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Electromagnetic field of a charge intersecting a cold plasma boundary in a waveguide
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We analyze the electromagnetic field of a charge crossing a boundary between a vacuum and cold plasma
in a waveguide. We obtain exact expressions for the field components and the spectral density of the
transition radiation. With the steepest descent technique, we investigate the field components. We show that
the electromagnetic field has a different structure in a vacuum than in cold plasma. We also develop an algorithm
for the computation of the field based on a certain transformation of the integration path. The behavior of the
field depending on distance and time and the spectral density depending on frequency are explored for different
charge velocities. Some important physical effects are noted. A considerable increase and concentration of the
field near the wave front in the plasma is observed for the case of ultrarelativistic particles. In the plasma, the
mode envelopes and spectral density show zero points when the charge velocity is within certain limits.
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I. INTRODUCTION

The investigation of the transition radiation of a charge
intersecting a boundary between different media has been
ongoing since 1946 when it was predicted by V. L. Ginzburg
[1]. Thereafter, many studies were published in this area
(see, for example, [2]). Some aspects of this phenomenon,
however, have not been analyzed sufficiently. This especially
concerns the study of the structure of electromagnetic fields
(in contrast to the energetic characteristics analyzed in detail
for many problems [1–4]). Only over the last few years, the
structure of the electromagnetic field has been considered
for two unbounded media, in particular, in the case of the
interface between a so-called left-handed medium and ordinary
media [5–8]. Note that the analogous situation occurs in
the investigation of Cherenkov radiation. Although it was
discovered and explained in the 1930s [9], a sufficiently
detailed description of the total field structure in a typical
medium with resonant dispersion has been given only recently
[8,10–12].

It should be noted that charge field structures in a regular
waveguide with one or several media layers have been analyzed
frequently (see, for example, [13–27]). The general theory
for such problems was developed in [13], and many cases of
different media (nondispersive dielectric [14–17], dielectric
with resonant dispersion [18,19], dielectric with slight losses
[20], active media [20–24], and metamaterials [25–27]) were
considered. These investigations are related to the so-called
wakefield accelerator technique [14–24]. In addition, some
essential perspectives exist for developing new, nondestructive
methods of charged particle beam diagnostics [25–27].

However, analogous problems in cases of irregular waveg-
uides with two different media have rarely been analyzed,
although they are important as well. The bunch inevitably
intersects the boundary, and the fields that are generated during
a certain time interval can be parasitic (for the wakefield
acceleration technique), but useful (for new methods of particle
detection and beam diagnostics; this was demonstrated for the
interface between two unbounded media in [5–8]).

The number of problems considered in this area is very
small. We can mention the investigation of the energetic
characteristics of transition radiation in the cases of the

boundary vacuum–cold-plasma [3,4] and vacuum–left-handed
media [7] only. A description of the field structure is absent
even in the case of a relatively simple medium, such as
cold plasma. For this reason, it is important to analyze the
electromagnetic field in a waveguide at the interface between
a vacuum and a cold plasma. This is one of the key problems in
electromagnetic radiation theory. It can be useful for the new
methods of generation of superhigh frequency electromagnetic
waves as well as for diagnostics of the charged particle beams.
It should be emphasized also that, in such a situation, transition
radiation is the only type of space radiation; consequently, it
can be investigated per se (Cherenkov radiation is absent in the
cold isotropic plasma). Our analysis is concentrated on finding
the main peculiarities of the electromagnetic field structure.
Therefore, we are restricted to a consideration of the simplest
cylindrical waveguide. Note that a circular waveguide is also
the basic structure for the majority of accelerators.

II. GENERAL RESULTS

Consider the electromagnetic field (EMF) generated by
a point charged particle q moving in the waveguide of
radius a along its axis through the interface (z = 0) between
homogeneous isotropic dispersive media characterized by
permittivity and permeability ε1(ω) and μ1(ω), respectively,
for z < 0, and ε2(ω) and μ2(ω), respectively, for z > 0. The
charge moves uniformly with a velocity V = cβ (c is the
light velocity in a vacuum) and intersects the boundary at
the moment t = 0 (Fig. 1).

