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Effect of self-steepening on optical solitons in a continuous wave background
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We present an analytic method to generate solutions for the optical fiber soliton system that reveals self-
steepening effects on solitons coupled to a continuous wave. Exact soliton solutions are obtained by adopting
a universal Lax pair technique that solves simultaneously the nonlinear Schrödinger (NLS) equation and the
derivative NLS equation. We find that, in the presence of a self-steepening term, the bright type NLS equation
with abnormal group velocity dispersion is related to the dark type NLS equation with normal group velocity
dispersion and, accordingly, exact soliton solutions of the bright type NLS equation describe both bright and dark
solitons depending on the strength of the continuous wave. The self-steepening effect on solitons and possible
applications of a continuous wave for the control of solitons are explained.
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I. INTRODUCTION

The self-steepening of an optical fiber pulse arises when
the group velocity of a pulse depends on the intensity [1]. This
causes an asymmetry in pulse shape and eventually leads to
the formation of shock waves in the absence of dispersion.
However, when both dispersion and the Kerr nonlinear effect
are present, solitons can be found that are robust against
the shock formation. The effect of self-steepening on optical
solitons is an important issue in the optical fiber communica-
tion system when the soliton pulse width becomes ultrashort
(<100 fs) and subsequently the higher-order effects can not be
neglected [2]. The self-steepening of optical pulses is governed
by the nonlinear Schrödinger (NS) equation with the additional
self-steepening term,

i
∂U

∂ξ
+ 1

2

∂2U

∂τ 2
+ |U |2U + is

∂

∂τ
(|U |2U ) = 0, (1)

where the normalized parameter s measures the magnitude
of self-steepening. Particular solutions of this equation that
describe shock or soliton pulse have been obtained using the
ansatz method [3,4]. More elaborate solution techniques exist
since this equation is directly related to the derivative nonlinear
Schrödinger (DNLS) equation,

i∂X� = −∂2
T � + 2i∂T (|�|2�), (2)

through the coordinate change and the field redefinition,

X = ξ, T = −
√

2

(
τ − ξ

s

)
and

U ≡ 21/4

√
s

� exp

[
i
τ

s
− i

ξ

2s2

]
. (3)

The DNLS equation is a well-known integrable equation
that also governs the evolution of Alfvén waves in plasma
physics [5,6]. The integrability of the DNLS equation was
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shown by Kaup and Newell [7] and soliton solutions have been
found using various techniques such as the inverse scattering
method [7,8], the Hirota method [9], and the Darboux
transformation [10,11]. Though these techniques provide a
rather comprehensive set of bright and dark soliton solutions
of the DNLS equation, there has been a lack of understanding
in the exact solutions of the nonlinear Schrödinger equation
with a self-steepening term given in Eq. (1). Theoretically,
solutions of Eq. (1) can be obtained directly from solutions of
the DNLS equation in a one-to-one correspondence through
the transform in Eq. (3). However, the apparent singularity
of the transformation rule in Eq. (3) at the vanishing self-
steepening (s = 0) makes it difficult to understand the effect of
self-steepening on a conventional NLS soliton for which s = 0.
Moreover, the integrability of the DNLS equation proven by
Kaup and Newell is inherently different from that of the
NLS equation. While the linear equation associated with the
NLS equation is a second-order polynomial in the spectral
parameter λ, the DNLS case is a fourth-order polynomial.
Therefore, despite the fact that the NLS equation is essentially
a special case (s = 0) of the DNLS equation at the equation
level, the inverse scattering or the Darboux transformation of
these two equations are quite different [8,11] so as to forbid
the limit s → 0.

In this paper, we resolve this issue by introducing a
universal integrability condition that applies to the NLS
and the DNLS equations simultaneously. This admits the
limit s → 0 and allows us to have the same type Darboux
transformation in constructing soliton solutions of the NLS and
DNLS equations. Using this method, we construct a general
solution for bright or dark solitons of the DNLS equation with
nonvanishing asymptotic fields. We find that, in the presence
of a self-steepening term, the bright type NLS equation with
abnormal group velocity dispersion is related to the dark type
NLS equation with normal group velocity dispersion and
accordingly exact soliton solutions of the bright type NLS
equation describe both bright and dark solitons depending on
the strength of the continuous wave. In particular, we present
an exact expression for the optical fiber solitons that reveals
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the self-steepening effect on solitons coupled to a continuous
wave. Various reductions to known soliton solutions including
the s = 0 limit are demonstrated.

