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The propagation of a nonlinear low-frequency mode in a strongly coupled dusty plasma is investigated using a
generalized hydrodynamical model. For the well-known longitudinal dust acoustic mode a standard perturbative
approach leads to a Korteweg-de Vries (KdV) soliton. The strong viscoelastic effect, however, introduced a
nonlinear forcing and a linear damping in the KdV equation. This novel equation is solved analytically to show
a competition between nonlinear forcing and dissipative damping. The physical consequence of such a solution
is also sketched.
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I. INTRODUCTION

The physics of strongly coupled plasmas (SCPs), in which
the average potential energy per particle dominates over the
average kinetic energy, is of great interest because of its
possible applications to a large number of physical systems,
for example, complex (dusty) plasmas [1], charged particles in
cryogenic traps, electrons trapped on the surface of liquid He,
different astrophysical systems such as the ion liquid in white
dwarf interiors [2], neutron star crusts, supernova cores, and
giant planetary interiors, condensed matter systems such as
molten salts and liquid metals, as well as degenerate electron
or hole liquids in two-dimensional or layered semiconductor
nanostructures [3,4]. The formation of SCPs in normal two-
species was predicted by Ikezi [5] for the first time due to the
presence of additional finite-size particles. About a decade
later it was found experimentally in different laboratories
[6–8]. In recent years complex plasmas, a mixture of ions,
electrons, and highly charged micro/nanoparticles, are being
considered as a major interdisciplinary research field for
exploring fundamental physics of strongly coupled Coulomb
and Yukawa systems [9–11]. Presently complex plasma is
also being considered as the plasma state of soft condensed
matter [12].

One of the fundamental characteristics of a many-particle
interacting system is the coupling parameter � defined as the
ratio of the potential energy of interaction between neighboring
particles to their kinetic energy. In complex plasmas the
negatively charged micro-particles interact with each other
via the isotropic Debye-Hückel (Yukawa) repulsive potential,
with the screening determined by the plasma electrons and
ions. In this case the coupling parameter is defined as
� = [q2

d/(kBaTd )] exp(−κ), where κ = a/λD is the screening
parameter. Here qd (= Ze) is the charge on each dust particle,
Z is the number of elementary electronic charge e, a (� n

−1/3
d )

is the interdust particle distance, nd and Td are the dust

density and temperature, λD is the plasma Debye length, and
kB is the Boltzmann constant. Experimental findings [13]
suggest the existence of liquid- or solid-like behavior of
the dusty plasma medium in the strong correlation regime
characterized by � � 1. In the regime 1 � � < �c (where
�c is the critical value of coupling parameter beyond which
the system becomes crystalline), the dusty plasma behaves
like a mixture of a liquid and solid; i.e., both viscosity
and elasticity play equally important roles. These properties
together are known as viscoelasticity, and the dust grains are
said to be in a quasicrystalline state [14,15]. In the regime
� > �c, viscosity disappears, and only elasticity dominates
over the system. The dust grains exhibit crystalline structure
and support various dust lattice modes [16]. Therefore, the
low-frequency collective modes involving the motion of dust
grains in SCPs should be greatly influenced by the strong
correlation effects in the dust component [17].

