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Dynamics of a nonautonomous soliton in a generalized nonlinear Schrödinger equation
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We solve a generalized nonautonomous nonlinear Schrödinger equation analytically by performing the Darboux
transformation. The precise expressions of the soliton’s width, peak, and the trajectory of its wave center are
investigated analytically, which symbolize the dynamic behavior of a nonautonomous soliton. These expressions
can be conveniently and effectively applied to the management of soliton in many fields.
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I. INTRODUCTION

Since Zabusky and Kruskal first introduced the concept
of the soliton in 1965 [1], studies on solitons have been
done in many fields, including hydrodynamics [2,3], quantum
field theory [2], plasma physics [4], nonlinear optics [5–9],
and the Bose-Einstein condensate [10–14]. The classical
soliton concept was developed for nonlinear and dispersive
systems. Time only played the role of an independent variable.
Moreover, time has not appeared explicitly in the nonlinear
evolution equation, which is seen as autonomous [6]. However,
in most real experiments, solitons cannot be autonomous,
which is quite different from the conventional soliton concept.
For example, there is (i) the test of solitons in nonuniform
media with time-dependent density gradients [15]; (ii) the
test of the core medium of the real fibers, which cannot be
homogeneous, fiber loss is inevitable, and dissipation weakens
the nonlinearity [16]; and (iii) the formation of solitons in
Bose-Einstein condensates, which tunes the interaction near
Feshbach resonance and provides a good example for a
nonautonomous system as well [17,18].

For the nonautonomous system, three questions are asked:
Do solitons still exist and maintain their identities through
nonlinear interaction in time-dependent external potentials? In
which condition can a soliton exist? How can the dynamical
behaviors of nonautonomous solitons be controlled? These
are the main points physicists want to know. In most cases,
the dynamics of nonautonomous solitons are governed by
the nonlinear Schrödinger equation (NLSE). Thus, it is more
meaningful to solve the generalized NLSE, which can be used
conveniently to study many kinds of nonautonomous systems.
Serkin et al. presented soliton solutions for the generalized
NLSE and proved that solitons can exist in a nonautonomous
system [6]. Luo et al. provided some ways to manage the
soliton in a nonautonomous system [7].

In this paper, we present one family of analytical nonau-
tonomous soliton solutions for the generalized nonautonomous
NLSE [Eq. (1)] by making use of the Darboux transformation
method from a trivial seed solution. The precise expressions
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of the soliton’s width, peak, and the motion of its center
are investigated analytically. In general terms, we choose
dispersion, nonlinearity, gain (or loss), and external potentials
as arbitrary time-dependent functions. From their analytical
expressions, it can be seen how these factors affect the
dynamical properties of solitons. This will provide us with
explicit ways to control the evolution of solitons. We also
present the condition to manage dispersion, nonlinearity, and
the gain term to keep the amplitude of the nonautonomous
soliton unchanged, which could be used to improve the quality
of soliton transmission in optical communication.

II. THE DARBOUX TRANSFORMATION AND BRIGHT
SOLITON SOLUTION

For one-dimensional generalized nonautonomous systems,
the dynamics of nonautonomous solitons can be governed by
the NLSE, in which the parameters of dispersion, nonlinearity,
gain (or loss), and external potentials are all dependent on
time. The related dimensionless nonautonomous NLSE can be
written as

i
∂ψ(x,t)

∂t
+ �(t)

∂2ψ(x,t)

∂x2
+ 2R(t)|ψ(x,t)|2ψ(x,t)

+V (x,t)ψ(x,t) + i
G(t)

2
ψ(x,t) = 0, (1)

where �(t) and R(t) are the dispersion and nonlinearity
management parameters, respectively. V (x,t) denotes the
external potential applied and G(t) is the dissipation [G(t) >

