such as a(t) and α(t)]. This
situation will be apparently seen below by using their exact
expressions. Here we note that we will use

α(t) = 1 + ε cos(ω0t), a(t) = 1 + a0 cos(ω1t), (14)

when they are arbitrary functions of time where required,
with ε,a0 ∈ (−1,1), ω0,ω1 ∈ R. Also note that we will always
take the parameters in our solutions to be N = 0.5,g0 = 1 for
brightlike types, and N = 2,g0 = −1 for darklike types, and
F0 = ω0 = ω1 = 1,T0 = 0 for both cases.

A. Vanishing potential [α(t) = α0,F(ξ ) = F0]

First, we study the evolution of Eq. (1) in the absence of
an external potential, namely V (x,t) = 0. In this case α(t) =
α0, F (ξ ) = F0, which yields constant phase in Eq. (5c). The
coefficients in Eq. (1) are dependent on the time-dependent
parameter a except for cubic nonlinearity g(x,t). With this
we can find that ρ(x,t) = √

a/F0α0 is time dependent and
X(x,t) = F0α0x is space dependent. We pay close attention to
the following two cases according to a(t).

(i) Standard solitary waves. When a0 = 0, a = 1, the
gain γ = 0 as well as the coefficients are all constants.
Equation (1) then reduces to the standard CQNLS equation,
which leads to the standard bright and dark solitary wave
solutions to Eq. (1).

(ii) Periodic solitary waves. As a general case, we choose
a0 = 0.1, ω1 = 1. The coefficients are then trigonometric
forms of time, and Eq. (1) has periodic oscillating bright and
dark solitary wave solutions, as plotted in Figs. 1(a) and 1(b),
respectively. One can see that the solitary waves maintain the
same widths but change in their amplitudes (proportional to√

a) with the increasing time.
Obviously, the Hamiltonian H in the case (i) is conserved

while is not in case (ii) [Eq. (13) is not satisfied]. Thus, model
(1) in the above two cases is important both in nonlinear optics
and BECs [14,32,33], and the results are applicable for these
systems.

B. Space-quadratic potential [F(ξ ) = F0]

We now address solutions to Eq. (1) when F (ξ ) is a real
constant, that is, F (ξ ) = F0. In this case, q3(ξ,t) = q4(ξ,t) =
0, q1(ξ,t), and q2(ξ,t) are only the functions of time [q1(ξ,t) =

FIG. 1. (Color online) Periodic solitary wave solutions of Eq. (1),
in the case of a vanishing potential and time-dependent coefficients.
(a) Bright solitary wave solution for g0 = 1, N = 0.5, w = 1, and
(b) dark solitary wave solution for g0 = −1, N = 2, w = −1. The
other parameters are β0 = 1, T0 = 0, α0 = 1, F0 = 1, a0 = 0.3, and
ω1 = 1.

q1(t),q2(ξ,t) = q2(t)], and the parameter X(x,t) has the form
of F0α(t)x. Thus, we can obtain the SQ potential

VSQ(x,t) = θ2(t)x2, (15)

where θ2(t) = q1(t) + q2(t)
2 = 1

2a−2g0F
2
0 α(atαt − aαtt ). It is

known that the SQ potential has been interestingly discussed
[22,24,27,28] and is important to realize BEC in experiments.
Moreover, from Eqs. (6) and (7) we can see the coefficients in
Eq. (1) are time-dependent functions, and phase is a quadratic
profile. In this case, Eq. (1) becomes the generalized nonau-
tonomous CQNLS equation with time-dependent coefficients

i
∂ψ

∂t
+ f (t)

∂2ψ

∂x2
+ g(t)|ψ |2ψ + G(t)|ψ |4ψ

+ θ2(t)x2ψ + iγ (t)ψ = 0, (16)

wheref (t),g(t),G(t),γ (t) satisfy Eq. (4) and Eq. (6) and
Eqs. (7) for F (ξ ) = F0.

Equation (16) can be associated with two main physical
problems: (i) beam propagation in a graded-index waveguide
with periodical structure [34] and (ii) nonlinear waves of BECs
inside a periodical potential via dispersion management using
the concept of effective mass [35]. In particular, when θ2(t) =
0, the potential is vanishing and Eq. (16) can describe the
evolution of nonlinear optical pulses in CQ nonlinear media,
which has already been discussed in Ref. [14].

