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Wings of coherent backscattering from a disordered medium with large inhomogeneities
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We calculate the nondiffusive contribution to the intensity of coherent backscattering from a disordered medium
composed of large-scale scatterers. The wings of the coherent backscattering cone are shown to be governed by
short-path waves that experience small-angle multiple scattering before and after single scattering in the backward
direction. For relatively large angles θ of deviation from the backward direction, θ > λ/ltr (λ is the wavelength
of light, ltr is the transport mean free path), the intensity falls off slower than θ−1 and is directly related to a law of
single scattering through small angles. Our calculations are in good agreement with experimental data for large
Mie spheres.
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I. INTRODUCTION

Interference between multiply scattered waves leads to
striking phenomena, beyond the radiative transfer theory,
like localization effects [1] and correlations in speckles [2].
The best known example of interference phenomena is weak
localization, which is a direct consequence of the constructive
interference between waves passing along the same paths
in the opposite directions. The weak localization of light is
observable as coherent backscattering (CB) from disordered
systems [3]. Since the first experiments [3], a coherent
enhancement of backscattering has been extensively studied
in various disordered materials such as colloidal suspensions
[4,5], powders [6,7], liquid crystals [8–10], biological tissues
[11], etc.

Theoretical calculations of the CB intensity are based on
summation of the most-crossed diagrams and can be reduced to
solving the corresponding transfer equation [4,12–14]. Most
of the theoretical results were derived within the diffusion
approximation and permit one to describe the backscatter-
ing intensity in a narrow cone around the exact backward
direction, θ < λ/ltr. For arbitrary θ , there are only numerical
calculations (see, e.g., [14,15]).

The angular width of the backscattering cone depends on
the turbidity of the sample. This allows one to extract the values
of transport coefficients of the medium (e.g., the transport
mean free path) directly from experimental data (see, e.g.,
[4,7,10]).

Not much is known about the angular dependence of
intensity at the wings (θ > λ/ltr) of the CB cone. As analysis
shows, for θ > λ/ltr, intensity of CB is governed by relatively
short paths of wave propagation (their length is less than
ltr). The short-path contribution is of particular importance
for media with large-scale scatterers (size a is greater than
wavelength λ). In this case, transport mean free path ltr
appears to be large as compared to the mean free path l,
ltr � l, and the CB intensity at θ > λ/ltr results from mul-
tiple scattering through small angles before and after single
scattering through a large angle, that is, in accordance with
the “forward-scatter single-backscatter” mechanism described
in [16].

Considerable interest in turbid media with large-scale
inhomogeneities is due to numerous applications. Examples
of such systems are colloidal suspensions containing large

Mie particles [5], biological tissues [11,17], random media
with long-range correlations of inhomogeneities such as liquid
crystals [8–10,18], fractal structures [19,20], and matter in the
vicinity of the phase transition point [21].

In this paper, we present the results of calculations of
intensity at the wings of the CB cone, θ > λ/ltr. The intensity
is shown to fall off, as θ increases, slower than it follows
from the diffusion theory [4,13]. Using the power-law type
of the scattering phase function p(ϑ) ∼ 1/ϑα , we find the
interrelation between the shape of the backscattering cone
wings and the single scattering law. The demarcation between
our results and the diffusion theory [4,13] are illustrated
for the important examples of power-law phase functions
with α = 3 and α = 2. These cases correspond, respectively,
to the Henyey-Greenstein phase function [22,23] and the
scattering by liquid crystals [18,21]. The range of validity for
the second-order scattering approximation is also established.
Our calculations of the CB intensity are carried out within
the scalar theory of wave propagation. For comparison with
experimental data, the results obtained are generalized with
allowance for the polarization state of light. The calculated
angular dependence of the backscattering intensity is shown
to be in good agreement with experimental data [5] for large
Mie spheres.

II. INTENSITY OF COHERENT BACKSCATTERING
WITHIN THE “FORWARD-SCATTER

SINGLE-BACKSCATTER” APPROXIMATION

Let us consider CB of a plane wave incident on a turbid
medium with large-scale inhomogeneities. The medium is
assumed to occupy the half space z > 0, and the z axis
coincides with the inward normal to the surface.