A number of authors have investigated the effects of
dust-dust correlation on the low-frequency collective behavior
of linear dust acoustic waves (DAWs) [18] in strongly coupled
quasicrystalline dusty plasma (1 � � < �c) by using various
theoretical models such as the quasilocalized charge approxi-
mation [19], static local field correction [20], and generalized
hydrodynamic (GH) model [14,15,21]. In the GH model [22],
there are two regimes: the “hydrodynamic regime” (ωτm � 1)
and “kinetic regime” (ωτm � 1), where τm is the memory
(viscoelastic) relaxation time and ω−1 is the typical time
scale of the wave under consideration. In the “hydrodynamic
limit,” the viscoelastic relaxation is instantaneous, and one
has the usual hydrodynamic equation. In this case dust grains
support only the longitudinal dust acoustic wave (LDAW),
which suffers only viscous dissipation [14,15]. On the other
hand, in the “kinetic regime” the viscoelastic relaxation is not
instantaneous, and the dusty plasma supports both the LDAW
as well as the transverse shear wave [14,15,23,24].
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In weakly coupled dusty plasma (� � 1), the nonlinear
coherent structures (such as shock and soliton) of the DAW
are well investigated both experimentally [25–27] and theo-
retically [28–30]. But the nonlinear propagation characteris-
tics of theLDAW in strongly coupled quasicrystalline dusty
plasma (1 � � < �c) are not well investigated. Recently, the
nonlinear wave propagation characteristics of LDAWs have
been investigated theoretically [31] in strongly coupled dusty
plasma using the GH equation in the “hydrodynamic regime,”
and it has been shown that the nonlinear wave is governed by
“Korteweg-de Vries (KdV)-Burger’s” equation due to viscous
damping. But the nonlinear wave propagation characteristics
have not been well investigated in the “kinetic regime” of
strongly coupled dusty plasma. Therefore, in this paper we
investigate the nonlinear propagation characteristics of a small
but finite-amplitude LDAW in the “kinetic regime” of strongly
coupled dusty plasma. The effects of dust-neutral collision
and finite strain relaxation are also taken into account. It is
shown in addition to a weak dissipation due to dust-neutral
collision [32], that the nonzero value of 1/τmω also produces
a weak dissipation. The memory-dependent strong correlation
produces an extra nonlocal nonlinear forcing term in the
nonlinear evolution of LDAWs. As a consequence of these, the
dynamics of the nonlinear LDAWs are governed by a modified
form of the forced-damped KdV equation.

The paper is organized in the following manner:
Section II contains the theoretical model and basic equations.
The modified form of the damped KdV equation describing
the nonlinear wave propagation is derived in Sec. III. The
analytical solution of the modified form of the damped KdV
equation is investigated in Sec. IV. Section V deals with
the physical interpretations of the results. Finally, a brief
discussion of our results and concluding remarks are given
in Sec. VI.

II. MODEL AND BASIC EQUATIONS

An unmagnetized strongly coupled dusty plasma whose
constituents are electrons, ions, and negatively fixed charged,
massive dust grains are considered. Thus at equilibrium
the quasineutrality condition is ne0 + Znd0 = ni0, where
ne0 (nd0,ni0) is the electron (dust, ion) equilibrium number
density and Z is the number of the charge residing on the
dust grains. The dust grains are strongly correlated to each
other (strongly coupled) due to their larger electric charge
and lower temperature, whereas both electrons and ions are
weakly coupled because of their smaller electric charges and
higher temperatures. So the dynamics of nonlinear LDAWs
in strongly coupled dusty plasma can be modeled by the GH
equation. Since we are looking at the low-frequency mode
(ω � kvth e(i)), it can be assumed that electrons and ions can
form a Boltzmann distribution. Thus the number densities of
electrons and ions can be expressed as

ne = ne0 exp

(
eϕ

Te

)
; ni = ni0 exp

(
−eϕ

Ti

)
, (1)

where ϕ is the electrostatic potential and Te(i) is the electron
(ion) temperature.

For the description of the dust fluid, we have considered the
GH, model which is given by the following equation [14,22]:(

1 + τm

d

dt

) (
mdnd

dvd

dt
− qdnd

∂ϕ

∂x
+ ∂pd

∂x
+ mdndνdnvd

)

=
(

4

3
η + ζ

)
∂2vd

∂x2 , (2)

where d/dt = ∂/∂t + vd∂/∂x, and we have taken only one
spatial dimension. Generalization to three dimensions is trivial
and straightforward. In Eq. (2) the parameters η and ζ are
shear and bulk viscosity coefficients, and pd , vd , and νdn

are the dust pressure, dust fluid velocity, and dust-neutral
collision frequency, respectively. It is always convenient to
write equations in the dimensionless form; for this, here
we introduce the following dimensionless variables: x ′ =
x/λd , t ′ = ωpdt , n = nd/nd0, φ = eϕ/Te, and v = vd/vtd .