II. UNIVERSAL INTEGRABILITY

We first present the linear matrix equation that accounts
for the integrability of the NLS and the DNLS equations
simultaneously. Consider the following overdetermined linear
matrix equation:

LT (λ)� ≡ ∂T � + U (λ)� = 0,
(4)

LX(λ)� ≡ ∂X� + V (λ)� = 0,

where

U (λ) =
(

iλ/2 r

q −iλ/2

)
,

(5)

V (λ) =
(

irq + iλ2/2 i∂T r + λr

−i∂T q + λq −irq − iλ2/2

)
.

The consistency of the linear equation, ∂T ∂X� = ∂X∂T �,
requires that [LT (λ),LX(λ)] = 0. If this holds for any λ, the
consistency condition is equivalent to

i∂Xr = −∂2
T r + 2qr2 and i∂Xq = ∂2

T q − 2q2r. (6)

These coupled equations in r and q admit consistent reductions
through relating r and q. An immediate example is the NLS
reduction r = ±q∗, which reduces Eq. (6) to

i∂Xq = ∂2
T q ∓ 2|q|2q. (7)

This is the NLS equation with normal (upper sign) and
abnormal (lower sign) group velocity dispersions that govern
optical fiber solitons. A less obvious example is the DNLS
reduction, which is one of the main results of the present
paper. The DNLS reduction arises from the following implicit
relation between r and q:

q = �∗e2iμ and r = e−2iμ(|�|2� + i∂T �). (8)

Here, the phase variable μ is defined through the equation

∂T μ = |�|2 and
(9)

∂Xμ = −i(�∂T �∗ − �∗∂T �) + 3|�|4.
One can readily check that the integrability condition in Eq. (6)
reduces consistently to the DNLS equation in Eq. (2). Note
that the phase variable μ in Eq. (9) is also overdetermined.
However, the integrability of μ(∂T ∂Xμ = ∂X∂T μ) once again
becomes the DNLS equation showing that the DNLS reduction
is indeed consistent. Thus, we have established a unifying
picture for the integrability of the NLS and the DNLS
equations.

One advantage of the present formalism is that we can apply
the same Darboux transformation to find exact solutions both
for the NLS equation and the DNLS equation. In particular, this
allows us to find exact soliton solutions coupled to continuous
waves admitting the limit s → 0. To do so, we first choose
the continuous wave solution �cw as a seed solution of

the DNLS equation and apply the Darboux transformation
[12–14], where

�cw = aeiw[T +(2a2−w)X]. (10)

In terms of the variable U in Eq. (3), this corresponds to
Ucw = AeiBτ+iCξ where

A = 21/4a√
s

, B = 1

s
−

√
2w,

(11)

C = − 1

2s2
+

√
2w

s
− w2 + 2a2w.

In terms of q and r in Eq. (8), we have

rcw = a(a2 − w)ei�cw , qcw = ae−i�cw ,
(12)

�cw = −(2a2 − w)T − (6a4 − 6wa2 + w2)X.

Consider two-dimensional complex vectors �s and �t satisfying
the linear equation

∂T �s + Ucw(η)�s = 0, ∂X�s + Vcw(η)�s = 0 (13)

and

−∂T �t T + �t T Ucw(η∗) = 0, − ∂X�t T + �t T Vcw(η∗) = 0,

(14)

where the superscript T and ∗ denote transpose and complex
conjugation, respectively. Ucw(η) and Vcw(η) are U and V

matrices in Eq. (5) evaluated at r = rcw, q = qcw, and λ =
η. Then a direct application of the Darboux transformation
provides a new solution describing a soliton in terms of �s and
�t such that [12–14]

rs = a(a2 − w)ei�cw + i(η − η∗)s1t2

s1t1 + s2t2

qs = ae−i�cw − i(η − η∗)s2t1

s1t1 + s2t2
. (15)