The analytical solution of this problem is traditionally found
for the spectral harmonics of the vector potentials �Aω1,2 =
Aω1,2�ez as an expansion into a series of eigenfunctions of the
transversal operator. As an example, the transversal component
of the electrical field is presented in the form:

Er1,2 = E
q

r1,2 + Eb
r1,2,{

E
q

r1,2

Eb
r1,2

}
= 2qa−3

πβc

∞∑
n=1

χ0nJ1(χ0nr/a)

J 2
1 (χ0n)

{
I

q

1,2

I b
1,2

}
, (1)

I
q

1,2 =
∫ ∞

−∞

exp[iωz/cβ]

ε1,2
(
ω2/c2β2 − k2

z1,2

)dω, (2)
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FIG. 1. (Color online) Geometry of the problem.

I b
1,2 = cβ

∫ ∞

−∞

Bn1,2kz1,2 exp[−i(ωt − kz1,2|z|)]
ωε1,2g(ω)

dω,

Bn1,2 = ε1,2

ω/cβ ± kz2,1
−ωε2,1/cβ ∓ ε1,2kz2,1

ω2/c2β2 − k2
z1,2

, (3)

g(ω) = ε2kz1 + ε1kz2, (4)

where ωn = χ0nc/a, χ0n is the nth zero of the Bessel func-
tion [J0(χ0n) = 0], kz1,2 = √

ω2n2
1,2−ω2

n/c (Imkz1,2 > 0), and
n2

1,2(ω) = ε1,2(ω)μ1,2(ω).
The expressions found in (1) are decompositions in an

infinite series of normal modes. Each of the modes includes a
Fourier integral with respect to frequency. One can see that the
electromagnetic field components have two summands. The
first one (Eq

r1,2) is the field of the charge in the unbounded
medium. V. L. Ginzburg [2] called it the “forced” field.
It contains Cherenkov (or Vavilov-Cherenkov) radiation if
the charge velocity exceeds the Cherenkov threshold. The
second summand (Eb

r1,2) is the “free” field connected with
the influence of the boundary. It includes transition radiation
(TR).

If we rearrange the order of summation and integration in
the expression for the forced field [(1), (2)], the series obtained
can be summarized, as it was shown in [13]:

2

a2

∞∑
n=1

χ0nJ1(χ0nr/a)

J 2
1 (χ0n)

(
ω2/β2c2 − k2

z1,2

)
= K0(s1,2r) − K0(s1,2a)

I0(s1,2a)
I0(s1,2r), (5)

where s2
1,2 = ω2(β2n2

1,2 − 1)/β2c2. Substituting (5) in Expres-
sion (1) for E

q

r1,2 gives the traditional expression for EMF of
a charge in a waveguide with a homogeneous medium [13].

Further research associates the charge flying from a vacuum
(medium 1) with ε1 = 1,μ1 = 1 into cold plasma (medium
2). We assume that plasma is isotropic and the ion motion
can be neglected. So, the following expressions are used for
medium 2:

ε2 = 1−ω2
p(ω2 + 2iωωd )−1, μ2 = 1, (6)

where ωp is a plasma frequency and ωd is a small parameter
responsible for absorption (ωd � ωp). If ωd → 0, we have

kz1 =
√

ω2 − ω2
n

/
c, kz2 =

√
ω2 − ω2

n − ω2
p

/
c. (7)

For the free field determined by I b
1,2, we have the following

expression:

I b
1,2 = ω2

pc2β

∫ ∞

−∞
f1,2 exp[−i(ωt − kz1,2|z|)]dω, (8)

where

f1 = ckz1[ω(1 − β2) + cβkz2]

g̃(ω)
(
ω2 − c2β2k2

z1

)
(ω + cβkz2)