Here λd (=
√

Td/4πnd0q
2
d ) and vtd (= √

Td/md ) are the dust
Debye length and dust thermal velocity, respectively. In
dimensionless form Eq. (1) can be rewritten as[

1

τmωpd

+
(

∂

∂t ′
+ v

∂

∂x ′

)][
n

(
∂

∂t ′
+ v

∂

∂x ′

)
v − nσd

∂φ

∂x ′

+μd

∂n

∂x ′ +
(

νdn

ωpd

)
nv

]
= η̄

∂2v

∂x ′2 , (3)

where σd = ZTe/Td , Z is the fixed number of the charge on
the dust particle, and μd is the compressibility factor for the
dust fluid defined as

μd = 1

Td

∂pd

∂nd

= 1 + u(�)

3
+ �

9

∂u(�)

∂�
,

where the function u(�) is a measure of the excess internal
energy of the system, which is related to the correla-
tion energy and can be written as u(�) = a(κ)� + b(κ)�

1
3

+ c(κ) + d(κ)�− 1
3 [19]. Note that, in the above GH equation,

the normalized viscoelastic relaxation time τm is given by [33]

τmωpd = 3η∗�
[

1 − γdμd + 4

15
u (�)

]−1

,

where γd is the adiabatic index, η∗ = ( 4
3η + ζ )/mdnd0ωpda

2
d

is the viscosity coefficient, ad = ae−a/2λD is the effective
interaction distance of dust grains, and η̄ is given by

η̄ = η∗

τmωpd

(
ad

λd

)2

=
[

1 − γdμd + 4

15
u(�)

]
. (4)

The above GH equation (3) is coupled with the continuity
equation

∂n

∂t ′
+ ∂

∂x ′ (nv) = 0 (5)

and Poisson’s equation

σd (δ − 1)
∂2φ

∂x ′2 = exp(φ) − δ exp

(
− φ

σi

)
+ (δ − 1)n, (6)

where σi = Ti/Te and δ = ni0/ne0. Therefore Eqs. (3), (5), and
(6) will be studied in the next section for nonlinear propagation
of longitudinal mode in a strongly coupled plasma.
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III. MODIFIED FORM OF THE DAMPED KORTEWEG-DE
VRIES EQUATION

To study the nonlinear propagation characteristics of a
LDAW in the “kinetic regime” [1/(τmωpd ) < 1] of strongly
coupled dusty plasma, the reductive perturbation technique
has been employed, and the following stretched coordinate
has been introduced:

ξ = ε
1
2 (x ′ − Mt ′); τ = ε

3
2 t ′, (7)

where M is the phase velocity of the mode normalized by
the dust thermal speed and ε measures the order of smallness
of the perturbations. The dynamical variables n,v, and φ are
expanded in power series of ε as

f = f (0) +
∞∑
i=1

εif (i), (8)

where f = n,v,φ, f (0) = 1 for n and f (0) = 0 for f = v,φ.
Now, to introduce the effects of finite strain relaxation

(under the assumption that 1/τmωpd is small but finite) and
dust-neutral collision (under the assumption that νdn/ωpd

is small but finite), and to make the nonlinear perturbation
consistent with that of (7) and (8), the following scalings
are assumed: 1/τmωpd ∼ ε

3
2 and νdn/ωpd ∼ νcε

3
2 where

νc ≈ O (1).
Finally substitution of (7) and (8) into the dynamical

equations (2), (5), and (6) yields the following relations in
lowest powers of ε:

v(1) = Mn(1), (M2 − η̄)v(1) = M(μdn
(1) − σdφ

(1)),

n(1) = − δ + σi

σi(δ − 1)
φ(1). (9)

These relations can reproduce the linear dispersion relation
when M is replaced by ω/k. From these relations we obtain

M =
√

η̄ + μd + σdσi(δ − 1)

δ + σi

.

Note that for a simple case η̄ = 0 = μd , one recovers the
well-known expression for the dispersion relation of usual
DAW in a dusty plasma [18]:

ω2 = k2C2
d (Znd0)

ne0 + Te

Ti
ni0

, (10)

where Cd = √
ZTe/md. Next, dynamical equations in the next

higher powers of ε are obtained as

∂n(1)

∂τ
+ 2Mn(1) ∂n(1)

∂ξ
= M

∂n(2)

∂ξ
− ∂v(2)

∂ξ
, (11)

∂

∂ξ

[
2M

∂v(1)

∂τ
+ σd

∂φ(1)

∂τ
− μd

∂n(1)

∂τ

+ (Mv(1) + σdφ
(1) − μdn

(1)) + Mνcv
(1)

]

= ∂

∂ξ

[
(M2 − η̄)

∂v(2)

∂ξ
+ Mσd

∂φ(2)

∂ξ
− Mμd

∂n(2)

∂ξ

−η̄Mn(1) ∂n(1)

∂ξ
+ Mσdn

(1) ∂φ(1)

