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Velocity scaling of a shock wave reflected off a circular cylinder
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Two different approaches are undertaken to investigate the interaction of planar shock waves with circular
cylinders. Experiments are conducted in a shock-tube apparatus equipped with a schlieren-based optical system
to monitor the interaction, and numerical simulations are carried out using an in-house computer code to simulate
similar problems. The incident shock-wave Mach number is varied in the range 1.1–1.4. Excellent agreement is
found between the simulations and the experiments in terms of shock patterns, even though the model is based on
an inviscid approach. Quantitative comparisons between the experimental results for different initial conditions
(shock-wave strength, cylinder diameter, and working gas) are made to find the physical parameters affecting
the path of the reflected shock. An approximate universal relation is derived, which predicts the reflected-shock
trajectory along the axis of symmetry as a function of the incident-shock Mach, the diameter of the cylinder, and
the gas properties. This relation is valid in the vicinity of the cylinder in the range of 0.1–5 D, where D is the
cylinder diameter. It is found that the reflected shock from the cylinder evolves as in the case of a reflected-shock
wave from a planar wall multiplied by a reduction factor, which depends on the incident-shock Mach number
and the ratio of specific heats.
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I. INTRODUCTION

The interaction of shock waves with rigid obstacles has
attracted the interest of many researches during the past
few years, because this type of interaction yields a truly
complex and unsteady flow. In terms of shock attenuation,
the interaction reduces the shock-wave strength and creates
three-dimensional and rotational flows behind the obstacle.
Consequently, the understanding of this unsteady phenomenon
will contribute to the knowledge of more complex processes,
such as explosion and blast waves.

In this problem, a planar shock impinges on a finite-length
circular cylinder, producing curved reflected and diffracted
waves. As time evolves, the interaction generates complicated
flow patterns including multiple reflected and scattered shocks,
Mach stems, slip lines, vortices, and acoustic waves. This
problem has been the subject of a number of analytical,
experimental, and numerical investigations (see, for example,
Refs. [1–7]). Most attention has been paid to vorticity produc-
tion resulting from the diffraction process and the interaction
between shocks and vortices, which develop downstream of
the obstacles.

Regarding the dynamics of the shock-wave reflection,
researchers have focused their studies on the type of transition,
especially from Mach reflection (MR) to regular reflection
(RR). This transition depends on a variety of physical
parameters, such as the shape of the obstacle, the shock-
wave strength, and the type of gas in which the interaction
occurs.

In a pioneering work by Whitham [8], an introduction to
the formulation of an approximate theory for the dynamics
of two- and three-dimensional shock waves was presented.
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Whitham applied this theory to the description of shock
diffraction by wedges and corners. The theory is based on
the critical angle (angle of transition RR → MR) and the
incident Mach number as initial conditions to predict the
triple-point trajectory and the contour of the Mach stems.
Bryson and Gross [3] extended Whitham’s theory to two-
and three-dimensional bodies such as cylinders and spheres by
considering analytical formulations. Good agreement has been
shown between the experimental and the analytical results. The
RR → MR transition in the case of shock-cylinder interaction
has been widely investigated in the past. This type of transition
is indeed created during the propagation of the shock wave
around the cylinder. When the shock wave hits a cylinder, it
is first reflected as a regular reflection. The angle between the
shock and the tangent to the cylinder surface, at the point of
contact on the cylinder, decreases until it reaches the highest
point as the shock propagates downstream. This forces the
reflection from the cylinder to transit to a Mach reflection.
The RR → MR transition criteria have been widely studied
in the literature, and the majority of this work, mostly done
by Ben-Dor and co-workers (see the most recent work by
Rikanati et al. [9] and Ben-Dor et al. [10], for example), is
summarized in his monograph [11]. An experimental study
on the propagation of planar shock waves around cylinders
of various radii was presented by Heilig [12]. In that work,
the theoretical as well as the measured values of the critical
angle for the transition from RR to MR were compared for the
case of fixed incident shock-wave Mach number. It has been
found that the critical angle is independent of the cylinder
size but is a function of the strength of the shock wave. In
contrast, the dependence on cylinder diameter was studied
experimentally by Takayama and Sasaki [13]. They showed
that, in addition to the incident Mach number, the RR → MR
transition depends on both the radius of curvature of the
cylinder (i.e., diameter) and the initial wedge angle, i.e., the
angle between the tangent to the cylinder surface (at its leading
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edge) and the direction of propagation of the shock wave.
Heilig [12] failed to notice the dependence on the diameter
due to the fact that the range of the cylinder diameter was
narrow. The load on a cylinder induced by a shock wave
was studied by Heilig and Reichenbach [14]. In their work,
the unsteady drag force over a circular cylinder placed in a
shock tube was determined. The pressure distribution over the
cylinder was measured by using pressure gauges distributed
over the cylinder. Using holographic interferometry, Takayama
and Itoh [15] studied the surface loads generated on a cylinder
by a shock wave. They presented experimental results of the
pressure distribution around the cylinder along with a drag
coefficient distribution.

