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Nonstationary stochastic charge fluctuations of a dust particle in plasmas
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Stochastic charge fluctuations of a dust particle that are due to discreteness of electrons and ions in plasmas
can be described by a one-step process master equation [T. Matsoukas and M. Russell, J. Appl. Phys. 77, 4285
(1995)] with no exact solution. In the present work, using the system size expansion method of Van Kampen
along with the linear noise approximation, a Fokker-Planck equation with an exact Gaussian solution is developed
by expanding the master equation. The Gaussian solution has time-dependent mean and variance governed by
two ordinary differential equations modeling the nonstationary process of dust particle charging. The model
is tested via the comparison of its results to the results obtained by solving the master equation numerically.
The electron and ion currents are calculated through the orbital motion limited theory. At various times of the
nonstationary process of charging, the model results are in a very good agreement with the master equation
results. The deviation is more significant when the standard deviation of the charge is comparable to the mean
charge in magnitude.
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I. INTRODUCTION

One reason for stochastic fluctuations of the electrical
charge on a dust particle in plasmas is that ions and electrons
(plasma particles) are absorbed onto the surface of the dust
particle at random times. This stochastic behavior is an internal
noise [1] type which occurs in systems with discrete nature.
Another reason for fluctuations of charge on dust particles
could be the randomness in the plasma variables, which are an
external noise type. This paper is concerned with the former
reason. It is emphasized that, in particular, the effect of such
fluctuations is important to the dynamics of the dust particle,
single or in a group [2–10].

Stochastic charge fluctuations of dust particles in plasmas
have been studied through various approaches in the past two
decades. The first study is due to Cui and Goree [11], who
develop a method in which, first, the time interval between
absorption of the plasma particles (either ions or electrons)
varies randomly following an exponential distribution and,
second, whether the arriving plasma particle at every time step
is an electron or ion is also determined through random criteria.
Although not mentioned at the time, this method in fact solves
a master equation, later proposed by Matsoukas and Russell
[12], to model charging with a one-step stochastic process [1].
The method of Cui and Goree [11] could be considered as a
special case of a Monte Carlo method developed by Gillespie
[13] to solve the master equations. Matsoukas and Russell [12]
derive analytical solutions for the average and variance of
the charge at the stationary state through a Fokker-Planck
equation that they obtained by expanding the master equation.
In a later work, Matsoukas and Russell [14] develop a linear
Fokker-Plank equation [1] through the linearization of the
currents around the average charge at the stationary state.
Moreover, they derive an analytical solution for the distribution
function of the charge at the nonstationary state for cases
in which the initial mean charge is within the linear range
of the currents close to the equilibrium charge (stationary
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mean charge). Khrapak et al. [15] develop a model utilizing
a Langevin equation to describe the charge fluctuations at
stationary states. The Langevin equation can be considered
statistically equivalent to the Fokker-Planck equation proposed
by Matsoukas and Russell [14]. All of the works mentioned
above except that of Khrapak et al. [15] consider the charging
mechanism through which ions and electrons are collected on
the dust particle from a plasma. Khrapak et al. [15] also study
charge fluctuations with charge mechanisms of thermionic
emission and UV irradiation.

The main objective of the present study is to develop a
model for the description of the stochastic charge fluctuations
of the dust particle, which is valid at both stationary and
nonstationary states, and it is applicable to an arbitrary initial
mean charge. Section II is concerned with the development of
a Fokker-Planck equation from the master equation through
the system-size expansion method of Van Kampen [1], along
with the linear noise approximation for dust particle charging.
In Sec. III results obtained by the model for a charging
mechanism based on the orbital-motion-limited (OML) theory
are discussed and they are compared to the results obtained by
solving the master equation. Finally, concluding remarks are
made in Sec. IV.