, (9)

f2 = ωckz2
[
ωcβ − ω2(1 − β2) − β2ω2

p

]
g̃(ω)(ω2 − ω2

p)

× [(
ω2 − c2β2k2

z2

)
(ω − cβkz1)

]−1
, (10)

g̃(ω) = (
ω2 − ω2

p

)√
ω2 − ω2

n + ω2
√

ω2 − ω2
n − ω2

p. (11)

Subsequent research regarding Expression (8) was carried out
with analytical and computational methods. We are interested
in the behavior of the field components depending on distance
and time for different velocities of the motion of the charge.

III. ANALYTICAL INVESTIGATION FOR
THE VACUUM AREA

In the analytical method, asymptotic expressions for the
free field components of each mode can be obtained with
the steepest descent technique, which was developed in
detail in diffraction theory [28,29]. Such analysis is usually
performed with the methods of the complex variable function
theory. It has not been carried out before for the problem
under consideration. We perform this analysis for the case of
negligible losses taken into account for the determination of
the location of the singularities of integrands only. The first
step in such research is to study the singularities of integrands
f1,2(ω) in a complex plane. At first, we perform an analysis
of the free field in the vacuum area z < 0. One can show that
function f1(ω) has the following singularities in a complex
plane (ω):

(1) four branch points

±ω̃(1)
n = ±ωn − iδ1 and ±ω̃(2)

n = ±
√

ω2
n + ω2

p − iδ2;

(2) four poles on the imaginary axis

±ω
(1)
0n = ± iβωn√

1−β2
and ±ω

(2)
0n = ± iβ

√
ω2

n+ω2
p√

1−β2
;

(3) two poles at zero points of the function

g̃(ω) ±�n = ±(ω2
n + ω2

p/2 −
√

ω2
n + ω2

p/2)1/2 − iδ3.

Here, δ1, δ2, and δ3 are positive infinitesimal quantities (it
can be easily proven by taking into account weak absorption in
a medium). Therefore, all of the singularities take place below
a real axis [Fig. 2(a)]. Note that we have to define radicals (7)
in accordance with the rules Imkz1,2 > 0 on the real axis only.
They can be defined arbitrarily in other parts of a complex
plane. It is convenient for the next consideration to have the
branch cuts as shown in Fig. 2. In the limit ωd → 0, these cuts
are defined with the equations:

Re
√

ω2 − ω2
n − ω2

p = 0, Re
√

ω2 − ω2
n = 0, (12)

and the integration path goes along the upper edge of the branch
cut. For obtaining asymptotic expressions, we use the steepest
descent technique. Beforehand though, it is convenient to make
the following replacement of variables:

ω = ωn cosh χ,

√
ω2 − ω2

n = ωn sinh χ. (13)

066401-2



ELECTROMAGNETIC FIELD OF A CHARGE . . . PHYSICAL REVIEW E 83, 066401 (2011)

(a) (b)

FIG. 2. (Color online) Disposition of singularities of integrands, branch cuts, and the integration path for I b
1 in a complex plane of (a) ω

and (b) χ for the field in a vacuum (the case of Reχ0,1 < Reχ̃ (2)
n ). The dashed parts of contour 	∗ are situated in the lower sheet of the Riemann

surface.

(Note that this technique was used for the analysis of
diffraction by a half plane in the flow of nondispersive medium
[30]). This replacement removes the pair of branch points
±ω̃(1)

n . The interaction between quadrants of the complex
plane (ω) and areas in the plane (χ ) is presented in Fig. 2
(with Roman numerals). The upper (“physical”) sheet of
the Riemann surface (ω) conforms to the right-half plane
(Reχ = χ ′ > 0) and the bottom sheet conforms to the left-half
plane (χ ′ > 0). The initial integration path in the plane (χ )
is the contour 	. The branch point ω̃(2)

n and poles ω
(1)
0n ,

ω
(2)
0n , and �n turn into χ̃ (2)

n , χ
(1)
0n , χ

(2)
0n , and μn, respectively

(Fig. 2).
There are two saddle points on contour 	: χ0 and

χ1 = χ0 + iπ , where cosh(χ0) = ct/R, R = √
c2t2−z2.