Since 1970, due to progress in numerical methods, very
accurate simulations of shock-wave propagation over obsta-
cles have been developed and used. Most of those studies
were focused on the validation of the Euler scheme. For
instance, Yang et al. [16] investigated the unsteady shock-wave
reflection patterns generated by a blast wave propagating
over a circular cylinder using an inviscid compressible flow
solver with second-order accuracy. The computed pictures
of the shock diffraction on a cylinder were compared to
the corresponding experimental schlieren pictures taken by
Bryson and Gross [3] and were found to be in good agreement.
Differences were noticed in region where viscous effects
are dominant. Drikakis et al. [17] studied numerically the
propagation of shock waves over a cylinder using both Euler
and Navier-Stokes (NS) codes. The viscous effect, at various
Mach numbers, was examined by comparing both inviscid
and NS calculations. Computations revealed that the flow-field
patterns on the upstream half of the cylinder are not influenced
by viscosity, while large differences appear on the downstream
half of the cylinder. In a numerical study by Ofengeim and
Drikakis [18], the interaction of a planar blast wave with a
cylinder was investigated for various blast-wave durations and
compared with corresponding results of planar shock waves.
As in the previous study, it has been concluded that in the early
stage of the shock-wave propagation, the effect of viscosity is
negligible. However, during a later stage, particularly when
the separation and shock-boundary layer interaction occur,
the contribution of the viscosity becomes dominant and the
inviscid model can no longer be valid.

The above-mentioned studies did not investigate the behav-
ior of the reflected shock from the cylinder in the upstream
direction. The analytical work of Kireev [19] was focused
on the axial flow in the vicinity of the stagnation point for
the reflection of a strong shock wave from a sphere and a
cylinder. To obtain relations that define the time variable of
the velocity profile of the reflected wave, a perturbation theory
method was used. In that work, the analytical prediction was
compared to experimental results and good agreement was
found. To the best of our knowledge, no other studies dealing
with the dynamics of the reflected-shock wave from a cylinder
have appeared in the literature so far.

The present study focuses on the investigation of the
reflected curved shock wave from a single cylinder in the
weak-shock regime (Ms ∼ 1–1.4) to characterize the physical
parameters affecting its evolution and bring more light and
understanding to the complex phenomenon of shock reflection
over solid obstacles.

More specifically, in this study new experimental and nu-
merical data for shock propagation are obtained using a shock-
tube facility with a new diagnostic system in conjunction with
an accurate and robust compressible flow solver. The data
are used to investigate the scaling law of the reflected shock
at the centerline of the cylinder. Usually, the scaling of the
shock propagation and diffraction is based on the compatibility
relations, which rely mainly on the global parameters. In the
present work, we focus on the local flow properties, including
the shock strength and the effect of heat-capacity ratios (γ ),
which are the key factors.

This study is the first part of a broader research investigating
the interaction of shock waves with complex geometries
(such as barriers or corridors) for shock-wave attenuation and
practical blast-mitigation design and improvement. The paper
is organized as follows: In Sec. II, the experimental setup will
be presented followed by a brief description of the numerical
approach (Sec. III). Comparisons between Computational
Fluid Dynamics (CFD) and experiments are presented in
Sec. IV, along with a scaling law of the reflected-shock velocity
derived from the obtained data. Finally, conclusions are drawn
in Sec. V.