∂ξ

]
+ η̄

M

(
∂v(1)

∂ξ

)2

, (12)

σd (δ − 1)
∂2φ(1)

∂ξ 2
=

(
δ + σi

σi

)
φ(2)

+
(

σ 2
i − δ

2σ 2
i

)
φ(1)2 + (δ − 1)n(2). (13)

Finally, elimination of n(2), φ(2), and v(2) from Eqs. (11)–
(13) and using Eq. (9), the following modified form of the
KdV equation in the “kinetic regime (ωτm � 1)” of strongly
coupled dusty plasma is obtained:

∂

∂ξ

[
∂n(1)

∂τ
+ α n(1) ∂n(1)

∂ξ
+ β

∂3n(1)

∂ξ 3
+ ν n(1)

]
= γ

(
∂n(1)

∂ξ

)2

,

(14)

where coefficients α, β, ν, and γ can be written in the following
simplified form:

α = 1

2M

{
η̄ +2μd +

[
σiσd (δ − 1)

σi + δ

][
3 + (δ − 1)

(
σ 2

i − δ
)

(δ + σi)2

]}
;

β = 1

2M

[
σiσd (δ − 1)

σi + δ

]2

,

ν = νc

2
+ 1

2

η̄

M2
; γ = η̄

2M
.

Equation (14) is the modified form of the KdV equation.
Modification was due to the viscoelastic effect, as can be seen
from the expression sν and γ . It should be mentioned that,
even if the usual dust-neutral collision is absent, i.e., νc = 0
in the expression of ν above, then the effective collision is
introduced due to the viscoelastic effect through η̄. Therefore
the viscoelastic effect introduced new physics in the KdV
equation, namely, nonlinear forcing and collisional diffusion.
Not only does viscoelasticity also fortify the usual nonlinear
KdV term as can be seen from the expression α above, but
the dispersion term β is also unaffected due to the viscoelastic
effect.

Equation (14) can be further simplified by integrating with
respect to ξ in the interval (−∞,ξ ] and using the boundary
conditions n(1),∂n(1)/∂ξ → 0 as ξ → −∞. Applying these we
have the following equation:

∂n(1)

∂τ
+ αn(1) ∂ n(1)

∂ξ
+ β

∂3n(1)

∂ξ 3
+ ν n(1) = γ

∫ ξ

−∞

(
∂n(1)

∂ξ ′

)2

dξ ′.

(15)

Equation (15) shows that in the absence of dust correlation,
i.e., for η̄ = 0 and collision, i.e., for νc = 0, we get the usual
KdV equation. Thus, in the “kinetic regime” viscoelasticity
introduces dissipation and an extra nonlinear force in the
strongly correlated dust fluid.

IV. ANALYSIS FOR SOLUTION

An exact analytical solution of Eq. (15) does not seem pos-
sible. However, we can find an approximate time-dependent
solution of (15). In order to study the effects of the collision
and viscoelastic effect that is responsible for changing the
character of the KdV equation, we first find that in the
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FIG. 1. Propagating solitary wave solution of the modified KdV
equation at different times at initial amplitude is below a critical
value (here ∼3.4). This shows that the amplitude of the solitary wave
decreases with time in the presence of collisions.

absence of collision and viscosity (νc = 0,η̄ = 0), Eq. (15)
is a well-known KdV equation for which the solitary wave
solution is given by

n(1)(ξ,τ ) = Usech 2

[√
αU

12β

(
ξ − αU

3
τ

)]
, (16)

where U is the normalized speed in which the solitary wave
moves. The KdV equation (15) with νc = 0,η̄ = 0 has an
infinite set of conservation laws. To determine the effects of the
collision and viscoelastic effect on the solution given by (15),
we consider a “momentum” conservation law. In the presence
of collision and dust correlation this results in

dI

dτ
= −2νI + γ

∫ ∞

−∞
n(1)

[∫ ξ

−∞

(
∂n(1)

∂ξ́

)2

dξ́

]
dξ, (17)

where I = 1
2

∫ ∞
−∞ n(1)2

dξ . For small γ and ν perturbation
theory [34,35] provides the following approximate method
of finding an analytical solution of Eq. (15). Following the
above mentioned references, we allow the free parameter U in
Eq. (16) to be time dependent, i.e.,

n(1)(ξ,τ ) = U (τ ) sech 2

{√
α U (τ )

12β

[
ξ − α U (τ )

3
τ

]}
. (18)

Substituting Eq. (18) in Eq. (17) and solving, we get

U (τ )

U (0)
=

[
2ντ0

1 + (2ντ0 − 1) e2ντ

]2

3
, (19)

where U (0) is the value of U at τ = 0 and

τ0 = 5

4γ

√
12β

αU (0)3
.
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FIG. 2. Propagating solitary wave solution of the modified KdV
equation at different times when initial amplitude exceeds a critical
value as mentioned above. The figure shows that the amplitude of the
solitary wave increases with time due to the nonlinear effect.