Generally, Eq. (16) is not integrable. Having in mind the
solvable conditions (6) and (7), we have:

f (t) = a

2g0α2F 2
0

, G(t) = G0α
2F 2

0

g0a
, (17a)

γ = αt

α
− g2

0ftG

G0
− gt

g
. (17b)

That is, exact solitary wave solutions of Eq. (16) can exist
under Eqs. (17).

Now we focus on three different SQ potentials.

1. Decaying bent solitary waves

We first consider the SQ potential without time modulation
by taking a = α2, θ2(t) = λ, where λ is a constant. This choice
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leads us to α = 2C0e
C0 t

C1e
2C0 t−C2

, where C0 =
√

2λ
g0F0

, C1, and C2 are

arbitrary real constants. With this, the potential has the form

VSQ1(x,t) = λx2. (18)

In this case, the coefficients f,G are constants, g is a
function of time, and the gain γ is vanishing. With this, we
can use Eq. (5a) to find ρ(x,t) = √

α/F0.
Now, with the parameters shown above, the solitary wave

solutions can be obtained according to Eqs. (11) and (12).
It is noted that one can obtain decaying bent solitary waves
by selecting special values for C1 and C2. As an example,
we choose the parameters C1 = 1 and C2 = −1, and with
this we have α = C0sech(C0t), which acquires g0 > 0,F0 > 0
or g0 < 0,F0 < 0, respectively. The intensity of the bright
decaying bent solitary wave is given by

|ψB(x,t)|2 = C0M
2sech(C0t)

g0F0

×{1 + N cosh [p(X − wT )]}−1, (19)

where X = F0C0sech(C0t)x and T = g−1
0 C0 tanh(C0t) + T0.

In Fig. 2, we plot the decaying bent solitary waves to
show how they behave as functions of space and time.
Figures 2(a) and 2(b) demonstrate the intensity profiles of
ψB and ψD , respectively. Figures 2(c) and 2(d) show the width

1
pF0α(t) , amplitude M√

1+N

√
α(t)
g0F0

, and velocity of the wave center

vc = w(g0F0)−1[α − α−2αt (
∫ t

0 α(t ′)2dt ′ + T0g0)] of the soli-
tary wave given by Eq. (19). It is observed that the width of
the solitary wave becomes wide but amplitude becomes small
as time goes on. The velocity of the solitary wave increases as
an exponential, depending on the changes of the parameter α.

FIG. 2. (Color online) Plots of (a) |ψB |2 and (b) |ψD|2 with the
potential depicted by Eq. (18) for λ = 1, C1 = 1, C2 = −1. (c) The

width 1
pF0α(t) (upper line) and amplitude M√

1+N

√
α(t)
g0F0

(lower line) and

(d) the velocity of the wave center vc of the solution (19). Here, and
in other figures, W (t) and A(t) represent the widths and amplitudes
of the solutions, respectively. The other parameters are the same as
those used in Fig. 1.

Therefore, the solitary wave displays broadening and moving
behavior with the increasing time. As a result, one can make
the solitary wave broaden in a predictable fashion by designing
the form of α(t) according to its expression. Broadening of the
solitary wave is also studied in Ref. [36].

2. Snakelike solitary waves

Consider a0 = 0 and α to be the function of trigonometric
form as noted in Eq. (14). As mentioned, we see that the coeffi-
cients f,G,γ are functions of time. In this case, the parameter
ρ(x,t) = 1/

√
αF0 and variable ξ = [1 + ε cos(ω0t)]x. Now,

the potential is in the form

VSQ2(x,t) = 1
4εg0ω

2
0F

2
0 [ε + 2 cos(ω0t) + ε cos(2ω0t)]x2.

(20)

This potential is modulated by a time-periodic optical su-
perlattice, which includes two different frequencies (ω0 and
2ω0) [37]. It changes from attractive to expulsive behavior
periodically, as we show in Fig. 3(a). Recently, Belmonte-
Beitia and Calvo obtained similar results [24].