II. EXPERIMENTAL SETUP

The experimental investigation of the shock-cylinder in-
teraction was carried out in a shock-tube facility at the
Shock-Tubes Laboratory of the Protective Technologies R&D
Center of Ben-Gurion University. The horizontal shock tube
used in this study consists of a 2.3-m-long driver section having
a diameter of 80 mm and a 2.5-m-long driven section having
a square cross section of 80 mm × 80 mm. A 1-m-long test
section, inside of which the cylinder is placed, is attached to
the end of the driven section. The shock wave is formed by
rupturing a 0.1–0.25-mm-thick plastic membrane by means
of a striking pin. The plastic membrane initially separates the
driven section from the driver section. The driver section is
pressurized to the required initial pressure. The shock wave
interacts with a single cylinder placed in the test section. The
80-mm-long circular PVC-made cylinders spanned across the
test section; their diameters are 10, 15, and 20 mm. To allow
flow visualization of the test section, two transparent PMMA
windows are mounted on the test section sides, permitting a
115 mm × 56 mm field of view. The cylinder is supported
between those two observation windows with the axis of
symmetry of the cylinder perpendicular to the direction of
propagation of the shock wave. Two pressure transducers are
placed 0.5 m apart, one in the driven section and the other in
the test section, 80 mm from the cylinder axis. The cylinder is
placed at a distance of 258 mm from the end wall. Figures 1
and 2 represent schematic diagrams of the test section and
the experimental apparatus, including the shock tube and the
diagnostic system, respectively. The timing and control of
the system are performed using a National Instruments PCI
programmable card (NI-6602) and an in-house developed code
using the LabView R© program.

The main diagnostic system is based on schlieren flow
visualization by high-speed photography. The light source
for the schlieren system is a double-frequency Nd3+:YAG
pulsed laser (532 nm) at a rate of 20 000 pulses s−1.
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FIG. 1. Experimental configuration. The cylinder is placed in the
center of the test section.

The laser produced 240-ns-long pulses with a frequency of
5–50 kHz and an energy of 2.4 mJ pulse−1. To monitor
the shock-cylinder interaction and the shock-induced flow,
a high-speed PHANTOM v12.1 digital camera, capable of
capturing images at the appropriate rate of 20 000 frames/s
and a resolution of 512×512 pixels, is used. In all the reported
experiments, the laser was synchronized with the camera at an
approximate rate of 20 000 frames s−1, i.e., the time interval
between consecutive images is about 50 μs. The exact pulse
rate in each experiment is measured by a photodiode and
digital oscilloscope. Upon rupturing the plastic membrane,
a planar shock wave propagating downstream along the driven
section is formed. The passage of the shock over the first
pressure transducer, in the driven section, generates a trigger
that initiates the camera and the data acquisition system as well,
which captures the pressure history. Each laser pulse produces
a schlieren image, which is captured and stored in the memory
of the high-speed camera. In each experimental configuration,
at least three experiments are performed for repeatability. Since
there is no synchronization between the laser pulses and the
arrival of the shock, the timing of each set of images is different
(however, the time difference between images is the same).

FIG. 2. Schematic diagram of the experimental apparatus includ-
ing the shock tube, the schlieren system, and the laser light source.

Measurements of the location of the incident shock as well
as the reflected shocks in the photographs are obtained using
an in-house computerized image-analysis platform based on
MATLAB software. The incident shock-wave velocity in the
laboratory frame of reference is obtained from a linear fit to
the shock-wave locations. Timing of the experimental images
is done by finding the first-image time using the location and
the velocity of the shock wave. Based on the time of the first
image and the known time interval between photographs in
all the experiments, the times of the rest of the photographs
are determined. The experimental error is influenced by the
following measurement uncertainties: the location of the
incident shock and the reflected shock waves, the incident
shock-wave velocity, the initial time of the experiments, and
the calibration error. The total errors of the shock-wave Mach
number in all reported data are found to be less than 2%.