0] or gain [G(t) < 0]. The general form of Eq. (1) includes
many special cases discussed in the literature, and its analytical
solitonlike solution was recently termed the nonautonomous
soliton. Based on the Painlevé analysis [19], it is known
that the most generalized form follows, which can be solved
analytically. V (x,t) = M(t)x2 + f (t)x, where M(t)x2 means
a time-dependent harmonic trap and f (t)x stands for an
arbitrary time-dependent linear potential. �(t), R(t), and
G(t) are not allowed to be space-dependent according to the
Painlevé analysis. Zhao et al. have found a transformation
from some nonautonomous to standard NLS equations [20].
However, it still lacks the Lax pair of the generalized NLSE,
and this is significant when deriving the Lax pair, which can
be used to generate many different soliton solutions.
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To solve the NLSE, we assume that the solution of
Eq. (1) is

ψ(x,t)

= Q(x,t) exp

[
iC(t)x2+

∫ (
2�(t)C(t) − G(t)

2

)
dt

]
,

(2)

where C(t) is introduced to help one find some ways to simplify
the NLSE. Inserting Eq. (2) into Eq. (1), the following equation
could be derived:

i
∂Q

∂t
+ 2R(t) exp

[∫
[4�(t)C(t) − G(t)]dt

]
|Q|2Q

+ f (t)xQ + �(t)
∂2Q

∂x2
+ 4i�(t)C(t)x

∂Q

∂x

+ 4i�(t)C(t)Q +
[

− dC(t)

dt
x2 − 4�(t)C2(t)x2

+M(t)x2

]
Q = 0, (3)

where Q denotes Q(x,t). To simplify the above equation, we
choose the relation of nonlinearity, external potentials, and
the gain as R(t) = g�(t) exp {∫ [G(t) − 4�(t)C(t)]dt} (g is
a real number and g �= 0), where C(t) satisfies the condition
4�(t)C2(t) + dC(t)

dt
= M(t). Then Eq. (3) becomes

i
∂Q

∂t
+ �(t)

∂2Q

∂x2
+ 4i�(t)C(t)x

∂Q

∂x
+ f (t)xQ

+ 4i�(t)C(t)Q + 2g�(t)|Q|2Q = 0. (4)

Then, the corresponding Lax pair of the equation for Q(x,t)
can be assumed as follows:

∂x

(
�1

�2

)
= M

(
�1

�2

)
=

(
ζ (x,t) p(x,t)
q(x,t) −ζ (x,t)

)(
�1

�2

)
,

∂t

(
�1

�2

)
= N

(
�1

�2

)
=

(
A B

C −A

) (
�1

�2

)
, (5)

where ζ (x,t) is a spectrum parameter and

A =
2∑

j=0

aj (x,t)ζ (x,t)2−j ,

B =
2∑

j=0

bj (x,t)ζ (x,t)2−j ,

C =
2∑

j=0

cj (x,t)ζ (x,t)2−j .

If we assume the parameter ζ (x,t) is only time-dependent as
ζ (t), and ζt = λ(t)ζ (t) + k(t) (the footnote t or x means partial
derivation of t or x), then from the compatibility condition
Mt − Nx + [M,N ] = 0, the following relations can be given:

a0(x,t) = α0(t), b0(x,t) = 0, c0(x,t) = 0,

a1(x,t) = λ(t)x, b1(x,t) = p(x,t)α0(t),

c1(x,t) = q(x,t)α0(t),

b2(x,t) = α0(t)

2
px + p(x,t)a1(x,t),

c2(x,t) = −α0(t)

2
qx + q(x,t)a1(x,t),

a2(x,t) = −α0(t)

2
p(x,t)q(x,t) + k(t)x,

and

pt = ∂b2(x,t)

∂x
+ 2p(x,t)a2(x,t),

qt = ∂c2(x,t)

∂x
− 2q(x,t)a2(x,t),

which are usually named for the developing equation.
Finally, assuming p = √

gQ and q = −√
gQ̄ (hereafter

the overbar denotes the complex conjugate), we can derive the
evolution equation of Q as follows:

iQt − i
a0(t)