FIG. 3. (Color online) Plots of (a) the SQ potential expressed by
Eq. (20) with ω0 = 1, ε = 0.5. (b) |ψB |2 and (c) |ψD|2 corresponding
to potential (20) for ω0 = 1, ε = 0.3. (d) The width 1

pF0α(t) (upper

line) and amplitude M√
1+N

1√
g0F0α(t)

(lower line) and (e) the velocity of
the wave center vc of the solution (21). The other parameters are the
same as those used in Fig. 1.
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Solitary waves under potential (20) demonstrate snakelike
behavior. We take the bright snakelike solitary wave as an
example to illustrate how it behaves as a function of x and t .
Its intensity is given by

|ψB(x,t)|2 = M2

g0F0[1 + ε cos(ω0t)]

×{1 + N cosh [p(X − wT )]}−1, (21)

where X = F0[1 + ε cos(ω0t)]x, T = g−1
0 t + T0.

In Fig. 3, we plot the dynamics of the snakelike solitary
waves. Figures 3(b) and 3(c) demonstrate the intensity profiles
of the wave functions ψB and ψD , respectively. Figures 3(d)
and 3(e) show the width 1

pF0α(t) , amplitude M√
1+N

1√
g0F0α(t)

, and

velocity of the wave center vc = w(g0F0)−1[α−1 − α−2αt (t +
T0g0)] of the solitary wave given by Eq. (20). The center
position of the solitary wave is xc = w(F0α)−1(g−1

0 t + T0),
which leads a snakelike effect of the solitary wave. As one
can see from Figs. 3(d) and 3(e), with the increasing time,
the solitary wave displays a periodic change in the width
and amplitude, and the velocity of the wave center executes
periodic oscillations and an increase in the magnitude.

3. Formation of two bound-state solitary waves

Considering the trapping potential, which is related to
parametric amplification of elementary excitations of non-
linear media [38] and studied in Refs. [22,24,25], in order
to obtain the trapping potential, we take a = α2 and define
χ = 1/α, and then we have the Mathieu equation d2χ/dt2 −
(2/g0F

2
0 )θ2(t)χ = 0 with θ2(t) = 1 + ε cos(θ0t). Now the

trapping potential is given by

VSQ3(x,t) = [1 + ε cos(θ0t)]x
2 (22)

with ε ∈ (−1,1) and θ0 ∈ R. We plot this potential in
Fig. 4(a). In order to investigate the exact solutions of
Eq. (1), we choose parameters g0 = F0 = θ0 = 1 and ε = 0.5.
In this case, the solution of the above Mathieu equation is
χ = ACM (−8,2,t/2) + BSM (−8,2,t/2), where A and B are
constants and CM and SM refer to the cosine and sine Mathieu
functions, respectively. It is interesting that one obtains the
explicit expression of bound states of solitary waves according
to Eq. (11). Figure 4(b) shows the formation of two bound-state
solitary waves in the trapping potential with A = B = 1.

FIG. 4. (Color online) (a) Plot of the trapping potential given by
Eq. (22) with θ0 = 1, ε = 0.5. (b) Two solitary waves in bound-state
formation.

Investigations of similar structures in optical fibers with a
variable dispersion have been seen in Ref. [39].

In keeping with the experiments, we discuss the applica-
tions of our above results in the BECs. In cases 1 and 3, the
dispersion management parameter f (t) is a constant (can be
set as 1), and the gain γ is vanishing. Furthermore, we can
obtain that the Hamiltonian H in the two cases is conserved
in light of Eq. (13). Thus, the norm

∫ ∞
−∞ |ψ |2dx = const ≡ N

denotes the particle number of atoms in BECs. According
to the theory of Feshbach resonance, the behavior of the
scattering lengths in the vicinity of a Feshbach resonance can
be written as as(t) = abg[1 + �/(B0 − B(t))], and so g(t) =
as(t)/abg = 1 + �/[B0 − B(t)], with abg is the background
scattering length, B0 is the resonant value of the magnetic
field, and � is the width of the resonance. Therefore, the
magnetic field B(t) reads B(t) = B0 + �/[1 − g(t)], which
varies with g(t). In these two cases, we have g(t) = F0α(t).
Thus, by choosing α(t), the Feshbach resonance management
is realized easily. This effect provides a direct and simple way
to compress the soliton and obtain formation of two solitary
waves bound states. As for case 2, the solitary waves can exist
under the dispersion management in BECs once a controlled
variation of the effective mass would be possible.