III. NUMERICAL APPROACHES

From the computational viewpoint, a high-order shock-
capturing scheme based on a weighted essentially nonoscil-
latory (WENO) approach is used. This modern class of
schemes is very attractive for simulating shock waves, contact
discontinuities, and fine-scale flow structures. The WENO
schemes use an adaptive “smoothest” substencil chosen within
a larger, fixed stencil to construct a high-order approximation
of the solution, avoiding the interpolation across discontinu-
ities and preserving a uniformly high order of accuracy at
all points where the solution is smooth. The main concept is
to use a superposition of several substencils with adaptive
coefficients to increase the order of approximations even
further. In this paper, we adopt the finite-difference, flux-based,
fifth-order WENO scheme with Roe splitting for calculating
the numerical fluxes at cell interfaces [20,21]. A robust and
stable immersed boundary (IB) method is also developed to
deal with complex geometries on Cartesian grids [22]. The
developed IB method uses the direct-forcing concept with an
efficient interpolation algorithm and accurate boundary forcing
expressions.

As a first step toward a partial validation with experiment,
viscous effects are neglected. Nonetheless, predictions of
instabilities and shock locations are expected to be accurate.
These computations are performed bearing in mind a future
use of the WENO scheme for shock-turbulence interaction
over obstacles. The goal is to assess the resolution properties
of the WENO schemes and to gain more physical insight for
the problem considered in this study.

A computational domain of size 384 mm × 82.9 mm has
been chosen for the numerical simulations. The choice of the
domain size is made to avoid any inflow or outflow wave
reflections or boundary-layer interaction from the wall of the
shock tube. To validate the numerical methods, several test
cases, based on steady and unsteady shock-wave propagation,
have been previously carried out, along with an extensive
grid convergence study. Details of this analysis can be found
in Chaudhuri et al. [22]. Based on this study, a mesh of
6401 × 1401 grid points is used with a uniformly distributed
grid spacing of 60 μm to ensure a grid-independent solution.

In this study, a compressible inviscid model is used to
solve Euler equations. The fluid is assumed as a thermally
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FIG. 3. Main flow features and flow measurements: (a) and (b)
Upper shock-wave system; (c) and (d) lower shock system. Notation:
I.S., Incident Shock; R.S., Reflected Shock; M.S., Mach Stem; T.P.,
Triple Point; S.L., Slip Line.

and calorically perfect gas governed by the ideal-gas equation
of state.

IV. RESULTS

A. Analysis of the shock-cylinder interaction

Shock-cylinder interaction is studied in the incident-shock
Mach number range of Ms = 1.1–1.4 with air as a working
gas. In Fig. 3, two typical images obtained from the high-speed
photography are presented. In fact, Figs. 3(a) and 3(b) are
identical but with different comments in each. This is also
true for Figs. 3(c) and 3(d). In Figs. 3(b) and 3(d), XR is the
horizontal distance from the front of the cylinder to the primary
reflected shock (R.S.1), XT is the distance from the front of
the cylinder to the incident shock (I.S.), YR is the vertical
distance from the midline of the cylinder to the highest point
of the primary reflected shock (R.S.1), XM is the horizontal
distance from the front of the cylinder to the secondary Mach
stem (M.S.2), and YM is the vertical distance from the midline
of the cylinder to the highest point of the secondary reflected
shock (R.S.2). The incident shock [I.S. in Fig. 3(a)] propagates
along the shock tube from left to right. Owing to the symmetry
of the system, a horizontal symmetry plane can be considered
through the center of the cylinder.