The steepest descending paths (SDPs) consists
of two branches (	∗

0 and 	∗
1 ) determined by the

requirements:

Re[F (χ ) − F (χ0,1)] < 0, Im[F (χ ) − F (χ0,1)] = 0, (14)

where F (χ ) = −iωnR cosh (χ − χ0)/c.
The poles and the branch points can be crossed in the

transformation of contour 	 into a new contour 	∗ passing
through the saddle points χ0,1, and the contributions from the
corresponding singularities should be included in asymptotic
expressions. So, if Reχ0,1 > Reχ̃ (2)

n , then there is no intersec-
tion of the branch points, and the contour 	∗ consists of two
paths 	∗

0 and 	∗
1 only. However, in the case Reχ0,1 < Reχ̃ (2)

n ,
the saddle points lie on the edges of the branch cut, and in
transformation of 	 into 	∗, the branch points are crossed
[Fig. 2(b)]. As a result, the new contour contains not only
SDPs 	∗

0 and 	∗
1 , but also additional SDPs 	∗

0b and 	∗
1b, which

consist of two branches situated in different Riemann surfaces.
The estimation from the contributions of 	∗

0 and 	∗
1 is made

by the saddle point approximation so far as the first derivatives
of function F (χ ) vanishes at the saddle points. As distinct
from this, the contributions from 	∗

0b and 	∗
1b are evaluated by

the Laplace method because these contours are SDPs running

from the branch points where these derivatives are not 0. As a
result, one can obtain the following approximate expression:

Er1 ≈ 2qω2
p

πc2

∞∑
n=1

χ0nJ1(χ0nr/a)

J 2
1 (χ0n)

(I10 + I1� + I1b), (15)

I10 ≈
√

2π




ωn|z|
R

2Re

{
f1(χ0) exp

[
−i

(
ωnR

c
+ π

4

)]}
, (16)

I1� ≈ 2f1� cos(�nt) exp

[
−

√
ω2

n − �2
n|z|

c

]

×�
(√√

1 − ω4
p/4ω4

n − ω2
p/2ω2

n − |z|/c), (17)

I1b ≈ 2f1b cos
(√

ω2
n + ω2

pt − |z| ωp/c
)

×(
ωpt−|z|

√
ω2

n+ω2
p/c

)−3/2
�

(
ωpct−|z|

√
ω2

n+ω2
p

)
,

(18)

where �(ξ ) is the Heaviside function. This asymptotic expres-
sion is valid under the condition that 
 = ωnR/c � 1 and
under the additional requirements that the saddle points are far
enough from the poles and the branch points as follows: |
 −
�nt − √

ω2
n − �2

n|z|/c| � 1, |ωpt − √
ω2

n+ω2
p|z|/c| � √


. If
these requirements are not fulfilled, so-called “uniform asymp-
totic” expressions [28,29] can be obtained for the pole and
branch cut contributions. The saddle point contributions I10

represent the space transition radiation that is determined by
Formula (16). The pole contributions I1� (17) exponentially
decrease with the distance from the border at z = 0. Therefore,
they can be called “surface standing waves.” The branch cut
contributions I1b (18) also exist near the boundary and can
be called “lateral standing waves” by analogy with the lateral
waves known from diffraction theory [28]. It should be noted
that the obtained asymptotic expressions are not valid if the
saddle points are too close to the poles or to the branch points.
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(a) (b)

FIG. 3. (Color online) Disposition of the singularities of the integrands, corresponding branch cuts, and integration path in I b
2 in a complex

plane of (a) ω and (b) χ for the free field in the plasma.