Vectors �s and �t are obtained by integration to yield

s1 = ei�cw/2(
+u1e
�2 + 
−u2e

−�2 )

s2 = e−i�cw/2(u1e
�2 + u2e

−�2 )

t1 = e−i�cw/2(
∗
+v1e

�∗
2 + 
∗

−v2e
−�∗

2 )/(w − a2)

t2 = ei�cw/2(v1e
�∗

2 + v2e
−�∗

2 ), (16)

where u1,u2,v1,v2 are constants of integration and

�2 = 1

2

√
4ηa2 − (η + w)2[T + (2a2 − w + η)X],

(17)


± = − 1

2a
(−iη + 2ia2 − iw ±

√
4ηa2 − (η + w)2).

In order to simplify the notation, we introduce real parameters
β and γ such that

η + (w − 2a2) ≡ 2ia
√

w − a2 cosh(β + iγ ). (18)

Without loss of generality, we confine constants of integration
to

u1 = eδ1 , u2 = e−δ1 , v1 = eδ2 , v2 = e−δ2 , (19)
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where δ1,δ2 are complex numbers. A critical observation is that the DNLS reduction in Eq. (8) can be realized simply by
relating these constants of integration. A lengthy but straightforward calculation shows that the DNLS reduction can be made
successfully if

δ∗
1 − δ2 ≡ −κ = 1

2
ln

(
w + a2[exp(2β − 2iγ ) − 1]

w − 2a
√

a2 − w sinh(β − iγ )

)
. (20)

For a more compact expression, we treat two cases, w � a2 and w < a2, separately. For w � a2, we can rewrite rs and qs by

rs = −a(a2 − w)ei�cw
cosh β cosh(P + 2iγ ) + cos γ cosh(M + 2β)

cosh β cosh P + cos γ cosh M

qs = −ae−i�cw
cosh β cosh(P − 2iγ ) + cos γ cosh(M − 2β)

cosh β cosh P + cos γ cosh M
, (21)

where

P ≡ δ1 + δ∗
1 + �2 + �∗

2 + β + κ
(22)

M ≡ δ1 − δ∗
1 + �2 − �∗

2 + iγ − κ.

For w < a2, or equivalently 1 < sB + sA2, we can rewrite rs and qs by

rs = −a(a2 − w)ei�cw
sinh β sinh(P + 2iγ ) + i sin γ sinh(M + 2β)

sinh β sinh P + i sin γ sinh M

qs = −ae−i�cw
sinh β sinh(P − 2iγ ) + i sin γ sinh(M − 2β)

sinh β sinh P + i sin γ sinh M
, (23)

where P and M are given in Eq. (22).
We now find the solution of the nonlinear Schrödinger equation with a self-steepening term given in Eq. (1) using the

transformation in Eq. (3) and rewriting parameters a and w of the background continuous wave in terms of A and B as given in
Eq. (11) and β ≡ ln(σ/A). The resulting solution is

Usol(ξ,τ ) = −ei�W ∗, (24)

where

� = 2μ + (B + 2sA2)τ +
(

−1

2
B2 + A2 − 3sA2B − 3s2A4

)
ξ

W = (σ 4e− iN + A4eiN ) cos γ + (Aσ 3 + A3σ ) cosh(P − 2iγ )

(σ 3 +A2σ ) cosh P + 2Aσ 2 cos γ cos N
, 1 > sB + s2A2

= i(σ 4e− iN − A4eiN ) sin γ + (A3σ − Aσ 3) sinh(P − 2iγ )

( − σ 3 + A2σ ) sinh P + 2Aσ 2 sin γ sin N
, 1 < sB + s2A2 (25)

and we suppress an explicit expression of μ. For convenience, we introduce a new set of parameters,

κ = 1

2
ln

(
ε + s2A2 + s

√−ε(A2σ−1eiγ − σe−iγ )

ε + s2σ 2e−2iγ

)
≡ κR + iκI ,

(26)
ε ≡ 1 − sB − s2A2,

where κR and κI denote the real and imaginary part of κ . In terms of these new parameters, the arguments P and N (= −iM) in
Eq. (25) are given by