After the first head-on collision of the shock wave with the
cylinder, part of the shock wave is reflected and the remaining
part is reflected as a regular reflection over the cylinder
surface (figure not shown here for brevity). As the shock wave
propagates along the cylinder surface, the point of intersection
of the reflected shock (R.S.1) and the incident shock (I.S.) also
travels along the cylinder surface. The reflecting wedge angle
decreases as the shock propagates and the RR is transformed
into MR [see Fig. 3(a)]. The wave pattern, usually designated
as the “upper-shock system,” consists of an incident shock
(I.S.), a reflected shock (R.S.1), a Mach stem (M.S.1), and a
slip line (S.L.1) [see Figs. 3(a) and 3(b)]. The upper-shock
system propagates further downstream and grows toward the
upper and lower shock-tube sidewalls, while the Mach stems
become more curved [Fig. 3(a)]. The two Mach stems created
(above and below the symmetry plane) collide behind the
cylinder [Fig. 3(c)]. The interaction of the two Mach stems
can be considered as a reflection from a solid wall placed at
the symmetry plane. From the results, one can see that this
reflection is initially regular and then transitions to a Mach

reflection. The new shock pattern propagating downstream of
the cylinder is usually designated as a “lower-shock system”
and consists of a Mach stem (M.S.1) generated in the “upper
shock system,” the reflected shock wave (R.S.2), a Mach stem
(M.S.2), and a second slip line (S.L.2) [see Figs. 3(c) and 3(d)].
The reflected-shock wave (R.S.2) travels toward the upper
(lower) shock-tube sidewall and is attached to the secondary
Mach stem (M.S.2). The point of intersection of the reflected
shock (R.S.2), the shock wave (M.S.1), and the Mach stem
(M.S.2) belongs to the lower-shock system and is named the
second triple point (T.P.2). The other end of the reflected shock
wave (R.S.2) travels along the cylinder surface.

B. Qualitative and quantitative comparison between the
numerical and experimental results

A set of schlieren images of the shock interaction with
a circular cylinder is presented in Fig. 4. The experimental
images are presented in the left column of the figure, while the
equivalent numerical pictures are shown in the right column.
The images are related to the case of a cylinder having D =
15 mm and Ms = 1.16 (see Fig. 1). The frame times indicated
foreach window are measured with respect to t0, where t0 is

FIG. 4. Comparison of a series of schlieren pictures with the
numerical simulation of shock-wave propagation over a 15-mm-diam
cylinder, Ms = 1.16.
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FIG. 5. Location of the reflected shocks in (a) upper and (b) lower shock systems. The x axis is normalized by Us /D.

the time when the incident shock hits the leading edge of
the cylinder. The laser nonuniformity and other spots on the
images are removed by subtracting the background image from
each original image. This leads to a very clean and uniform
background, which helps to enhance the observed features.

The I.S. propagates from left to right, impinges on the
cylinder surface, and then gets reflected back. As shown in
the frame t = 46 μs [Figs. 4(a) and 4(b)], two upper-shock
systems are formed on either side of the symmetry plane.

Two curved Mach stems (M.S.1 and M.S.2) and the
corresponding slip surfaces are shown just before the two Mach
stems collide. At t = 101 μs [Figs. 4(c) and 4(d)], the reflected
shock from the cylinder (R.S.1) expands upstream toward the
shock-tube sidewalls. The two upper shock systems pass the
cylinder and collide. Two lower shock systems are formed on
either side of the symmetry plane. Two loci of triple points
appear symmetrically on the cylinder; the first is initiated on
the front side of the cylinder while the second starts on the
symmetry plane on the back side of the cylinder. Half of the
symmetrical triple-point trajectories are shown in Fig. 5, in
which the location of the triple point is measured from the
images obtained from the experiments and the numerical sim-
ulation. At t = 157 μs [Figs. 4(e) and 4(f)], the shock (R.S.1)
is reflected from the sidewall of the test section and reappears
in the camera view while traveling back toward the cylinder.

The reflected shock (R.S.2) generated in the lower-shock-
wave system moves on the cylinder surface toward the front
stagnation point at one end, and its leading point [Fig. 3(d)]
travels toward the shock-tube walls. The Mach stem (M.S.2)
on either side of the symmetry plane moves away from the
downstream side of the cylinder. Note that one end of the slip
surface [denoted S.L.1 in Fig. 3(a)] travels along the cylinder
surface and approaches the rear stagnation point. Note that
experimental and numerical results are quite comparable for
most flow features where the effect of viscosity is negligible,
such as triple-point trajectories and diffraction patterns of
shock waves. From t = 212 μs [Figs. 4(g)–4(l)], the reflected
shock from the shock-tube walls (cross-stream direction)
starts to interact with the cylinder. It can be seen that
more complex wave structures start to appear, while the