2
Qxx − iλ(t)xQx − i[λ(t) + 2k(t)x]Q

− iga0(t)|Q|2Q = 0. (6)

Comparing Eq. (6) with Eq. (4), one can know that α0(t) =
i2�(t), λ(t) = −4�(t)C(t), and k(t) = if (t)/2. From the
above relations, which are derived from the compatibility
condition, one can derive the following expressions:

A= 2i�(t)ζ (t)2 − 4�(t)C(t)xζ (t) + ig�(t)|Q|2 + if (t)x/2,

B = 2i
√

g�(t)ζ (t)Q + i
√

g�(t)Qx − 4
√

g�(t)C(t)xQ,

C = −2i
√

g�(t)ζ (t)Q̄ + i
√

g�(t)Q̄x + 4
√

g�(t)C(t)xQ̄,

ζt = −4�(t)C(t)ζ (t) + if (t)/2.

In this way, the Lax pair is finally given. Corresponding to the
Lax pair, the Darboux transformation can be presented as

p′(x,t) = p0(x,t) + 2[ζ (t) + ζ (t)∗]σ (x,t)∗

[1 + |σ (x,t)|2]
, (7)

where σ (x,t) = �2
�1

, and �1 and �2 are the solution of the Lax
pair with p = p0. It is obvious that Q = 0 is the solution of
Eq. (4); we can choose p0 = √

gQ = 0 as the seed solution
to derive soliton solutions. With the seed solution p0, one can
solve the Lax pair to get �1 and �2 as

�1(x,t) = exp

[
ζ (t)x +

∫
2i�(t)ζ (t)2dt

]
,

�2(x,t) = Ac exp

[
−ζ (t)x −

∫
2i�(t)ζ (t)2dt

]
,

where ζ (t) = b(t) + id(t), and

b(t) = α exp

[∫
−4�(t)C(t)dt

]
,

d(t) =
[∫

f (t)

2
e
∫

4�(t)C(t)dtdt + β

]
exp

[∫
−4�(t)C(t)dt

]
,

where Ac, α, and β are arbitrary real numbers. Then, σ (x,t)
can be given as

σ (x,t) = Ac exp

[
−2ζ (t)x −

∫
4i�(t)ζ (t)2dt

]
.

066602-2



DYNAMICS OF A NONAUTONOMOUS SOLITON IN A . . . PHYSICAL REVIEW E 83, 066602 (2011)

Performing the Darboux transformation Eq. (7), one can get
a new solution Q(x,t) of Eq. (4). From Eq. (2), the analytical
solution of Eq. (1) can be presented as

ψ(x,t) = 2[ζ (t) + ζ (t)∗]σ (x,t)∗√
g[1 + |σ (x,t)|2]

exp θ (x,t), (8)

where

θ (x,t) = iC(t)x2 +
∫

[−G(t)/2 + 2�(t)C(t)] dt.

As a result, we obtain one family of soliton solutions of Eq. (1)
in a generalized nonautonomous system. If the Darboux trans-
formation is performed from some nontrivial seed solution,
similar results can be attained [10]. When C(t) = 0, �(t) = 1,
and G(t) = 0, similar soliton solutions in an arbitrary time-
dependent linear potential can be studied [11]. Furthermore,
we can calculate the nonautonomous soliton’s peak, width,
and the motion of its wave center from the soliton solution
[Eq. (8)]. We define the maximum value of density as the
soliton’s wave center and its half-value as the soliton’s width;
thus, their evolution can be given as follows [with C(t) a real
function]:

The width of the nonautonomous soliton is

W (t) = 1

2b(t)
ln(3 + 2

√
2), (9)

the evolution of its peak is

|ψ |2max = 4b(t)2

g
exp

[∫
4�(t)C(t) − G(t)dt

]
, (10)

and the trajectory of its wave center is

xc(t) = ln Ac

2b(t)
+

∫
4�(t)b(t)d(t)dt

b(t)
. (11)

Based on these expressions, soliton management can be
realized. To demonstrates this, we will study the evolution
of solitons in nonlinear fibers.