C. Optical lattice potential [α(t) = α0]

In recent years optical lattices have been suggested
as an important tool for controlled manipulation of stable,
spatially localized nonlinear waves [40]. Theoretical investi-
gations of solitons, trapped in a rapidly driven asymmetric
one-dimensional optical lattice, have shown that their mass-
dependent transport could be available in such an “optical
ratchet” [41].

On the basis of this motivation, in this subsection, we will
show how solitary waves propagate in the Fourier-synthesized
lattice potential (a ratchet potential). It is interesting that
such lattice potential can be obtained explicitly according to
Eq. (8) by appropriately selecting the parameters a(t) and
F (ξ ). When α(t) = α0, we get q1(ξ,t) = q2(ξ,t) = q3(ξ,t) =
0, where q4(ξ,t) is a function both in space and time. Thus,
the potential takes the form V (x,t) = q4(ξ,t). Moreover, this
yields the phase φ(x,t) = 0 since we choose the integral
function of time in Eq. (5c) to be zero. To obtain the lattice
potential, we take F (ξ ) = 1/[υ + υ0 cos(ω2ξ )] in Eq. (8),
with υ0 ∈ (−υ,υ), ω2 ∈ R and υ as a positive constant. The
so-called Fourier-synthesized lattice potential now is given by

VOL(x,t) = [V0 + V1 cos(ω2ξ ) + V2 cos(2ω2ξ )]a(t), (23)

where V0 = 3υ2
0ω2

2/16, V1 = υ0υω2
2/4, V2 = υ2

0ω2
2/16, and

ξ = α0x, and a(t) is a periodic function given by Eq. (14). One
can see that V1 and V2, related to the depths of the biperiodical
lattice potential, depend on υ and υ0. In the experiments of
cold atomic beam for interferometry, they are proportional
to the laser intensity and inverse with detuning from atomic
resonance [42]. In Ref. [19] the authors also demonstrated this
ratchet potential to describe a periodical modulation of the
refractive index modulated in both transverse and longitudinal
directions in the resonator and obtained a novel type of Bloch
cavity solitons. Thus, Eq. (1) trapped in potential (23) may
be realized in such nonlinear media where both transverse
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FIG. 5. (Color online) (a) Plot of the OL potential given by
Eq. (23) with parameters υ = ω1 = ω2 = 1,a0 = υ0 = 0.5. (b) Evo-
lution of the bright solitary wave in potential (23). (c) Center
position and (d) amplitude of the solution (24). The parameters are
a0 = υ0 = 0.1.

and longitudinal directions show nonuniform distribution.
Further, a similar potential has also been studied for the NLS
equation [43].

Parameters of the Fourier-synthesized lattice potential (23)
can be determined by appropriately choosing the function
a(t) and the lattice harmonics V1,V2. The stationary poten-
tial of the form (23)(a0 = 0) both in BECs and nonlinear
waveguide has also been studied in Ref. [44]. We plot the
Fourier-synthesized lattice potential in Fig. 5(a) with the
parameters υ = ω1 = ω2 = 1, a0 = υ0 = 0.5. As can be seen,
this potential resembles a periodic sequence of hills in the
transverse and longitudinal directions. Using Eq. (5a) we can
get ρ(x,t) = √

�/α0, if we define � = [υ + υ0 cos(ω2ξ )][1 +
a0 cos(ω1t)], thus α0 > 0. We see from Eqs. (7) that the
coefficients f,G are the functions of space and time, g is a
function of x, and γ is time dependent.

According to Eqs. (11) and (12), solutions of Eq. (1) under
the OL potential can be obtained. Taking the bright solitary
wave as an example

|ψB(x,t)|2 = M2�

g0α0
{1 + N cosh [p(X − wT )]}−1, (24)

where X = ∫ ξ

0 [υ + υ0 cos(ω1ξ
′)]−1dξ ′ and T = g−1

0 [t +
a0
ω2

sin(ω2t)] + T0. In Fig. 5(b), we display the dynamics of
the bright solitary wave with a0 = υ0 = 0.1. It is obvious that
the solitary wave exhibits periodic oscillation along with the
increasing time while its width remains unchanged.