According to the diffusion theory of CB (see, e.g., [4,13]),
the flux of backscattered waves is generated over paths s > ltr
as a result of numerous events of scattering through small
angles. Transport mean free path ltr is a distance over which an
initially directional flux of radiation transforms to an isotropic
one. In the case of large scattering inhomogeneities, transport
mean free path ltr is much greater than mean free path l (ltr =
l/(1 − 〈cos ϑ〉) � l, where 〈cos ϑ〉 is the mean cosine of the
single-scattering angle [22]).
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The diffusion theory does not describe the contribution
from relatively short trajectories of wave propagation, s < ltr.
The contribution from short paths s < ltr to the intensity of
backscattering is governed by the mechanism proposed by De
Wolf [16]. For s < ltr, the small-angle multiple scattering can
not give rise to the reflected flux. The reflected flux is only due
to single scattering through a large angle (of the order of π ).
An analogous mechanism was discussed in many works in the
context of enhancement of reflection from objects observed
through a turbulent medium (see, e.g., [24] and references
therein).

In accordance with general ideas (see, e.g., [4,13]), for
angles of deviation from the backward direction θ < λ/

√
ltrs,

the intensity of backscattering is governed by the trajectories
longer than s. Therefore, the diffusion theory describes only
the peak (θ < λ/ltr) of the backscattering cone, whereas the
wings of the angular dependence of intensity (θ > λ/ltr) are
described by the process of multiple scattering along short (s <

ltr) trajectories which is accompanied by deflection through a
large angle in one of scattering events.

In order to find the contribution from relatively short
trajectories to the intensity of CB, it is necessary to calculate
the sum of the most-crossed diagrams, each involving one
scattering through a large angle [25,26] (such a diagram is
actually shown in Fig. 1). Using the standard technique for
calculating diagrams [4,13,22], we can derive the following
expression for the intensity of CB:

Jc(θ) = n

∫ ∞

0
dz

[ ∫
�1z>0

d�1

∫
�2z>0

d�2Iq(z,�1|�0)

× dσ

d�
(−�1�2)I−q(z,�2|�0)

− 1

�2
0z

exp

{−2nσtotz

�0z

}
dσ

d�
(−�0�0)

]
, (1)

FIG. 1. Interference between reciprocal light paths in wave
backscattering.

where θ = q/k0 is the angle of deviation from the backward
direction, q = (k + k0)‖, k0 = 2π/λ, k0 and k are the wave
vectors of the incident and outgoing waves, k0‖ and k‖
are the components that are parallel to the surface of the
medium, �0 = k0/k0, n is the number of scattering particles
per unit volume, dσ/d� is the differential cross section of
single scattering, σtot = σ + σa is the total cross section of
interaction, and σ and σa are the cross sections of elastic
scattering and absorption, respectively. The single-scattering
contribution which has no relation to the interference part of
the intensity is excluded from Eq. (1) (see the last term in the
square brackets).

Quantity Iq(z,�|�0) entering into Eq. (1) is the ladder
propagator which describes the small-angle multiple wave
scattering before and after deflection through a large angle
(see Fig. 1). This quantity has a simple physical meaning. The
function Iq(z,�|�0) is given by

Iq(z,�|�0) =
∫

d2ρ exp(iqρ)I (z,ρ,�|�0), (2)

where I (z,ρ,�|�0) is the intensity of radiation at the point
r = (z,ρ) in the direction �, for waves being emitted in
the direction �0 by a point source located at the boundary
(z0 = 0,ρ0 = 0). The intensity of radiation obeys the radiative
transfer equation(

�
∂

∂r
+ nσtot

)
I (r,�|�0)

= n

∫
d�′ dσ

d�
(�′�)I (r,�′|�0), (3)

with the boundary condition

I (z = 0,ρ,�|�0) = δ(ρ)δ(� − �0).

Below we do not consider the effects caused by absorption
in the medium as well as by an oblique incidence of waves
on the surface. Following are the results related to normal
incidence (�0z = 1) and the medium with no absorption
(σa = 0).