II. MODEL DEVELOPMENT

The charging process of the dust particle is assumed to be
Markovian; hence, the master equation [1]

dP (N,t)

dt
=

∫
[W (N |N ′)P (N ′,t)

−W (N ′|N )P (N,t)]dN ′ (1)

can be utilized to develop a model for charging. In
Eq. (1), P (N,t) is the probability density function of elemen-
tary charge on the dust particle at time t , and W (N |N ′) is the
transition probability per unit time where with N ′ elementary
charges, a jump occurs to N elementary charges. A negative
N or N ′ means that electrons are carried by the dust particle
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while a positive one indicates that ions are carried by the dust
particle.

Furthermore, it is assumed that only one plasma particle
at a time is absorbed onto the dust particle. This assumption
leads to the modeling of charging with a one-step (birth-death)
process [1,12], which is a subclass of the Markov processes.
With known electron and ion currents to the dust particle, it is
possible to construct the transition probability per unit time,

W (N |N ′) = Ie(N ′) δ (N − N ′ + 1)

+ Ii(N
′) δ (N − N ′ − 1), (2)

where Ii(N ′) and Ie(N ′) denote the ion and electron currents,
respectively. The delta functions seen in (2) are to render jumps
of only ±1 (one-step process). Via the substitution of Eq. (2)
in the master equation (1), the master equation for the one-step
process of dust particle charging can be derived:

dP (N,t)

dt
= Ie(N + 1)P (N + 1,t) + Ii(N − 1)P (N − 1,t)

− [Ii(N ) + Ie(N )]P (N,t). (3)

This equation, given for the first time by Matsoukas and Russell
[12], cannot be exactly solved except for a special case of linear
Ii(N ) and Ie(N ) functions [1].

At this stage of the model development, the system-size
expansion method of Van Kampen [1] is utilized. This method,
accompanied by the linear noise approximation, is a systematic
method to approximate the master equation of a system of an
internal noise type with a linear Fokker-Planck equation. A
Gaussian function with a time-dependent mean and variance
can be obtained as an exact solution to this linear equation.

The first step in employing the system-size expansion
method is to express the transition probability per unit time
in Eq. (1) as a function of the state of the dust particle in
terms of the charge normalized by the system size �, while
expressing it as a function of the size of the jumps in terms of
the charge. That is to say,

W (N |N ′) = W (N ′; N − N ′) = W (�n′; r) = �(n′; r), (4)

where r = N − N ′ is the jump size and n′ = N ′/�. It is
noted that N ′ is an extensive variable denoting the current
state of the dust particle whereas n′ is its associate intensive
variable independent from the system size �. This means that
the transition probability per unit time is expressed through
a function �(n′; r) with the starting point described via the
intensive variable n′, while the jump is described via the
extensive variable r .

Now a change of variable is performed,

N = �φ(t) + �1/2ξ, (5)

where φ(t) is a function of time to be determined. This equation
is of key importance in which the macroscopic time change of
the system is described through φ(t), whereas the microscopic
behavior is described through ξ . It is the ansatz of Van Kampen
[1], which in our problem models the macroscopic behavior
of the dust particle charge, i.e., the location of the charge peak
in the phase space, through the first term on the right-hand
side of Eq. (5) and the scale of charge fluctuations through the
second term.

Substituting for N from (5) in P (N,t) leads to

P (N,t) = P (�φ(t) + �1/2ξ,t) = �(ξ,t), (6)

which, in turn, is substituted with P in the master equation (1)
while Eq. (4) is used for the transition probabilities. The
resulting integro-differential equation terms are expanded in
powers of �−1/2. Setting the coefficients of the two lowest
powers of �−1/2 to zero leads to [16]

dφ(t)

dt
= α̃1(φ), (7)

∂�

∂t
= −α̃′

1(φ)
∂ξ�

∂ξ
+ 1

2
α̃2(φ)