In our solution, the center position of the solitary wave can
be determined by X(xc) = wT . This leads to a relationship
between wave center xc and time t , as we plot in Fig. 5(c).
It is found that the wave center swings around instead of
propagating in a straight line. In Fig. 5(d), we demonstrate
the amplitude (proportional to

√
�) of the solution (24) to

illustrate how it varies with respect to time. Note that the

dark solitary wave solution can also be obtained according
to Eq. (12); we do not show here to avoid tedium. When
a0 = 0, corresponding to the stationary form of Eq. (23), f ,
g, and G are only related to coordinate x, and the gain γ

is vanishing. It is expected that, in this case, solitary wave
solutions will be existence in the presence of a segment with
modified dispersion and/or nonlinearity [45]. Furthermore,
when a0 = υ0 = 0, the solitary waves evolve into the standard
types that have no oscillation. It is important to stress that one
can control the shapes of the solitary waves through the action
of the lattice management. For example, one can design the
evolution of the solitary wave’s peak and the wave center’s
motion through the parameters υ, υ0, and a0 related to the
depths of the Fourier-synthesized lattice potential according
to the relationship depicting the wave center as mentioned. We
hope this result will be valuable to design an OL potential that
is expected to produce the bright or dark solitons.

We have demonstrated that the exact solitary wave solutions
can be constructed in model (1) with the Fourier-synthesized
lattice potential. In Sec. III E, the stability of the solution is
checked under slight disturbance of the constraint conditions
and the initial perturbation of white noise, and the results
show that the solitary waves still propagate in a stable way.
To our knowledge, solitons in OLs are usually found in a
numerical form, with rarely analytical results [46]. Therefore,
we hope our results will be useful for the further study in
optical communications and relative subjects and stimulate
novel experiments in the field.

D. Potential barrier (well) and flying bird potential

We have thus far been very specific in choosing the cubic
nonlinearity g(x,t). However, in order to show the general
properties of Eq. (1), we should consider g(x,t) as a function
both in space and time. A specific cubic nonlinearity in the
case of BECs with controlled optical interactions [22,24,25]
may simulate interesting external potential and solutions for
our model (1) and is given explicitly by

g(x,t) = αeξ 2/b2
, (25)

where b is a real constant. Therefore, Eq. (25) may be exist
in the nonlinear media when its transverse and longitudinal
directions are nonuniform distribution. We consider the special
case a0 = 0, and α is the trigonometric form mentioned in
Eq. (14). With this choice we have F (ξ ) = eξ 2/b2

and ρ(x,t) =√
α−1e−ξ 2/b2 . The potential is given as follows:

V (x,t) = l(t) + h1(ξ,t)e2ξ 2/b2 + h2(ξ,t)e−2ξ 2/b2
, (26)

with

l(t) = g0b
2

4α2

(
ααtt − α2

t

)
,

h1(ξ,t) = g0b
2
[
α2

t (1 − 2ξ 2/b2) − ααtt

]
4α2

,

h2(ξ,t) = 1 + ξ 2/b2

2g0b2
.

This potential exhibits very different features for the choice
of ε, in spite of the apparent complexity of its expression.
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FIG. 6. (Color online) Plots of the potential given by Eq. (26) with
(a) ε = 0 and (b) ε = 0.3. The other parameters are ω0 = g0 = 1,
b = 6.

When ε = 0, it becomes potential barrier (well); when ε �= 0,
it represents FB behavior.

1. Potential barrier (well)

When ε = 0, α = 1, potential (26) becomes

V (x,t) = 1 + x2/b2

2g0b2
e−2x2/b2

. (27)

This potential represents the potential barrier or well, de-
pending on the sign of g0. When g0 > 0, it represents the
potential barrier; when g0 < 0, it represents the potential
well. Thus, solutions of Eq. (1) are the bright types in
potential barrier while dark types in potential well. We plot
the potential barrier in Fig. 6(a) with ω0 = g0 = 1, b = 6.
The corresponding bright solitary waves are decaying with
respect to time, as plotted in Fig. 7(a) with w = 2, b = 6. One
can see that the potential barrier influences the shape of the
solitary wave that decays with the increasing time. As for the
potential well, the corresponding dark solitary waves are also
decaying.