IV. ANALYTICAL INVESTIGATION FOR THE
PLASMA AREA

A similar investigation can be made for the free field in
cold plasma. As distinct from the vacuum, the integrand f2(ω)
(10) has an additional pair of poles: ±ωp − i0 [apart from the
singularities of the function f1(ω)]. The cuts are also drawn
in the case of the vacuum. The location of the poles, branch
points, corresponding branch cuts, and the initial integration
path are presented in Fig. 3(a). It is convenient to make the
following change of variables:

ω =
√

ω2
n + ω2

p cosh χ,√
ω2 − ω2

n − ω2
p =

√
ω2

n + ω2
p sinh χ. (19)

In Fig. 3(b), the initial integration path 	, a SDP contour 	∗
(passing through the saddle points χ0,1), and the integrand sin-
gularities are shown [the branch points ω̃(2)

n and poles ω
(1)
0n , ω(2)

0n ,
�n, and ωp turn into χ̃ (2)

n , χ (1)
0n , χ (2)

0n , μn, and με, respectively].
In the transformation of contour 	 into SDP 	∗, as well as

in the vacuum, the poles can be crossed. However, contrary to
the vacuum, the branch points never intersect. One can obtain
the following asymptotic expression for the free field in the
plasma:

Er2 ≈ 2qω2
p

πc2

∞∑
n=1

χ0nJ1(χ0nr/a)

J 2
1 (χ0n)

(I20 + I2� + I2ε), (20)

I20 ≈
√

8π


2

√
ω2

n + ω2
p|z|

R
cos

⎛⎝
√

ω2
n + ω2

pR

c
+ π

4

⎞⎠ , (21)

I2� ≈2f2� cos(�nt) exp
[−√

ω2
n + ω2

p − �2
n|z|/c

]
×�

(√√
1−ω4

p/4
(
ω2

n+ω2
p

)2−ω2
p/2

(
ω2

n+ω2
p

)−|z|/ct),
(22)

I2ε ≈ 2f2ε cos(ωpt) exp(−ωn|z|/c)

×�
(
ct/R −

√
1 + ω2

n/ω
2
p

)
. (23)

This asymptotic expression is valid under the condition
that 
2 = √

ω2
n+ω2

pR/c � 1 and under the additional require-
ments that |
2 − ωnt − √

�2
n+ω2

p−ω2
n|z|/c| � 1, |
2 − ωpt −

ωn|z|/c| � 1. This means that the saddle points and poles
are sufficiently distant from one another. The saddle point
contributions (21) give the space transition radiation. The pole
contributions (22) and (23) allow the fields to decrease expo-
nentially with the distance from the boundary. These are the
“surface standing waves” and the “plasma oscillation,” respec-
tively. In summary, the structure of the electromagnetic field
in the plasma differs from the structure in the vacuum: instead
of contributions from two poles and two branch points (in vac-
uum), we have contributions from four poles (in the plasma).

V. METHOD OF COMPUTATION

For numerical calculations, the exact integral representa-
tions (8) are used. The efficient algorithm developed is based
on a certain transformation of the initial integration path in the
complex plane (ω). Earlier, such an algorithm was used for
the computation of the field in different dispersive unbounded
or semibounded media [6–8,12]. We demonstrate this method
for the vacuum area. As shown at Fig. 4, the poles ±�n − iδ3

are located near the integration path 	. This leads to the
rather abrupt behavior of the integrands in (8). The numerical
algorithm is adapted for overcoming this difficulty. Note that
Integral (8) can be written as an integral on a half-infinite
contour 	:

I b
1,2 =

∫ ∞

−∞
f1,2 exp[−i(ωt − kz1,2|z|)]dω

= 2Re

( ∫ ∞

0
f1,2 exp[−i(ωt − kz1,2|z|)]dω

)
. (24)