∂2�

∂ξ 2
, (8)

where α̃k(n) = �−1αk(n), where

αk(n) =
∫

rk�(n; r)dr, (9)

denotes the moments of jumps.
Equation (8) is a linear Fokker-Planck equation, which is

obtained through the system-size expansion method followed
by the linear noise approximation. It has an analytical solution
in the form of a Gaussian function, whose average and variance
are governed by [1]

d

dt
〈ξ 〉 = α̃′

1(φ)〈ξ 〉, (10)

d

dt
〈〈ξ 2〉〉 = 2α̃′

1(φ)〈〈ξ 2〉〉 + α̃2(φ). (11)

where 〈〈ξ 2〉〉 = 〈(ξ − 〈ξ 〉)2〉. For a specified initial condition
in the form of P (N,0) = δ(N − N0), which means that,
initially, the mean charge of the dust particle is known with
no fluctuations, it is concluded that 〈ξ (0)〉 = 〈〈ξ 2(0)〉〉 = 0,
leading to 〈ξ (t)〉 = 0 according to Eq. (10). Thus, using
Eqs. (5) and (7), it can be said that

d〈n(t)〉
dt

= α̃1(〈n(t)〉), (12)

which represents the macroscopic equation for the dust particle
charge.

Now using Eq. (2), valid for the one-step process, one may
express � in Eq. (4) as

� (n; r) = Ie(�n)δ(r + 1) + Ii(�n)δ(r − 1), (13)

and the moments in Eq. (9) as

αk(n) = Ii(�n) + (−1)kIe(�n), (14)

From Eqs. (5), (12), and (11), the equations of charge mean
and variance are obtained as

d〈N〉
dt

= Ii−e(〈N〉), (15)

d〈〈N2〉〉
dt

= 2I ′
i−e(〈N〉)〈〈N2〉〉 + Ii+e(〈N〉). (16)

where Ii±e(N ) = Ii(N ) ± Ie(N ). Equations (15) and (16) are
in a closed form that statistically describe charge fluctuations
of the dust particle when the charging process is nonstationary.
The initial conditions required to solve this set of equations
are a known initial charge 〈N (0)〉 = 〈N〉0 with a zero variance
〈〈N2(0)〉〉 = 0.
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The stationary (equilibrium) values of the charge mean and
variance can be readily obtained via Eqs. (15) and (16). At the
stationary state, the charge statistics do not change with time,
and therefore the mean and variance at this state are the values
rendering the right-hand sides of Eqs. (15) and (16) vanish,
i.e.,

Ii−e(〈N〉s) = 0, (17)

〈〈N2〉〉s = −1

2

Ii+e(〈N〉s)
I ′
i−e(〈N〉s) , (18)

where the subscript s indicates the stationary value.
Equations (17) and (18) are the same given by Matsoukas and
Russell [12], which are obtained through a stationary-state
analysis.

The substitution of ξ = �−1/2(N − 〈N〉) in Eq. (8) leads
to

∂P (N,t)

∂t
= − ∂

∂N
[Ii−e(〈N〉) + I ′

i−e(〈N〉)(N − 〈N〉)]P

+ 1

2
Ii+e(〈N〉) ∂2P

∂N2
, (19)

where 〈N〉 is governed by Eq. (15). It is noted that the use of
the stationary mean charge 〈N〉s instead of 〈N〉 in Eq. (19)
leads to the Fokker-Planck equation given by Matsoukas and
Russell [14] as the first term in the brackets of the first term
on the right-hand side vanishes at the stationary state.

It is also possible to develop a Langevin equation for the
dust particle charge using Eqs. (8) or (19). According to Ito’s
formula [16], Eq. (19) is statistically equivalent to

dN = [Ii−e(〈N〉) + I ′
i−e(〈N〉)(N − 〈N〉)]dt

+ [Ii+e(〈N〉)]1/2dW, (20)

where W is the Wiener process. If 〈N〉 is substituted by
〈N〉s , the first term in the brackets of the first term on the
right-hand side vanishes and the Langevin equations proposed
by Matsoukas and Russell [14] and Khrapak et al. [15] for
charging at the stationary state are obtained.