As follows from Eq. (1) the angular distribution Jc(θ ) is
expressed in terms of the scattering cross section averaged over
angles around the backward direction within the cone with the
width that is governed by the angular dependence of the Iq
functions appearing in Eq. (1). The effective width of the cone
exceeds at least the characteristic value of single-scattering
angle. Neglecting the effects caused by the fine (�ϑ ∼ λ/a)
structure of the angular dependence of the differential cross
section dσ/d� in the vicinity of the backward direction [14]
and assuming that the averaged dσ/d� is a smooth function
of the backscattering angle, we can write Eq. (1) in the more
simple form [26]

Jc(θ ) = nσb

∫ ∞

0
dz[|Iq(z)|2 − exp(−2nσz)], (4)

where σb = dσ
d�

(−1) is the backscattering cross section av-
eraged over the angular scale exceeding λ/a and Iq(z) =∫
�z>0 d� Iq(z,�|�0). Analogous formula expressed in terms

of the mutual coherence function was derived in [25].
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The function Iq(z) can be found from the well-known
solution of the transfer equation (3) within the small-angle
approximation [22]. According to [22] Iq(z) has the form

Iq(z) = exp

(
− 1

l

∫ z

0
dz′[1 − p̂(qz′)]

)
, (5)

where l = (nσ )−1 is the mean free path. Quantity p̂(ω) is
governed by the differential cross section of scattering through
small angles. Defining the phase function as [22]

p = 1

σ

dσ

d�
,

we can present p̂(ω) in the form

p̂(ω) =
∫ ∞

0
2πp(ϑ)J0(ωϑ)ϑdϑ, (6)

where p(ϑ) is the phase function of scattering through small
angles, J0(x) is the Bessel function [27]. Equation (6) is the
small-angle limit of more general formula

p̂(ω) =
∫ π

0
2πp(ϑ)Pω(cos ϑ) sin ϑdϑ, (7)

where Pω(cos ϑ) is the Legendre polynomial [27]. Equation (6)
follows from Eq. (7) if we take advantage of asymptotic
formula Pω(cos ϑ) ≈ J0(ωϑ) and substitute infinity for π in
the upper limit of integrating over ϑ .

Substituting Eq. (5) into Eq. (4), we find the nondiffusion
contribution to the CB intensity. Equations (4) and (5) hold
for relatively large angles of deviation from the backward
direction, θ = q/k0 > 1/k0ltr, and so describe the wings
around the peak of CB.

III. WINGS OF THE CB INTENSITY

Consider the specific features of the intensity which are
associated with wave propagation along relatively short (s <

ltr) paths. We restrict our analysis to the case where the
scattering phase function decreases with angle ϑ in accordance
with a power law,

p(ϑ) ∼ 1/ϑα. (8)

To model behavior of Eq. (8) we take advantage of the
following parametrization [28]

p(ϑ) = pα

2π [ϑ2
0 + 2(1 − cos ϑ)]α/2

, (9)

where ϑ0 is the characteristic angle of single scattering. For
large particles, the forward scattering dominates and ϑ0 � 1.
Normalization factor pα appearing in Eq. (9) approximates
pα = (α − 2)ϑα−2

0 (α > 2) and pα = 1/ ln(2/ϑ0) (α = 2).
The relation between the mean cosine of the single-scattering
angle and ϑ0 has the form

1 − 〈cos ϑ〉 =

⎧⎪⎪⎨
⎪⎪⎩

ϑ2
0 ln(1/ϑ0), α = 4,

2(α−2)
4−α

(
ϑ0
2

)α−2
, 2 < α < 4,

1
ln(2/ϑ0) , α = 2.

(10)

Parametrization of the form (9) unifies a number of
scattering models. For α = 4, Eq. (9) describes scattering
of light by weakly refracting inhomogeneities [22,29,30], in

particular, by a medium with the Booker-Gordon correlation
function [22]. Equation (9) with α = 3 corresponds to the
Henyey-Greenstein phase function that is used very widely to
model scattering of light in natural media [17,22,23].

Of particular interest is the case of α = 2. This case
corresponds to scattering of light by liquid crystals [8–10,18]
and by substances in the vicinity of the phase transition
point [21]. For α = 2, ϑ0 ∼ 1/k0a, where a is the radius of
correlation between inhomogeneities of the refractive index
(i.e., the correlation length or the size of an ordered region
[18,21]).