III. OPTICAL SOLITONS IN NONLINEAR FIBER

The optical soliton has become an intensely studied subject
with the development of modern technology. In the ideal
situation, it is well known that propagation of optical solitons
in a single mode fiber is governed by the standard NLSE [21].
However, in a real fiber, in general, the core medium is not ho-
mogeneous [16]. There are always some nonuniformities due
to many factors, e.g., variations in the lattice parameters of the
fiber medium and the fiber geometry (diameter fluctuations).
These nonuniformities influence various effects, including loss
(or gain), dispersion, and phase modulation. Considering the
inhomogeneities in fiber [22], the dynamics of the optical pulse
propagation can be governed by the following inhomogeneous
NLSE:

i
∂�

∂Z
+ �(Z)

∂2�

∂T 2
+ 2R(Z)|�|2�

+M(Z)T 2� + i
G(Z)

2
� = 0, (12)

where Z is the normalized distance and T is the retarded
time. �(Z) is the group velocity dispersion parameter, R(Z)

is related to the Kerr nonlinearity, and M(Z) and G(Z) are
inhomogeneous parameters related to phase modulation and
loss (or gain). In this case, � [which denotes �(T ,Z)] is the
complex envelope of the electrical field in a comoving frame.
When M(Z) = β2 and G(Z) = 2β (β is a real constant), the
dynamics of solitons on a continuous wave background have
been discussed by Li [22].

From the generalized soliton solution [Eq. (8)] and
its compatible condition, we can know that R(Z) =
g�(Z) exp[

∫
G(Z) − 4�(Z)C(Z)dZ] and C(Z) should sat-

isfy the condition 4�(Z)C2(Z) + dC(Z)
dZ

= M(Z); thus, the
soliton solution of the inhomogeneous fiber can be presented as

�(T ,Z) = 4αAc exp θ ′(T ,Z)√
g[1 + A2

c exp ϕ(T ,Z)]
, (13)

where

θ ′(T ,Z)

= iC(Z)T 2 +
∫

[−G(Z)/2 − 2�(Z)C(Z)]dZ

− 2(α − iβ)T exp

[∫
−4�(Z)C(Z)dZ

]

+
∫

4i�(Z)(α− iβ)2 exp

[∫
−8�(Z)C(Z)dZ

]
dZ

and

ϕ(T ,Z) = −4αT exp

[∫
−4�(Z)C(Z)dZ

]

+
∫

16αβ�(Z) exp

[∫
−8�(Z)C(Z)dZ

]
dZ.

The evolution of a soliton under many different
nonautonomous ways could be shown from the generalized
solution. It is well known that dispersion management
has been done in nonlinear fiber (for related works, see
Refs. [23–26]). As usual, periodic dispersion management
is performed, namely �(Z) = l cos(ωZ), if the gain term
is chosen as G(Z) = h cos(ω2Z) and the chirp parameter
C(Z) = C0. We show the dynamics of solitons in Fig. 1
from the general solution. To get solitons to evolve as in
Fig. 1, nonlinearity management can be performed as R(Z) =
2gl cos(ωZ) exp [h sin(ω2Z)/ω2 − 4lC0 sin(ωZ)/ω], and the
inhomogeneous parameter could be designed as M(Z) =
4C2

0 l cos(ωZ). From the density plot Fig. 1(b), we can see that
it is a “breather” soliton. It is well known that the classical soli-
ton comes from the balance between dispersion and nonlinear
effects. Then, we can know that this “breathing” feature that
comes from this balance is destroyed periodically. Many dif-
ferent soliton shapes can be achieved through manipulation of
dispersion and gain terms. However, the generalized solution
cannot present explicit ways to manipulate solitons directly.
For soliton application, it is desirable to know how to design
related management parameters for certain properties of
solitons.