experimental and numerical features continue to agree in terms
of wave locations. However, due to the absence of the diffusion
terms in the simulation, discrepancies arise in the loci of the
vortex positions on the downstream side of the cylinder. The
parameters that are used for quantitative comparisons concern
the location of the reflected shocks at different times. The
data are recorded from the set of schlieren images and are
presented in the x-t plane with dimensionless coordinates. The
flow features presented in Figs. 3(b) and 3(d) are measured
in each of the experiments. The locations of the reflected
shocks in the upper and lower shock systems obtained from
the experiment and the simulation are shown in Fig. 5. The
vertical axis (position) is normalized according to the wave
position at different times and the cylinder diameter, while
the horizontal axis (time) is normalized as t̃ = tUs/D, where
t,Us , and D are the time, incident shock velocity, and cylinder
diameter, respectively.

Experimental and computational results for a shock Mach
number of Ms = 1.16 are presented in Fig. 5 as follows:
open circles are locations of the reflected shocks measured
from the experimental images, and black squares are obtained
from the simulation. The velocities of the reflected shocks
at the measured points are obtained from a linear fit to the
locations of the wave with respect to the time interval between
the photographs and are constant. In Fig. 5(a), the dashed
line represents the trajectory of the reflected wave toward
the shock tube sidewalls within the camera view. Note that
the locations of the waves measured in the simulations are
within the experimental error bars. Excellent agreement is
found between the experiment and the numerical simulation
for different flow features such as the incident as well as
the reflected shock trajectories. This comparison strengthens
our confidence in the experimental and simulation results for
further investigations.

C. Investigation of the reflected-shock wave from the cylinder

In this section, a parametric study of the reflected curved
shock-wave trajectories is presented. Several numerical
computations are realized to investigate the key parameters
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affecting the velocity of the reflected-shock wave. In Fig. 6,
the velocity of the leading point (XR) of the reflected shock
versus time derived from the numerical data is presented for
the case of D = 15 mm and Ms = 1.28.

It can be seen that, during the first 0.04 ms, the speed of the
reflected shock reduces dramatically compared to the speed
of a reflected shock from a planar rigid wall [23]. Moreover,
it is clear that asymptotically the reflected-shock velocity will
reach the sonic velocity, which can be easily explained by
the fact that the reflected-shock strength is reduced due to
its divergence. These two velocity limits are presented in the
figure. The velocity of the reflected shock found in the present
work (solid-circle line in the figure) falls between these the
two limits. With regard to the scaling law, the objective is

to construct a simple expression based on the obtained data
to normalize the velocity of the reflected-shock wave in the
vicinity of the cylinder (but not in close proximity to it, i.e.,
0.05 < t < 0.2 ms in Fig. 6). The expression should describe
the velocity of the leading point (XR) of the reflected-shock
wave over the range of XR/D from 0.5 to 5.

To evaluate the parameters affecting the reflected-shock
velocity, a series of experiments are performed in which
shock waves with different intensities collide with cylinders
of different diameters (10, 15, and 20 mm) in two different
gases (air and SF6). The time evolution of the leading
point of the reflected wave (XR) is recorded from numerical
and experimental sequences based on schlieren images. The
parameters are measured up to the time when the shock wave,
getting reflected from the sidewalls, enters the camera’s field
of view (see Fig. 1).

Figures 7(a) and 7(b) represent the time evolution of XR .
The excellent agreement found earlier between the simulation
and the experiment permits us to include further numerical
results with initial conditions, which are not covered by the
experiments. The computed lines are within the error bars.
However, in all cases the computational results are slightly
higher than the experimental data. These differences are
distinguishable in Fig. 7(a). The variation in Ms produces a
notable discrepancy in the reflected-shock velocity. Moreover,
as expected, the absolute velocity of the reflected shock
decreases due to the increased velocity of the induced flow
behind the incident shock. To investigate the effect of the
cylinder diameter on the reflected-shock velocity, a set of
experiments is performed placing cylinders with different
diameters in the test section while keeping Ms = 1.16. The
evolution of XR is presented in Fig. 7(a). One can conclude
that the effect of the cylinder diameter is small and that the
differences fall within the uncertainty bars over the range of
the experimental parameters.