This solution shows that if 2ντ0 > 1, i.e., for sufficiently strong
damping (νc large) and a small dust correlation effect (η̄ → 0):

U (τ ) ∼ U (0) exp

(
−4

3
νcτ

)
. (20)

On the other hand, for an increasingly strong correlation
effect, i.e., for increasing η̄ (the case of a strongly cou-
pled plasma), if the condition 2ντ0 < 1 is satisfied, then
the solution (18) is strongly affected in both amplitude
and phase. Near a critical time τc ∼ ln[1/(1 − 2ντ0)]/2ν

the amplitude of solitary wave U (τ ) in Eq. (19) becomes
very large; consequently sech 2[

√
U (τ )] is also very small,

and therefore the solitary wave solution [Eq. (18)] remains
finite. Due to the strong viscoelastic effect the amplitude of
the solution increases, whereas due to the same effect the
dissipative effect is also enhanced as a result; finally the
character of the solution remains as shown in Figs. 1 and 2.

V. SUMMARY AND DISCUSSION

In this paper the propagation characteristics of small
but finite-amplitude longitudinal dust acoustic waves are
investigated in the “kinetic regime” of strongly coupled dusty
plasma. In this work we have included the dust-neutral
collision and finite strain relaxation effect. The evidence of
the wave dispersion in the “kinetic regime” has been reported
by a molecular dynamics (MD) simulation [23], in which the
parameters used are as follows: 1/τmωpd ≈ 0.22,0.13,0.12
(with notations τm = τR and ωpd = ωp) and � � 1. Thus
the MD simulation parameters justify our assumption and
the scaling of the different parameter used in this work. The
modified form of the forced-damped KdV equation has been
solved with the perturbation technique. The outcomes of this
solution are as follows.

(1) The analytical solutions [Eqs. (18) and (19)] show that
for a solitary wave we must have αU (τ )/12β > 0. This implies
that α > 0 U (τ ) > 0 and therefore n(1)(ξ,τ ) > 0. The variation
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of α, the coefficient of the nonlinear term with respect to
the coupling parameter �, shows that α(> 0) decreases with
the increase of �. Thus LDASWs are compressive in nature
with the dust density enhancement. (2) The analytical solution
[Eq. (18)] of the modified form of KdV equation shows that
the nonlinear LDAW amplitude decays exponentially slowly
with time [Eq. (19)] due to the nonzero values of (ωpdτm)−1

and dust-neutral collision for 2γ τ0 > 1. (3) The large memory
τm � ω−1

pd and finite value of η̄ lead to (a) a rigidity effect
even in the linear approximation and (b) in lowest order a
nonlinear approximation to a nonlinear forcing term at the
expense of correlation energy due to a change in the order of
the arrangement of the dust particles with increased correlation
effect.

To interpret the solution more physically, one should
note that to include the strong coupling effect consequent
to increased correlation among the dust particles, the hy-
drodynamic equation of the dust has been generalized
[Eq. (3)] by replacing the viscosity factor η̄ by the operator
η̄(1 + ωpdτm

d
dt ′ )

−1, which takes into account the memory-
dependent nonlocal viscoelastic strain effect in addition to
the irreversible fluidity effect. Here τm denotes the “dust
viscoelastic relaxation time” [14]. If τm = 0, i.e., relaxation
is instantaneous, we have the usual hydrodynamic equation.
In the case of the “hydrodynamic limit,” ωpdτm � 1 and
the operator can be expanded in powers of ωpdτm

d
dt ′ ; in this

case also the fluid behavior persists retaining the approximate
influence of memory and nonlocality. However, in this paper
we have considered the opposite case, i.e., the “kinetic regime”
where ωpdτm � 1, i.e., the strain relaxation time τm � the
dust fluid dynamic time (here dust acoustic time), which gives
rise to very different physical behavior. The viscoelastic effects
of the stress involve certain complications due to concomitant
variation of the structure of the fluid. This consists of a change
in the order of the arrangement of the dust particles. The change
in the degree of order must in general lag with respect to
the state of strain [22]. There arise two essentially different
manifestations of this effect. We now discuss these.