III. RESULTS

In this study it is assumed that the dust particle is spherical
with a radius of R. Moreover, the OML theory [17,18] is
utilized to model the charging mechanism. The OML theory is
valid when the Debye shielding length is much larger than the
particle radius, while it is much smaller than the mean-free-
path length. In the OML theory the current of electrons (ions)
to the dust particles is [12]

Ie(i)(N ) = 
Je(i)(�
−1N ), (21)

where

Je(n) =
{

exp(n), n � 0,

1 + n, n > 0,
(22)

Ji(n) =
{

γ (1 − T̂ n), n � 0,

γ exp(−T̂ n), n > 0,
(23)

where

γ = 1

n̂

(
M̂

T̂

)1/2

, (24)

where nondimensional parameters of the plasma are defined
as n̂ = ne/ni , T̂ = Te/Ti , and M̂ = Me/Mi , where ne(i) is the
concentration of electrons (ions), Te(i) is the temperature of the
electrons (ions), and Me(i) is the mass of an electron (ion). In
Eq. (21)

� = 4πε0RkBTe

e2
, (25)

is the size of the system and


 = neπR2

(
8kBTe

πMe

)1/2

, (26)

where e is the electrical charge of an electron, kB is the
Boltzmann constant, and ε0 is the vacuum primitivity.

Equations (12) and (11) can be expressed in the following
forms:

d〈n〉
dτ

= Ji−e(〈n〉), (27)

d〈〈ξ 2〉〉
dτ

= 2J ′
i−e(〈n〉)〈〈ξ 2〉〉 + Ji+e(〈n〉), (28)

where Ji±e(n) = Ji(n) ± Je(n), 〈n〉 = �−1〈N〉, 〈〈ξ 2〉〉 =
�−1〈〈N2〉〉 = �〈〈n2〉〉, and

τ = �−1
t. (29)

In the present study, Eqs. (27) and (28) are numerically solved
with LSODA, a variant version of the Livermore solver for
ordinary differential equations (LSODE) package [19,20],
which is utilized by the NDSolve function of MATHEMATICA,
a product of Wolfram Research, Inc.

Figure 1 displays the difference of the ion and electron
currents Ji−e(n), which dictates how the mean charge evolves
in time according to Eq. (27). The nonlinearity of Ji−e(n)
is evident, as can be seen in this figure, although it linearly
varies according to Ji−e(n) = γ (1 − T̂ n) at the asymptotic
limit of n → −∞ and according to Ji−e(n) = −(1 + n) at
the asymptotic limit of n → ∞. These asymptotic forms
justify the observation made in Fig. 1 in which the electron
temperature does not influence Ji−e(n) at larger values of n,
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FIG. 1. (Color online) The difference of ion and electron currents
Ji−e(n) = Ji(n) − Je(n): Ti = 600 K and n̂ = 1.
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FIG. 2. (Color online) Time evolution of the charge mean: Ti =
600 K and n̂ = 1.

whereas it influences Ji−e(n) at smaller values of n. The
location of the equilibrium points are stable and negative,
which is evident as the curves cross the n axis at negative
locations. Ji−e(n) approximately varies according to γ (1 −
T̂ n) at the region close to the equilibrium point. This form of
functionality of Ji−e(n) is the reason that the equilibrium point
is further shifted toward n = 0 with an increase of the electron
temperature, as seen in Fig. 1.

The time progress of 〈n〉 is shown in Fig. 2 for different
electron temperatures. The initial condition is 〈n〉0 = 0 since
at this study, it is assumed that the dust particle is initially
uncharged. As seen in this figure, no significant difference is
observed between cases with different electron temperatures
for times up to approximately τ = 3, after which the difference
between cases starts becoming significant. With the increase of
τ , 〈n〉 increases until it asymptotically reaches the equilibrium
mean charge value, which is 〈n〉s , satisfying Ji−e(〈n〉s) = 0.

The time progress of the charge variance 〈〈n2〉〉 is displayed
in Fig. 3. The initial condition for the variance is 〈〈n2〉〉0 = 0 as
no charge fluctuations initially exist. For a typical case of Te

seen in this figure, with the increase of τ , 〈〈n2〉〉 increases until
it asymptotically reaches a stationary-state charge variance.
It is seen that 〈〈n2〉〉 initially undergoes a sharp increase until
τ = 2, after which its rate of change decreases until it flattens.
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FIG. 3. (Color online) Time evolution of the charge variance:
Ti = 600 K, n̂ = 1, and R = 10 nm.