P ≡ �+ + iκI ,N ≡ �− + iκR, (27)

where

�+ ≡ −√
ε cos γ (σ − A2σ−1)

[
τ −

(
B + 2sA2 −

√
ε sin γ (σ 4 + A4)

σ (σ 2 − A2)

)
ξ

]
, ε � 0

≡ √−ε sin γ (σ + A2σ−1)

[
τ −

(
B + 2sA2 −

√−ε cos γ (σ 4 + A4)

σ (σ 2 + A2)

)
ξ

]
, ε < 0
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�− ≡ −√
ε sin γ (σ + A2σ−1)

[
τ −

(
B + 2sA2 +

√
ε cos 2γ (σ 2 − A2)

2σ sin γ

)
ξ

]
, ε � 0

≡ −√−ε cos γ (σ − A2σ−1)

[
τ −

(
B + 2sA2 −

√−ε cos 2γ (σ 2 + A2)

2σ cos γ

)
ξ

]
, ε < 0 (28)

∂μ

∂τ
= −s|W |2

∂μ

∂ξ
= i

2
s

(
W ∗ ∂W

∂τ
− W

∂W ∗

∂τ

)
+ s(B + 2sA2)|W |2 − 1

2
s2|W |4.

For simplicity, we have chosen that δ1 = −(κR + β)/2 +
i(κI − γ )/2, which trivially shifts the location of the soliton.
Finally, the validity of the solution in Eqs. (24)–(28) has been
confirmed explicitly by using the MAPLE computer algebra
system.

III. SOLITON SOLUTIONS

The exact solution given in Eqs. (24)–(28) describes an
optical soliton coupled to a continuous wave in the presence
of a self-steepening term. We note that the self-steepening
parameter s divides the solution into two distinct types: (i) the
bright soliton type (1 > sB + s2A2) and (ii) the dark soliton
type (1 < sB + s2A2), which is absent if s = 0. When 1 =
sB + s2A2, we have �+ = �− = 0 and our solution simply
reduces to the continuous wave solution. Now, we discuss
these two types separately.

A. Bright soliton type

The continuous wave coupled to a bright soliton beats with
the soliton despite the nonlinear nature of the coupling. The
continuous wave controls the velocity of the soliton which can
be read easily from the argument �+ in Eq. (28) and can even
stop the soliton [15]. In the absence of a continuous wave so
that A = 0, B = 0, The solution simplifies to

Usol(τ,ξ ) = −σ exp(κ̃R + i�)sech(iκ̃I + �), (29)

where

� = σ (τ − vξ )
(30)

� = vτ − 1

2
(v2 − σ 2)ξ − 4sσ exp(2κ̃R)

| sin 2κ̃I | tan−1 [tan κ̃I tanh �]

and parameters κ̃R and κ̃I are the real and imaginary part of κ̃ ,

κ̃ ≡ κ̃R + iκ̃I = − 1
2 ln[1 − s(v − iσ )]. (31)

Note that in the absence of the self-steepening term (s = 0),
κ vanishes and the soliton solution reduces to the well-known
one-soliton solution of the NLS equation.

In order to see the self-steepening effect on bright solitons
more explicitly, we expand Usol in Eq. (29) in terms of s. Up

to the first order, it is given by

Usol = −σ
ei�0

cosh �

[
1 + 1

2
s(v + 9iσ tanh �)

]

�0 = vτ − 1

2
(v2 − σ 2)ξ, � = σ (τ − vξ ). (32)

This clearly shows that the soliton is robust against self-
steepening, that is, it avoids the shock formation by main-
taining the secant hyperbolic type pulse profile except for
the symmetric distortion of amplitude and the antisymmetric
phase shift across the pulse. It is remarkable that the profile
distortion depends on soliton velocity v explicitly as depicted
in Fig. 2. The background continuous wave in general makes
soliton pulse asymmetric as can be seen in Fig. 1 though the
shock formation is still absent in this case.