2. Flying bird potential

If ε �= 0, (26) represents an FB potential. This potential
periodically varies in time with attractive and expulsive
sign-reversible characteristics, as we plot in Fig. 6(b). This
characteristics is related to the sign of g0 which controls the
cubic nonlinearity and determines the solitary wave solution
that is bright or dark. Moreover, the potential represents
periodic and quasiperiodic behaviors depending on the choice
of the parameter ω0. For example, if we take ω0 = √

2
in Eq. (26), we can obtain quasiperiodic potential. When
b → ±∞, the potential is vanishing. Unlike in Sec. III A,
coefficients of (1) are the functions of space and time in this
case.

Solutions of Eq. (1) with the FB potential can be obtained
from Eqs. (11) and (12). We consider the bright solitary wave
which changes like a snake with amplitude decays

|ψB(x,t)|2 = M2e−ξ 2/b2

g0[1 + ε cos(ω0t)]

×{1 + N cosh [p(X − wT )]}−1, (28)

with X = b
√

π

2 erfi( ξ

b
) and T = g−1

0 t + T0, where erfi(s) =
2√
π

∫ s

0 eτ 2
dτ is called an imaginary error function. We plot

FIG. 7. (Color online) The decaying solitary wave of Eq. (1)
with (a) ε = 0, and (b) ε = 0.5 for w = 2, b = 6, corresponding to
potential barrier and FB potential, respectively. (c) Center position of
the solution (28) with w = 0.01 (left line), w = 0.1 (middle line), and
w = 1 (right line). (d) Amplitude of the solution (28) with w = 0.5.

the intensity of ψB in Fig. 7(b). One can see that the
wave packet presents time periodic movement, with the
amplitude increasing and decreasing periodically but overall
decreasing.

In our solution, both the amplitude, center position, and
speed of the wave packet vary with time and space. It is
therefore difficult to find explicit expressions between x and t .
But we can plot them according to their relationship and then
study their properties. The wave center position satisfies the
equation X − wT = 0, that is,

b
√

π

2
erfi

{
[1 + ε cos(ω0t)]xc

b

}
− w(g−1

0 t + T0) = 0 (29)

is plotted in Fig. 7(c) with w = 0.01, 0.1, and 1. It is shown that
the wave center shows a large swing around away from x = 0
for big w, while almost no swing nearby x = 0 for small w.
This is because when w is small, the wave packet is confined
in the vicinity of x = 0.

The evolution of the amplitude can be described by

AψB
= Me(1+ε cos(ω0t))x2

c /2b2{g0(1 + N )[1 + ε cos(ω0t)]}− 1
2 ,

(30)

where xc satisfies the Eq. (29). One can see that the parameters
ε, ω0, N , T0, g0, and b all affect the amplitude, which leads
to the complex changes of the solitary wave. We plot the
dynamics of the amplitude in Fig. 7(d) with w = 0.5. It is
observed that the amplitude presents a periodic increase and
decrease, but overall is a decrease. Similar to the amplitude, we
note that, the width of the wave also demonstrates a periodic
increase and decrease.

From the discussions above, we can see that solitary
waves are all decaying in both FB potential and potential
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FIG. 8. (Color online) The numerical evolution of the exact solu-
tion (21) (a) and (24) (b) under the perturbation in the constraint condi-
tions. The parameters for solution (21) are f = 0.9 × 0.5g−1

0 F −2
0 [1 +

ε cos(ω0t)]−2 and ε = 0.16, β0 = 0.1, w = 0.5, while for solution
(24) the parameters are f = 0.9 × 0.5g−1

0 α−2
0 �[υ + υ0 cos(ω2ξ )]

and a0 = 0, υ0 = 0.2, β0 = 0.1, w = 0.8. The other parameters are
the same as those used in Figs. 3(b) and 5(b).

barrier (well), and hence the solitary waves are unstable.
This situation will be changed if one chooses the parameter
w = 0. In this case, solution of the autonomous CQNLS
equation [Eqs. (9) and (10)] is in the stationary form, and
the solution of Eq. (1) is no longer decaying with respect
to time.