-5 -4 -3 -2 -1 0 1
n

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

p(
n,

)

 = 1
 = 10
 = 150

(a)

-5 -4 -3 -2 -1 0 1
n

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

p(
n,

)

(b)

-5 -4 -3 -2 -1 0 1
n

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

p(
n,

)

(c)

FIG. 4. (Color online) Charge distribution obtained by the linear
noise approximation (continuous lines) and the master equation
(discrete points) for Te = 2 eV, Ti = 600 K, and n̂ = 1: (a) R =
3 nm; (b) R = 10 nm; and (c) R = 100 nm.

It is observed in this figure that at a given τ of the nonstationary
state, the larger is the electron temperature, the smaller is the
variance.

To validate the developed model based on the linear noise
approximation, the probability density functions obtained by
this model are compared to those obtained by solving the
master equation (3). As mentioned earlier, it is not possible
to solve this equation exactly as the currents are nonlinear
functions of the dust particle charge, so it is solved numerically.
Equation (3) represents coupled differential equations with
unknowns . . . ,P (N − 1,t),P (N,t),P (N + 1,t), . . . that can
be solved progressively in time for every P (N,t) in a domain
[Nmin,Nmax], where boundary values Nmin and Nmax are
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TABLE I. Mean, standard deviation σ = 〈〈n2〉〉1/2, and skewness
S = 〈〈n3〉〉/σ 3 of dust particle charge obtained by the master equation
(ME) and the linear noise approximate (LNA) models at different τ ’s;
Te = 2 eV, Ti = 600 K, n̂ = 1, and R = 3 nm.

τ Model 〈n〉 σ S

1 ME −0.700 0.306 −0.249
LNA −0.685 0.300 0

10 ME −2.23 0.371 −0.061
LNA −2.18 0.368 0

150 ME −2.81 0.423 −0.039
LNA −2.75 0.420 0

specified in such a way that they are sufficiently away from
the initial charge and the stationary charge values. The coupled
differential equations for N ’s in Eq. (3) are also solved with
the LSODA method [19,20] by utilizing the NDSolve function
of MATHEMATICA.

Figure 4 shows p(n,τ ) = �P (N,t), where t and τ correla-
tion is given in Eq. (29) for various cases. The initial condition
is p(n,t) = δ(n). It can be seen that the deviation between the
linear noise approximation and the master equation results is
more significant for the dust particle with R = 3 nm. In order
to make a better comparison between the master equation and
linear noise approximation results, various statistics obtained
from p(n,τ ) are tabulated for this dust particle radius in Table I.
At all three τ values, the difference between the two models is
below 3% for the mean and the difference is much less for the
standard deviation. The negative skewness of the master equa-
tion, seen in this table, is more noticeable in Fig. 4(a). While
the magnitude of the skewness decreases with an increase

of τ , it is significantly larger at τ = 1 than that at other τ

values.

IV. CONCLUDING REMARKS

In this study, model equations are developed to describe
stochastic charge fluctuations of a dust particle suspended in
a plasma at nonstationary states. Such fluctuations could be
important to scenarios in which the initial transient behavior
of the charge statistics is of interest and/or electron and ion
currents are time dependent via time-varying properties of the
plasma.

The proposed models here are based on the system-size
expansion of Van Kampen [1], which is applied on the master
equation and is valid for the cases where the size of fluctuations
is relatively small compared to the charge mean. Furthermore,
the probability density function of the dust particle charge is
determined to be Gaussian after the linear noise approximation
is made and a linear Fokker-Planck equation is obtained.
In order to test the models its predicted results have been
compared versus the results that have been obtained by directly
solving the master equation. It is observed that, except for
a small dust particle at the early transient stage, with a
small particle mean there is excellent agreement between the
Fokker-Planck equation and the master equation results. The
discrepancy between the results obtained for the small dust
particle is observable through a relatively larger skewness
calculated from the master equation. This discrepancy could be
due to the fact that the charge standard deviation and mean are
comparable in magnitude, which is in contradiction to the large
system-size assumption made in the system-size expansion
method.
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