This formula follows directly from the reality of the field
components, and it can be proven on the bases of the following
properties: (f1,2(ω))∗ = f1,2(−ω∗), (kz1,2(ω))∗ = kz1,2(−ω∗).
The symbol ∗ means a complex conjugation. Furthermore,
we can transform this contour in an upper-half plane (ω) into
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n
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+

-
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)2(
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x
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)1(
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n
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n
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-

FIG. 4. (Color online) Disposition of the singularities of inte-
grands f1(ω), the corresponding branch cuts, and integration contours
(initial and transformed) in a complex plane (ω) for the vacuum
area.

contour 	− for ct − |z| < 0 (before the “wave front” |z| = ct)
and in a lower-half plane into contour 	+ for ct − |z| > 0
(behind the wave front). These new contours should bypass
all of the singularities (the poles and branch points) and then
be matched with SDPs running parallel to an imaginary axis.
The advantages of this integration in comparison with the
initial contour (along the real axis) are that the behavior of
the integrand is relatively smooth and decreases exponentially
for large values of |ω| as it is shown at Fig. 5. Note that
we can choose convenient parameters of contours for each
computation.

VI. ENERGETIC SPECTRUM OF MODES

The important characteristics of the generated modes of the
free field are their energetic spectrums. We consider the energy
passing through the cross section of the waveguide in the first
(z < 0) medium (1) and second medium (2) for all times
during the charge’s motion [3,4].

1,2 =
∫ ∞

−∞
dt

∫ 2π

0
dϕ

∫ a

0
rdrSz1,2,

Sz1,2 = c

4π
Er1,2Hϕ1,2. (25)

Expression (1) shows that every component of the electromag-
netic field is an integral with respect to frequency and a sum
of n modes. Thus, the values 1,2 include a double sum of
the products of n and m modes. However, the orthogonality
of Bessel’s functions results in zeroing all of the terms with
n �= m. Taking into account the fact that the integral with
respect to ϕ gives 2π and the integral with respect to t

gives a δ function δ(ω + ω′), we have the following exact
expression:

1,2 =
∫ ∞

0
dω

∞∑
n=1

wn1,2, (26)

(a)

(b)

0.2 0.4 0.6 0.8
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s
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110

2r/a = 0.5 
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n =1

p
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FIG. 5. (Color online) Behavior of the real (solid line 1)
and imaginary (dashed line 2) parts of integrand of I b

1 for the
vacuum area along the initial (top) and transformed (bottom)
contours. s is a distance along path 	+. Curves along the initial
contour have singularities. ct/a = 12, r/a = 0.5, z/a = 0, n = 1,
β = 0.65.

where

wn1,2 = 4q2

πa4

χ2
0nJ

2
2 (χ0n)

J 4
1 (χ0n)

Re

{(
ε1,2cβ

∣∣χ2
0n/a

2 − s2
1,2

∣∣2)−1

∓exp[−i(ωz/cβ − kz1,2|z|)]
ε1,2ω

(
χ2

0n/a
2 − s2∗

1,2

) kz1,2Bn1,2

+exp[i(ωz/cβ + k∗
z1,2|z|)]

cβε1,2
(
χ2

0n/a
2 − s2

1,2

) B∗
n1,2

∓ kz1,2|Bn1,2|2
ε1,2ω

exp[−Imkz1,2|z|]
}
. (27)

So, the energies passing through the cross section of the
waveguide are integrals with respect to ω, and the sum of
the spectral energy densities of modes wn1,2; Bn1,2 and s1,2

are described with formulas (3) and (5), respectively. Integrals
with half-infinite limits are obtained in (24). The first and last
summands in (27) correspond to the forced and free fields.
The second and the third summands are the interferential
terms [3] that do not give essential contributions in 1,2 for
large values of z. Furthermore, the last addend (the spectral
density of the transition radiation) is under investigation for
the case of the boundary between the vacuum and the cold
plasma (6). Following from (27) and (7), in the vacuum, the
energy spectrum of the nth mode of TR is limited from below
by ωn, and, in the plasma, it exists at higher frequencies
than