E. Stability of the solitary wave solutions

Thus far, we have obtained the exact solitary wave solutions
under the constraint conditions (6)–(8) which provide the
balances among the management coefficients in model (1).
In real applications, however, it may be difficult to produce
exactly such constraint conditions. Therefore, a study for
the perturbations in the constraint conditions (6)–(8) is
necessary. Here we take the solutions (21) and (24) as
examples and disturb the constraint conditions in the way:
f = 0.9 × 0.5g−1

0 F−2
0 [1 + ε cos(ω0t)]−2 for solution (21) and

f = 0.9 × 0.5g−1
0 α−2

0 �[υ + υ0 cos(ω2ξ )] for solution (24),
and the other conditions do not change. Results of numerical
calculations are shown in Fig. 8. We can see that the solitary
waves present the stable state in Fig. 8(a) while propagate
stably in Fig. 8(b) after a short adjustment. In addition to this,
we have made more numerical calculations for the constraint
conditions by perturbing other management coefficients and
the results show that the solitary waves still propagate in a

FIG. 9. (Color online) The numerical evolution of the exact
solution (21) (a) and (24) (b) under the initial perturbation of white
noise. The initial data for solution (21) are ε = 0.16, β0 = 0.1,
w = 0.5, while for solution (24) they are a0 = 0, υ0 = 0.2, β0 = 0.1,
w = 0.8. The other parameters are the same as those used in Figs. 3(b)
and 5(b).

stable way. Therefore, the evolution of the solitary waves is
not sensitive to the perturbations in the constraint conditions.
As a result, it is possible to relax the limitations to the constraint
conditions. This may make the soliton control technique more
realistic and provide prospects for applications in the future.

Finally, we briefly analyze the stability of the solitary wave
solutions found above. We still take the solutions (21) and (24)
as examples to perform numerical experiments of Eq. (1). We
add white noise in the pulse ψ(x,0), then the perturbed pulse
reads

ψpert = ψ(x,0)[1 + 0.1random(x)]. (31)

The numerical results are shown in Figs. 9(a) and 9(b). The
results demonstrate that the solitary waves can propagate in
a stable way under the initial perturbation of white noise. It
is noted that the solitary wave expressed by Eq. (24) shows
smaller changes in the wave’s peak during the propagation
comparing with its analytical profiles, which caused by the
numerical simulation technique. These results may useful in
study of propagation of pulses in femtosecond fiber systems
or optical communication links with distributed dispersion and
nonlinearity management and the presence of gain (loss).

Although we have displayed here the results of stability
study only for two examples of model (1), similar conclusions
hold for other solutions as well.

IV. CONCLUSIONS

In conclusion, we have solved analytically the generalized
nonautonomous CQNLS equation by using the similarity
transformation. By choosing special forms of the cubic
nonlinearity g(x,t) based on α(t) and F (ξ ), a simple procedure
is established to obtain different classes of potentials and
solutions. The solutions exist under certain conditions and
impose constraints on the coefficients depicting dispersion,
CQ nonlinearities, and gain (or loss). In this way, Eq. (1) can
reduce to the standard CQNLS equation and the generalized
nonautonomous CQNLS equation with time-dependent coef-
ficients, and the conservation condition of the Hamiltonian H
is presented. Following, a meaningful result is obtained that
a more general expression of the external potential, which
not only contains the case in previous literature [26] but
also simulates some interesting periodic potentials, such as
the SQ potential, OL potential, FB potential, and potential
barrier (well). It is noted that one can also obtain other
potentials according to the expression of the external potential
by appropriately selecting the parameters a(t), α(t), and
F (ξ ). Then, abundant of exact solitary wave solutions have
been found under these different types of external potentials,
including decaying solitary waves, snakelike solitary waves,
and solitary waves in an OL potential. Properties of some
solutions are also studied intensively, including the influence
of the arbitrary time-dependent function a(t) on the potentials
and solutions, and the control of the widths, amplitudes,
speeds, and center positions of some solitary waves. Finally,
the stability of the solitary waves under slight disturbance of
the constraint conditions and initial perturbation of white noise
is discussed numerically; the results reveal that the solitary
waves can propagate in a stable way under slight disturbance
of the constraint conditions and the initial perturbation of white
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noise. We believe that the produce of designing nonlinearities
and potentials in this paper can also apply to studying general-
ized nonautonomous cubic NLS equations, high-dimensional
situations, multicomponent systems, and nonlinear optical
systems.
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