The small-angle form of Eq. (9) at α > 2 is given by

p(ϑ) = α − 2

2π

ϑα−2
0(

ϑ2
0 + ϑ2

)α/2 . (11)

For Eq. (11), the p̂ function (6) is equal to

p̂(ω) = 2


(α/2 − 1)

(
ωϑ0

2

)α/2−1

Kα/2−1(ωϑ0), (12)

where 
(x) is the Gamma function and Kν(x) is the Macdonald
function [27]. Substituting Eq. (12) into Eqs. (4) and (5), we
obtain

Jc(θ ) = σb

σ
F (qlϑ0), (13)

where

σb = α − 2

8π
σ

(
ϑ0

2

)α−2

(14)

is the backscattering cross section for phase function (9) and

F (x) =
∫ ∞

0
dζ e−2ζ

×
[

exp

(
4


(α/2 − 1)

∫ ζ

0
dζ ′

×
(

xζ ′

2

)α/2−1

Kα/2−1(xζ ′)

)
− 1

]
. (15)

The angular dependence of Jc(θ ) turns out to be a universal
function of argument qlϑ0 = k0θlϑ0.

For small values of the argument, θ < 1/k0lϑ0, expanding
the K function in powers of xζ ′, we arrive at a simple
asymptotic formula,

Jc(θ ) = cα

σb

σtr
(k0ltrθ )−

α−2
α−1 ,

(16)

cα = 


(
α

α − 1

)[
(α − 1)(α/2 − 1)
(α/2)


(3 − α/2)

] 1
α−1

.

Equation (16) is valid at 2 < α < 4. For α > 4, the CB
intensity decreases as Jc(θ ) ∼ 1/θ2/3.

At large values of the argument (θ > 1/k0lϑ0) Eqs. (13)
and (15) lead to

Jc(θ ) = (α − 2)
[(α − 1)/2]

2α+1
√

π
(α/2 − 1)

ϑα−3
0

k0lθ
. (17)

Equation (17) corresponds to the second-order scattering
contribution (see below). When putting α = 3 in Eqs. (16)
and (17), we arrive at results as in [25,26].

066604-3



V. V. MARINYUK AND D. B. ROGOZKIN PHYSICAL REVIEW E 83, 066604 (2011)

To calculate the p̂ function for α = 2 we take advantage of
Eq. (7) [formula (6) overestimates the value of intensity due
to the logarithmic divergence at ω = 0]. Then the p̂ function
takes the form

p̂(ω) = Qω

(
1 + ϑ2

0

/
2
)

ln(2/ϑ0)
, (18)

where Qω(x) is the Legendre function of the second kind
[27]. For ϑ0 � 1, Qω(1 + ϑ2

0 /2) = K0[(ω + γ )ϑ0], where
γ = 0.5615 . . ., and Jc(θ ) takes the form

Jc(θ ) = 1

8π ln(2/ϑ0)

∫ ∞

0
dζ e−2ζ

×
[

exp

(
2

ln(2/ϑ0)

∫ ζ

0
dζ ′ K0[(qlζ ′+γ )ϑ0]

)
−1

]
.

(19)

Within interval 1/k0ltr < θ < 1/k0lϑ0, integral (19) can be
estimated by

Jc(θ ) = 1

16π ln(k0ltrθ )
. (20)

At large angles, θ > 1/k0lϑ0, intensity Jc(θ ) falls off as

Jc(θ ) = 1

16 ln2(2/ϑ0)ϑ0k0lθ
. (21)

From Eqs. (17) and (21) it follows that universal law
Jc(θ ) ∼ 1/θ is valid for large deviations from the backward
direction (θ � 1/k0lϑ0, where ϑ0 is the characteristic angle of
single scattering). In this case the leading contribution to the
angular dependence of intensity is governed by second-order
scattering. To calculate J (2)

c (θ ), it is sufficient to retain the
linear term in expansion of Eq. (5) in powers of the p̂ function.
As a result, we obtain

J (2)
c (θ ) = nσb

∫ ∞

0
dzp̂(qz)e−2z/l = σb

σ

∫ ∞

0

2πp(ϑ)ϑdϑ√
4 + (qlϑ)2

.