B. Dark soliton type

If the continuous wave is dominant so that 1 < sB + s2A2,
the soliton solution coupled to a continuous wave behaves
like a dark type soliton beating with a continuous wave. This
is rather surprising since the NLS equation we solved has
an abnormal group velocity dispersion whereas dark solitons
are known to arise for the NLS equation having a normal
group velocity dispersion. Explicitly, the dark soliton type
NLS equation has the form

i
∂U

∂ξ
− 1

2

∂2U

∂τ 2
+ |U |2U + is

∂

∂τ
(|U |2U ) = 0, (33)

FIG. 1. (a) Bright soliton type and (b) dark soliton type solutions.
Parameters are σ = 2.5, s = 0.7, γ = 0.1, A = 1, and B = 0.5 for
the bright soliton type and σ = 2, s = 0.7, γ = 0.1, A = 1.5, and
B = 0.5 for the dark soliton type.
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FIG. 2. (Color online) Effect of the self-steepening term on a
one-soliton solution. Curves are with (i) s = 2, v = 2, (ii) s = 0,
v = 0, (iii) s = 2, v = 0, and (iv) s = 2, v = −2, respectively (peak
values in decreasing order).

where the sign of the second time derivative term is changed in
comparison with the abnormal case in Eq. (1). A remarkable
fact is that the dark type NLS equation can be also mapped to
the DNLS equation via the following change of coordinates
and field redefinition:

X = −ξ, T =
√

2

(
τ + ξ

s

)
and

U ≡ 21/4

√
s

� exp

[
i
τ

s
+ i

ξ

2s2

]
. (34)

This in turn shows that the bright type and the dark type NLS
equations are directly related if the self-steepening term is
present. If we denote ξa,τa,Ua and ξn,τn,Un for the coordinates
and fields for the abnormal and normal cases, respectively, the
correspondence between the bright type and the dark type NLS
equations are given by

ξn = −ξa, τn = −τa + 2ξa

s
,

(35)

Un = Ua exp

(
−2iτa

s
+ iξa

s2

)
.

This remarkable property implies that our solution in
Eqs. (24)–(28) could describe dark solitons as well. In fact,
the 1 < sB + s2A2 case, which we call as a dark type,
indeed includes dark solitons. Note that, in the limit σ → A,
the solution in Eqs. (24)–(28) for the 1 < sB + s2A2 case

reduces to

�− = 0, κR = 0,

�+ = 2A
√−ε sin γ [τ − (B + 2sA2 − A

√−ε cos γ )ξ ]

W = A
sinh(�+ + iκI − 2iγ )

sinh(�+ + iκI )
, (36)

which is a dark type soliton without a beating behavior, but
not completely dark in general and thus occasionally referred
to as a gray soliton. It becomes a completely dark soliton if
we further restrict parameters by taking γ = π/4,B = 1/s −
sA2/2 so that κI = π/2,ε = −2 and

|W |2 = A2 tanh2(�+),
(37)

�+ = 2A

[
τ −

(
1

s
+ 3sA2

2
− A

)
ξ

]
,

which is the well-known dark soliton.

IV. CONCLUSION

In this paper, we presented a universal integrability scheme
where the NLS and the DNLS equations have the same Lax
pair and the distinction between them is given only through
the reduction procedure. The NLS equation arises as a twofold
Z2 reduction whereas the reduction for the DNLS equation
is rather implicit. Despite the implicit nature of the DNLS
reduction in Eq. (8), it is likely that there exists a hierarchy of
reductions involving higher-order derivatives where the NLS
and the DNLS are the first two cases of the hierarchy. Extension
of our work to the multicomponent vector NLS and DNLS
equations is also possible.

The exact soliton solution we found in this paper could
have important physical applications. Ultrashort optical pulses
necessarily require the self-steepening term in the governing
equation. Our solution describing the motion of a soliton
coupled to continuous wave can also describe the scattering
between narrow and broad solitons where the broad soliton is
approximated as a continuous wave. This raises the possibility
of controlling solitons parametrically using a continuous wave
or other solitons. The coexistence of bright and dark type
solitons in the presence of a self-steepening term also raises
the possibility of parametric conversion between bright and
dark type solitons by controlling continuous waves.
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