√
ω2

n + ω2
p. One can show that wn2 has the zero point

if the charge velocity is within the limits of β1 < β < β2,
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FIG. 6. (Color online) Dependence of normalized transversal component Ẽr = Erπc2/2qω2
p of the first (continuous line 1) and second

(dashed line 2) modes on distance z/a for different dimensionless times ct/a; β = 0.65 (the first row), β = 0.85 (the second row), β = 0.95
(the third row), and β = 0.995 (the last row); ct/a = 6 (left column), ct/a = 12 (middle column), and ct/a = 32 (right column); ωpa/c = 2,
a/r = 0.5.

where

β1 = (
√

5 − 1)/2 ≈ 0.62,

(28)

β2 = [
2
(
ω2

n + ω2
p

)(
2ω2

n + ωp

(
ωp −

√
4ω2

n + ω2
p

))]1/2/
2ω2

n.

It is interesting that the low velocity limit for this phenomenon
does not depend on any of the parameters of the problem.

VII. NUMERICAL RESULTS AND DISCUSSION

Figures 6 and 7 present the behavior of the free electromag-
netic field in the vacuum and cold plasma for different veloci-
ties of the charge motion, β, and at different moments. Upon
analysis of TR, some interesting effects can be visualized.
Figure 6 shows the dependence of the radial components Er

of the first (continuous line) and second (dashed line) modes
of the free field on distance z/a for different dimensionless
time values of ct/a and different velocities β. Note that the
vertical scale is different in different figures.

One can see that the behavior of the field near the boundary
is rather dramatic and that the second mode can be significant
in some areas. It should be underlined that the magnitudes
of the field components at z = 0 are large but finite. For
relatively slow charge velocities, the field in the vacuum is
greater than the field in the plasma [Figs. 6(a), 6(b), and 6(c)].
This correlation changes with increases in β. For β = 0.85
[Figs. 6(d), 6(e), and 6(f)], the fields in the vacuum and
plasma are approximately of equal magnitude. For greater
velocities, the field in the plasma becomes greater than the
field in the vacuum [Figs. 6(g), 6(h), and 6(i)]. Finally, there
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(a) (b) (c)

(d) (e) (f)

FIG. 7. (Color online) Dependence of normalized transversal component Ẽr of the first (top) and second (bottom) modes on distance for
ct/a = 32 and different values of β. In all of the figures, the result of the exact calculation is shown (solid line 1). For the first mode (top),
asymptotic approximations (the saddle point contributions) are given as well (dashed line 2). ωpa/c = 2, a/r = 0.5.

is a considerable increase and concentration of the field near
the wave front in the plasma for the case of the ultrarelativistic
particle [Figs. 6(j), 6(k), and 6(l)]. So, it could indicate that
starting from some velocities of the charge motion, all radiation
in the plasma is getting directed forward. Note that this effect
can be used for generating electromagnetic radiation.

In addition, there is another interesting physical phe-
nomenon. One can see that the envelope of the field has the zero
point at some velocities for the charge’s motion, β (Fig. 7). This
effect appears near the wave front at the critical value of β1,
moves in the direction of the boundary z = 0 with increasing
β from β1 to β2, and disappears at β2. β1 and β2 are the same
for the analogous phenomenon for the energy spectrum of

the nth mode of TR. As soon as the zero point of the field
envelope appears near the wave front where the frequencies
characterized the field are much greater than plasma frequency,
the role of medium and waveguide is negligibly small. It might
explain the independence of β1 on any of parameters of the
problem. As it follows from (28), the velocity range of this
effect is 0.62 < β < 0.87 for the first mode [Figs. 7(a)–7(c)];
for the second mode, it is 0.62 < β < 0.89 [Figs. 7(d)–7(f)].