To find the relevant parameters affecting the behavior of the
reflected-shock wave, nondimensional coordinates are used.
The reflected-shock trajectory is plotted using dimensionless
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FIG. 7. Location of the leading point, XR , of the reflected shock-wave location vs time in air for different initial conditions: (a) Constant
incident Mach number (Ms = 1.15–1.16) and different cylinder diameters. (b) Constant cylinder diameter (15 mm) and different incident Mach
numbers.
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coordinates. By finding the appropriate dimensionless time,
the data from various experiments with different initial
conditions collapse into a single curve. From the data analysis,
the following linear relationship between the velocity ratio
(the reflected-shock velocity from the cylinder divided by the
reflected-shock velocity from a planar end wall) and the Mach
number is found:

1 − UR

URW

= f (γ )(Ms − 1) (1)

The scaling function f (γ ) includes other parameters that
have not yet been tested up to this point. The value of this
function is found to be constant and equal to 0.714 for γ = 1.4.
This value is obtained from a linear fit of the obtained results
presented in Fig. 7(a) to Eq. (1). As can be seen from Figs. 7(a)
and 7(b), the UR for each experiment can be approximated to
a constant (a linear fitting). Thus, it can be written as

URt = URW [f (γ )(Ms − 1)] t (2)

and in dimensionless coordinates, with XR = UR t,

XR

D
= URW t

D
[1 − f (γ )(Ms − 1)] . (3)

As an initial estimation, the right-hand side of Eq. (3) can
be identified as a dimensionless time, so that

t̃ = URW t

D
[1 − f (γ )(Ms − 1)] . (4)

The location of the reflected-shock-wave leading points,
obtained from series of the experiments and numerical simu-
lations for f (1.4) = 0.714 as found earlier, is normalized by
the cylinder diameter, D, and plotted as a function of the new
scaled time (see Fig. 8).

By applying this normalization [Eq. (4)], all experimental
and computational results collapse together into a single
straight line. Moreover, further simulations with longer time
confirm the same trends. It should be noted that the procedure
performed here is based on the approximation of a constant
reflected shock velocity (see Fig. 6).

To clarify the expression of f (γ ), further studies are
performed with different gases, keeping the same test con-
figuration. Experiments and simulations are conducted using
SF6 (with γ = 1.09).

Figure 9 presents two typical images of the shock-wave
diffraction for SF6 with D = 15 mm. The time interval between
the two sequences is 56 μs. The shock-wave diffraction
patterns evolve similarly to the case of air. A distinguishable
difference can be observed in the strong vortices formation
downstream of the cylinder. As can be seen in Fig. 9(a), a
λ-shock-wave configuration is formed at the rear side of the
cylinder, and 56 μs later the vortex is beginning to detach
and travel downstream [Fig. 9(b)]. Analyzing these effects is
beyond the scope of the present paper; however, the locations
of XR are extracted from both experimental and computational
data.

Figure 10 presents the combined results of the XR measured
from the experiments and numerical simulations in different
gases (air and SF6) for a cylinder diameter of 15 mm and
different incident Mach numbers. The points are obtained from
the experiments and the curves from the simulations. As can
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FIG. 8. Normalized reflected shock-wave location vs normalized
time for different flow configurations. The time is normalized as in
Eq. (4).

be seen, the reflected-shock velocities for both air and SF6 de-
crease with increasing incident shock-wave Mach number. The
reflected-shock velocities in SF6 are smaller than those in air.