From the explicit expressions of width, peak, and wave
central position [see Eqs. (9), (10), and (11)], we can derive
the corresponding expressions of the temporal optical soliton.
Its width is

W (Z) = exp[
∫

4�(Z)C(Z)dZ]

2α
ln(3 + 2

√
2), (14)
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(a)

(b)

FIG. 1. (Color online) (a) The dynamics of a chirped bright
nonautonomous soliton under periodic dispersion management with
gain. (b) The density plot of (a) with the same parameters. It is obvious
that the soliton is “breathing” because its width and peak oscillate
with propagation distance. The parameters are α = 1,β = 0.2,C0 =
0.1,�(Z) = 2 cos(2Z),g = 0.25,Ac = 2, and G(Z) = 0.5 cos(4Z).

its peak is

|�|2max = 4α2

g
exp

[∫
−4�(Z)C(Z) − G(Z)dZ

]
, (15)

and its wave central position is

Tc(Z) = ln Ac

2α
exp

[∫
4�(Z)C(Z)dZ

]

+
∫

4β�(Z) exp[
∫ −8�(Z)C(Z)dZ]dZ

exp[
∫ −4�(Z)C(Z)dZ]

. (16)

From the above expressions, soliton management can be
realized theoretically. The evolution of a soliton’s shape
(trajectory) can be controlled through designing related ex-
perimental parameters based on investigating Eqs. (14) and
(15) [Eq. (16)]. It is known that the gain term only affects
a soliton’s peak through observing the equations. When we
need a certain property of solitons, the explicit functions can
give us some hints to design the modulations. This has a
significant potential in the application of solitons. For example,
to achieve a soliton with a stable peak, the related operation can
be presented as G(Z) = −4�(Z)C(Z) from Eq. (15), which

(a)

(b)

FIG. 2. (Color online) (a) The dynamics of a chirped bright
nonautonomous soliton under the balance condition between pe-
riodic dispersion management, nonlinearity, and gain. (b) The
density plot of (a) with the same parameters. It is shown that
the soliton’s peak is a constant 4α2/g. The parameters are
α = 1,β = 0.2,C0 = 0.1,�(Z) = 2 cos(2Z),g = 0.25,Ac = 2, and
G(Z) = −0.8 cos(2Z).

could be seen as the balance condition between dispersion,
nonlinearity, and the gain term. In this condition, the peak of
the soliton will be a constant 4α2/g. For comparison, we show
the evolution of solitons under the balance condition with the
same periodic dispersion management in Fig. 2). Moreover,
based on the integrable condition, related parameters can be
chosen precisely. To obtain the solitons in Fig. 2, the nonlinear
parameter could be R(Z) = 0.5 cos(2Z) exp[−0.8 sin(2Z)],
the gain term is G(Z) = −0.8 cos(2Z), and the parameter
M(Z) could be chosen as M(Z) = 0.08 cos(2Z) when the
dispersion term is �(Z) = 2 cos(2Z) and the chirp parameter
C(Z) = C0(0.1). Therefore, this provides an appropriate way
to improve the optical soliton transmission quality.

IV. DISCUSSION

We present a series of bright nonautonomous soliton
solutions of the generalized NLSE. The evolution of a soliton’s
width, peak, and the trajectory of its wave center has been
investigated analytically. As an example, we discussed the
evolution of a bright optical soliton in inhomogeneities fiber.
The shape of the bright soliton can be controlled by modulating
the chirp parameter, dispersion, and gain term. The result is that
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the gain only affects the amplitude of the soliton. Moreover,
the temporal “breathing” soliton under periodic dispersion
management is demonstrated. A certain way to manage
dispersion, nonlinearity, and the gain term is found to keep the
amplitude of the nonautonomous soliton unchanged, which
can be used to improve the quality of soliton transmission.
We believe that these results will stimulate experiments to
manipulate solitons in many fields, e.g., the Bose-Einstein

condensate and spatial or temporal optical solitons in nonlinear
optics.
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