In Figs. 7(a)–7(c), the results are obtained using two
methods (analytical and numerical) at the moment when
ct/a = 32. The dashed line 2 corresponds to the saddle point
contributions. One can see that both methods provide good
agreement in a sufficiently wide area. There is a discrepancy

(a) (b)

(c) (d)

FIG. 8. (Color online) Dependence of the
normalized spectral density of energy for
the first mode of TR w̃11,2 = w11,2πc/4q2 in
the vacuum (top) and plasma (bottom) at a nor-
malized frequency ω/ωp for different velocities
of the charge’s motion: (a) and (c) thick solid
line 1: β = 0.65, dot-dashed line 2: β = 0.7,
short dashed line 3: β = 0.75, dotted line 4:
β = 0.8, and long dashed line 5: β = 0.85;
(b) and (d) thick solid line 1: γ = 30, dot-dashed
line 2: γ = 60, dashed line 3: γ = 90, and
dotted line 4: γ = 120; ωpa/c = 2, a/r = 0.5,
γ = 1/

√
1 − β2.
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between the analytical and numerical results near the boundary
because the asymptotic expressions are not valid if the saddle
points are too close to the poles or to the branch points (line 1
presents the exact solution).

Figure 8 shows the behavior of the spectral density of
the first mode of transition radiation in the vacuum and cold
plasma for different velocities β. As shown before, the energy
spectrum of the nth mode of TR in the vacuum is limited from
below by ωn; in the plasma, it exists at higher frequencies of
ω >

√
ω2

n + ω2
p. Note that the spectral density of the energy in

the vacuum has a break point at ω = √
ω2

n + ω2
p. In addition,

the energy spectral density in the plasma has the zero point
when the charge’s velocity is within the limits of β1 < β < β2

[Fig. 8(c)]. This effect correlates with the phenomenon of the
zero point of the envelope discussed above.

One can see [Figs. 8(a) and 8(c)] that there is more radiation
in the vacuum than in the plasma for relatively low velocities
β. However, with increases in β, the energy spectrum in the
plasma becomes greater than that in the vacuum. Figures 8(b)
and 8(d) represent the dependence of the spectral density
in the vacuum and plasma for ultrarelativistic particles. The
spectral density in the vacuum does not depend on γ for
γ > 30 [all curves in Fig. 8(b) do not differ]. The spectral
density in the plasma increases to a certain magnitude, and
then the spectrum width grows. This effect correlates with the
phenomenon of the increase in the field near the wave front
for γ → ∞.

VIII. CONCLUSION

In this paper, we have presented analytical and numerical
results describing the field of a charge traveling from a
vacuum into cold plasma in a circular waveguide. Asymptotic
expressions for the electromagnetic field of each mode in the

vacuum and cold plasma have been obtained using the steepest
descent technique. Studies of the singularities of integrands
have shown that, in a vacuum, there is the surface standing
wave (the pole contributions) and the lateral standing wave
(the branch cut contributions). In the plasma, surface standing
waves and plasma oscillations exist. All of these types of waves
only exist near the boundary. The main contribution in the far
zone is the space transition radiation determined by the saddle
point.

Using the numerical method, the exact integral represen-
tations were obtained. An efficient algorithm of computation
based on certain transformations of the integration path in the
complex plane was also developed. The behavior of the field
components depending on distance and time were explored for
different charge velocities. Additionally, the energy passing
through the cross section of the waveguide in the vacuum and
the plasma was investigated.

Some interesting physical effects are noted. It is shown
that, in the plasma, the envelope of the field mode and the
energy spectrum density show the zero point when the charge’s
velocity is within certain limits. Likewise, an important effect
has been noted for the case of ultrarelativistic particles, i.e.,
the field in the plasma increases and concentrates near the
wave front if the Lorentz factor γ takes on a large value.
This phenomenon can be used for generating electromagnetic
fields. Note that such a generator can be realized not only
with an ordinary plasma but also with some metamaterials, for
example, structures with crossed wires [31]. It is essential that
metamaterial is stable in contrast to plasma.
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