After a trial and error process, it is found that all curves
collapse if f (γ ) = 1/γ . Inserting this expression into Eq. (4)
results in the following new time scaling:

t̃ = URW t

D
[1 − (Ms − 1)/γ ] . (5)

To broaden the spectrum of the investigated parameters,
a new set of simulations is performed using argon (γ =
1.667) as a working gas for different values of Ms . Figure 11
represents the normalized shock location along the line of
symmetry as a function of t̃ [see Eq. (5)] for different test
gases (air, Ar, and SF6) and different Ms and D. As can be
seen, all data fall closely onto a single curve, which shows
that the approximate relation presented in Eq. (5) is a suitable
time scaling for the reflected-shock trajectory, XR , from a
rigid cylinder for different incident-shock Mach numbers,
different cylinder diameters, and different gases. However,
there are still minor discrepancies between different data,
probably due to the empirical character of the formulation.
A detailed analytical solution, if possible, should reveal the
exact expression.

FIG. 9. Schlieren image of the shock-wave interaction with a
15-mm-diam cylinder in SF6, Ms = 1.28.
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FIG. 10. Reflected wave location vs time from the experiments
and simulations done with different gases in the case of a 15-mm-diam
cylinder.

To express the obtained results using only the initial
conditions, one can use the expression of the reflected-shock
velocity as presented in [23], Eq. 4.1.57, and the well-known
relation (see Ref. [23], Eq. 4.1.34)

URW = 2ξ + α − 1√
(1 + α)(1 + αξ )

a0, (6)

where ξ is the shock strength defined as

ξ = 1 + 2γ

(γ + 1)
β, (7)

where β = M2
s − 1, α = (γ + 1)/(γ − 1), and a0 is the

sound velocity in the unshocked fluid. After some algebraic
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FIG. 11. Reflected wave location vs time from experiments and
simulations for different gases. The time is normalized as in Eq. (5).

manipulation, one gets

URW = 1

Ms

(1 + 2α−1β)a0. (8)

Implementing relation (8) into Eq. (3) and using f(γ ) =
1/γ , one can obtain the reflected-shock trajectory:

XR

D
= a0t

D

1

Ms

(1 + 2α−1β)(1 − Ms − 1

γ
). (9)

For further validation, numerical simulations are carried out
for longer times than the experiments. It appears that, as time
evolves, the computed lines approach each other, strengthening
our confidence in the proposed scaling law. However, this
scaling is tested for larger Mach numbers and found to be not
valid for Ms > 1.4, showing thereby the limit of applicability
of the proposed formulation.

As discussed above, the velocity extracted from Eq. (1) lies
in between two asymptotic cases: the reflected-shock velocity
from a planar rigid wall as the upper limit and the sonic velocity
in the shocked gas as the lower limit. These two cases are
emphasized in Fig. 6 together with the actual reflected-shock
velocity from a cylinder found in the simulations.

According to Eq. (9), it seems that the evolution of the
reflected-shock trajectory can be approximated by the velocity
of a shock wave reflected from a planar rigid wall reduced by
the factor 1−(Ms−1)/γ .

V. CONCLUSIONS

In this study, the interaction of planar shock waves with
circular cylinders is investigated both experimentally and
numerically. The experiments are carried out in a shock
tube with a schlieren-based diagnostic system. The numerical
method is based on a fifth-order WENO scheme solver for the
Euler equations in conjunction with an immersed boundary
technique. The study has focused on the behavior of the
reflected curved shock wave from the cylinder in the upstream
direction.

It has been found that the velocity of the leading point of
the reflected wave can be approximated by a simple universal
relation. The velocity is proportional to the reflected-shock
velocity from a planar rigid wall reduced by a factor that
depends on the incident shock-wave Mach number and the
heat capacities ratio. The proposed relation is valid in the limit
of weak shock waves (Ms < 1.4). This relation is obtained
under the assumption that the velocity of the leading point of
the reflected-shock wave is constant. In our opinion, at Mach
numbers higher than 1.4, compressible effects start to play an
important role in the dynamics of the flow, and the assumption
of constant reflected shock velocity is no longer valid in
this case. However, additional investigations are needed for
further verification of this assumption. Nevertheless, the
derived relation is valid in the range of 0.5–5 D from the
cylinder, but certainly not closer than 0.1 D. It is believed
that the assumption is valid to longer distances. However,
since no measurements are conducted beyond this region, the
conclusions of the present study are limited to this region.
This study is part of a more comprehensive investigation of
the interaction of moving shock waves with obstacles.
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