(22)

Note that Eq. (22) is the small-angle version of the exact
expression for J (2)

c (θ ) which is as follows:

J (2)
c (θ ) =

∫ π/2

0

2πp(ϑ)p(π − ϑ) sin ϑ dϑ√
(1 + cos ϑ)2 + (ql sin ϑ)2

. (23)

For large scatterers (1 − 〈cos ϑ〉 � 1) Eqs. (22) and (23) yield
equal results. According to Eqs. (22) and (23), the dependence
Jc ∼ 1/θ gets universally valid as angle θ increases.

It is instructive to compare Eqs. (13)–(17) and (19)–(21)
with the well-known diffusion formula (see, e.g., [4,5,13]),

J (diff)
c (θ ) = 3

8π (1 + k0ltrθ )2

[
1 + 1 − exp(−2k0θz0)

k0ltrθ

]
,

(24)
(z0 ≈ 0.71ltr),

which determines the intensity in the close vicinity of the
backward direction (θ < λ/ltr). Equation (24) fails as angle θ

of deviation from the backward direction increases. The
diffusion formula is applicable as long as the contribution
(24) is not exceeded by the nondiffusive contribution (13).
So, the diffusion law, Jc(θ ) ∼ 1/θ2, is changed by Jc(θ ) ∼
1/θ (α−2)/(α−1) at angle θ ∼ λ/ltr.

0.1 1 10 100 1000 10 
1E-3

0.01

0.1

1

θ

θ=
0

000

.

FIG. 2. Comparison of different contributions to the intensity
of CB. The solid curves are the results of numerical calculations
with Eqs. (13)–(15) and Eq. (19), the dashed curve is the diffusion
formula (24), and the dotted curves are obtained with the second-order
scattering approximation. The lower and upper curves pertain to the
scattering phase function (9) with α = 3 and α = 2, respectively; in
both cases, 〈cos ϑ〉 = 0.9.

From the results obtained above it follows that the interme-
diate interval,

λ

ltr
< θ <

λ

ϑα−1
0 ltr

(
or

λ

ϑ0l

)
, (25)

appears in the angular dependence of the backscattering
intensity due to the nondiffusive multiple scattering. This in-
terval gets wider as ϑ0 decreases. The second-order scattering
contribution to the intensity dominates only at large angles
θ > λ/ϑ0l.

All of the preceding is illustrated by the results of numerical
calculations with α = 3 and α = 2 shown in Fig. 2. For
α = 2 the nondiffusive contribution to Jc(θ ) gets higher and
intermediate angular interval λ/ltr < θ < λ/ϑ0l increases as
compared to the Henyey-Greenstein case.

IV. COMPARISON WITH EXPERIMENTAL DATA

From the results obtained above it follows that the intensity
at the wings of the CB cone (θ > λ/ltr) is governed by multiple
scattering through small angles and single backscattering.
Thus the value of intensity is affected by two factors. One factor
is the angular dependence of the phase function at relatively
small angles. Another factor is the angle-average cross section
of backscattering.

For given σ and 〈cos ϑ〉 the backscattering cross section
for large Mie particles appears to be great as compared
to the power-law phase function (9). This is due to the
Glory effect [5]. Therefore, the nondiffusive contribution to
the CB intensity can exceed the value calculated with the
backscattering cross section (14).

It is of interest to test the validity of our theoretical
results by comparing with appropriate experimental data [5].
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FIG. 3. Normalized differential cross section for circularly polar-
ized light. The dashed curves are the results of calculations [5] for
4.66-μm-radius polystyrene spheres in water (the wavelength of light
in water λ = 0.385 μm, size parameter k0a = 76). The solid curve at
the left is the power-law phase function (9) with α = 2.5, ϑ0 = 0.035.
The angle-average cross section of backscattering σ

(++)
b /σ is shown

by the horizontal solid line at the right of the figure.

Measurements [5] of the CB cone were carried out for
water suspension containing large polystyrene spheres (the
particle radius a is about ten times larger than the wavelength
of light). The incident beam was circularly polarized, and
the backscattered waves with the same polarization were
detected. Thus, for quantitative comparison with data [5], the
polarization state of light should be taken into account.