(1) Under the condition ωpdτm � 1 and that the viscosity
coefficient is large enough so that η̄ is a finite quantity, which
makes the transition from the fluid to the solid state, the general
hydrodynamic equation (3):[

1

ωpdτm

+
(

∂

∂t ′
+ v

∂

∂x ′

)]
F = η̄

∂2v

∂x ′2 , (21)

where

F = n

[(
∂

∂t ′
+ v

∂

∂x ′

)
v + σd

∂φ

∂x ′ + μd

∂n

∂x ′ + νdn

ωpd

v

]
,

reduces to [neglecting O(ωpdτm)−1](
∂

∂t ′
+ v

∂

∂x ′

)
F = η̄

∂2v

∂x ′2 . (22)

Using the linear version of the above equation and the equation
of linear continuity and the quasicharge neutrality condition,
we find

∂2v

∂t ′2
−

[
σiσd (δ − 1)

σi + δ
+ η̄ + μd

]
∂2v

∂x ′2 +
(

νdn

ωpd

)
∂v

∂t ′
= 0.

(23)

Thus the viscoelastic stress effect represented by η̄ ∂2v
∂x ′2 plays

in this case the role of a restoring force rather than a
dissipative one and yields the expression for phase velocity
u, which can be obtained from the expression of M given
above. It helps to sustain the wave motion negating the
possibility of the appearance of a viscosity-dependent dis-
sipative term. This and a similar outcome were shown to be
true for transverse waves [14], η̄∇2v displaying the rigidity
effect.

(2) Next we attend to the nonlinear effect. In addition to
the rigidity effect displayed in the linear approximation. the
finite time of relaxation of the activation energy stored in
the process of rearrangement of the dust grains associated
with correlation effect in the strained state results in the
first-order nonlinear approximation to the appearance of the
term∫ ξ

−∞

(
∂v(1)

∂ξ́

)2

dξ́ = ∂

∂ξ

∫ ξ

−∞
(ξ − ξ́ )

(
∂v(1)

∂ξ́

)2

dξ́ , (24)

which is proportional to the nonlocal forcing term in Eq. (15).
Here we demonstrate the genesis of the nonlocal contri-

bution. We express the GH equation (21) in the following
form:

F = 1√
ε

[
(−M + εv(1))

∂

∂ξ

]−1 [
η̄ε2 ∂2

∂ξ 2
(εv(1) + ε2v(2)

+ · · ·) − ε3/2

(
1 + ∂

∂τ

)
F

]
. (25)

Now, retaining only terms O(ε5/2), using the inversion of the
operator (25), we obtain

1√
ε

[
(−M + εv(1))

∂

∂ξ

]−1 [
η̄ε2 ∂2

∂ξ 2
(εv(1) + ε2v(2) + · · ·)

]

= −ε3/2 η̄

M

∫ ξ

−∞

(
∂2v(1)

∂ξ́ 2
+ ε

M
v(1) ∂

2v(1)

∂ξ́ 2
+ ε

M

∂2v(2)

∂ξ́ 2

)
dξ́ .

(26)

As indicated above the first term corresponds in the linear
approximation to the restoring force (rigidity effect), and the
second one

ε5/2 η̄

M2

∫ ξ

−∞

(
∂v(1)

∂ξ́

)2

dξ́

yields the nonlocal term appearing on the right-hand side
(RHS) of (15) (using v(1) = un(1)).

Finally, it is to be noted that the RHS of Eq. (15)
varies quadratically with n(1) while the damping is linear.
Consequently there should exist a critical value of the initial
intensity below which damping dominates, while above it
there occurs amplification at the expense of the correlation
energy. The results in the previous section demonstrate
this.

We must mention that we have not encounter experimental
observations of LDASWs yet. It would be very interesting to
look at this mode in a laboratory. However, we hope that in
the future a such type of a nonlinear longitudinal dust acoustic
wave could be observed in a strongly coupled dusty plasma
experiment.
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