In the case being considered we are interested in the in-
tensity of circularly polarized component which is determined
by quantity I(++) = 1

2 (I + V ), where I is the total intensity
and V is the fourth Stokes parameter [14]. Quantities I and V

obey individual transfer equations which differ from each other
only by the differential cross sections dσ/d� and dσ (V )/d�

entering into these equations [see, e.g., Eq. (3)] [30]. With
allowance for the difference in the cross sections, the CB of
light with no change of the circular polarization is described
by [31]

J (++)
c (θ ) = 1

2

[
Jc(θ ) + J (V )

c (θ )
]
, (26)

where Jc(θ ) is determined by Eq. (4) [or by Eq. (13)] and the
value of J (V )

c (θ ) can be obtained from Jc(θ ) by substitution of
dσ (V ) for dσ .

For large scattering particles, the differential cross sections
dσ and dσ (V ) coincide very closely at relatively small angles
[30,31]. Therefore, function Iq [see Eq. (5)] that is responsible
for the small-angle multiple scattering can be thought to be
unaffected by the polarization state of light. This is consistent
with the fact that circularly polarized light depolarizes over
distances which are much greater than the transport mean free
path ltr [30,31].

The difference between the cross sections shows up only at
large angles [30] to give the angle-average cross sections of
backscattering,

σb = dσ

d�
(−1), σ

(V )
b = dσ (V )

d�
(−1), (27)

that appear, respectively, in Eq. (13) for Jc(θ ) and in an
analogous equation for J (V )

c (θ ).
As a result, the intensity J (++)

c (θ ) of CB with no change of
the circular polarization can be calculated from Eq. (13) with
σ

(++)
b taken from

σ
(++)
b = 1

2

(
dσ

d�
(−1) + dσ (V )

d�
(−1)

)
. (28)

When comparing our theoretical results with experiment [5]
we take advantage of the numerical data for dσ (++) = 1

2 (dσ +
dσ (V )) obtained with the Mie theory in [5]. The numerical
data for the scattering cross section at relatively small angles
(ϑ < 30◦) is approximated by the phase function (9) with
α = 2.5. The value of σ

(++)
b is determined directly from the

numerical calculations [5] of dσ (++) (see Fig. 3).
Theoretical and experimental results for the CB intensity

are illustrated in Fig. 4.
As follows from Fig. 4, our calculations are in excellent

agreement with the experimental data. This means that the
wings of the CB cone are governed by the nondiffusive
trajectories of wave propagation and are well described within
the framework of the approximation proposed above to derive
Eqs. (4) and (13). The diffusion theory [see Eq. (24)] appears
to be valid within the angular region of the order of the width
of the CB cone at half-maximum.

0 5 10

θ

0.00 0.03 0.06 0.09 0.12 0.15
0.01

0.1

1

θ

θ ( )

FIG. 4. Intensity of CB from water suspension of 4.66-μm-radius
polystyrene microspheres (ltr = 314 μm, ltr/l = 11.36). The solid
curve is the result of Eq. (16) with α = 2.5, the dashed curve is
the diffusion formula (24), and the dotted curve is the second-order
scattering approximation. The squares are experimental data [5].
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V. CONCLUSIONS

In conclusion, we have calculated the intensity at the wings
of the CB cone and bridged the gap between the results of the
diffusion and second-order scattering approximations. Three
areas can be distinguished in the angular dependence of the
intensity. The regions of diffusive propagation (θ < λ/ltr) and
second-order scattering (θ > λ/lϑ0, ϑ0 is the characteristic
angle of single scattering) are separated by an intermediate
region where the wave reflection from the medium results
from the forward multiple scattering before and after single
deflection through a large angle (of the order of π ). As angle θ

increases, θ > λ/ltr, the diffusion law of the intensity decrease
Jc(θ ) ∼ 1/θ2 transforms to Jc(θ ) ∼ 1/θ

α−2
α−1 , where exponent

α−2
α−1 depends on the form of the phase function. At rather
large angles, θ > λ/lϑ0, the intensity decreases with angle θ

according to universal law Jc(θ ) ∼ 1/θ which follows from
the second-order scattering approximation. So, the effect of
the phase function on the angular dependence of Jc(θ ) reveals
itself evidently within interval λ/ltr < θ < λ/lϑ0.

The results obtained above present a way of estimating
the angular dependence of the single-scattering cross section
from the measurements of CB wings. This may be useful
in studies of multiply scattering media such as colloidal
suspensions of large Mie particles, various random media with
long-range correlations of inhomogeneities and biological
tissues.
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