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Influence of inertia on viscous fingering patterns: Rectangular and radial flows
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Recently, there has been a growing interest in the impact of inertial effects on the development of the
Saffman-Taylor instability. Experiments and theory indicate that inertia may have a significant influence on the
system’s behavior. We employ a perturbative-mode-coupling method to examine how the stability and morphology
of the viscosity-driven fingering patterns are affected by inertia. Both rectangular and radial Hele-Shaw flow
geometries are considered. In the rectangular configuration useful results can be deduced analytically, and in
closed form. In particular, we have found that inertia has a stabilizing role at the linear stage, and tends to widen
the fingers at the weakly nonlinear regime. These analytical results are consistent with existing experimental
findings. The analysis of the system is not as simple in radial flow geometry, but it still allows the capture of
inertially induced, enhanced finger tip splitting events at the onset of nonlinearities.
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I. INTRODUCTION

The Saffman-Taylor problem [1] is one of the most studied
among fluid dynamic systems presenting formation and
evolution of patterned structures. It considers the development
of interfacial instabilities when a fluid displaces another of
higher viscosity between the narrowly spaced plates of a
Hele-Shaw cell [2]. The problem is traditionally studied in
two basic Hele-Shaw cell geometries, respectively, rectangu-
lar [1,3–8] (longitudinal flow in a rectangular channel), or
radial [9–14] (axisymmetric fluid injection). Radial geometry
exhibits branched morphologies markedly characterized by
the spreading, and subsequent splitting of the growing fingers.
Conversely, flow in the rectangular configuration normally
displays fingers that do not tend to bifurcate. Commonly, the
system evolves until a single stable finger forms.

A large body of theoretical and experimental work on the
Saffman-Taylor instability addresses flow in very thin cell
gaps, and considers that the displaced fluid is highly viscous, so
that inertial effects can be safely neglected. This characterizes
a vanishing Reynolds number flow described by the usual
Darcy’s law [1–14]. Nevertheless, the quest for even richer
dynamic behavior, and the desire to understand how inertia
could alter the shape of the patterns motivated some research
groups to revisit the classic viscous fingering problem [15–20].
They focused on situations in which inertia could play a
relevant role by utilizing displaced fluids of low viscosity,
larger plate spacings, and larger flow speeds. In this context, the
governing hydrodynamic equation is a modified, effectively
two-dimensional (2D) Darcy’s law based on a gap-averaging
process of the 3D Navier-Stokes equation which includes the
contribution of inertial terms.

An interesting example of the emergence of important
inertial effects in rectangular Hele-Shaw flow has been recently
studied experimentally in Ref. [18]. It has been found that,
contrary to the conventional noninertial behavior, one observes
an increase in the finger width for high-flow speeds. It turns
out this distinct finger broadening effect is induced by inertia.
Besides, inertial corrections to the radial Hele-Shaw problem
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have been theoretically examined in the zero-surface-tension
limit [19]. A linear stability analysis of this idealized system
suggests that inertia tends to stabilize interfacial disturbances.
Another recent theoretical investigation revealed that inertia
affects both the stability and shape of patterns produced by
centrifugally driven Hele-Shaw flows [20].

So, regarding the effect of inertia on viscosity-driven
instabilities in Hele-Shaw cells, previous works examined
experiments in rectangular configuration, and purely linear
analysis (in the zero-surface-tension limit) for radial dis-
placements. Despite the significance and usefulness of these
particular efforts, a theoretical study about the influence
of inertia on the morphology of injection-induced radial
fingering patterns, as well as its action on the finger widening
phenomenon detected in rectangular geometry still need to be
performed. These important nonlinear issues can be addressed
by a perturbative weakly nonlinear approach. That is precisely
what we intend to do in this work.

In this paper we tackle both rectangular and radial geometry
Hele-Shaw problems, and investigate the role played by inertia
in determining key features of the pattern-forming dynamics.
This is done by employing a mode-coupling theory, and assum-
ing the presence of realistic nonzero surface tension effects.
We find that the rectangular flow problem is particularly well
suited to analytical treatment, permitting a simplified descrip-
tion of important stability and morphological aspects during
linear and early nonlinear flow stages. Unfortunately, it is
difficult to formulate a closed form, purely analytical portrayal
of inertial effects in the radial Hele-Shaw situation. Even so,
mode coupling still allows one to gain insight into relevant
aspects of radial flow patterns, such as finger tip splitting.

The layout of the rest of the paper is as follows. Section II
presents the derivation of the weakly nonlinear equations
for Hele-Shaw flows in rectangular geometry when inertial
effects are taken into account. A linear stability analysis of the
rectangular case is performed in Sec. II B. Useful analytical
information about the influence of inertia on the width of the
fingers is discussed in Sec. II C. The analysis of the radial
geometry flow is carried out in Sec. III, where we focus on
the impact of inertia on the important mechanism of finger tip
splitting. Our main results and conclusions are summarized
in Sec. IV.
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FIG. 1. Schematic representation of the rectangular Hele-Shaw
flow setup.

II. EFFECT OF INERTIA: RECTANGULAR GEOMETRY

A. Mode-coupling differential equation

Consider two semi-infinite immiscible fluids, flowing in
a narrow gap of thickness b, between two parallel plates of
a rectangular Hele-Shaw cell. The cell lies in the x-y plane
(Fig. 1). The displacing fluid has negligible viscosity, while
the displaced fluid has viscosity η. Between the two fluids
there exists a surface tension σ . The inviscid fluid is injected
at constant external flow velocity v∞ = v∞ŷ at y = −∞ and
withdraws the viscous fluid at the same velocity at y = +∞.
Here ŷ denotes the unit vector along the y axis. We describe
the system in a frame moving with velocity v∞, so that the
interface may deform, but it does not displace from y = 0
(dashed line in Fig. 1) on the average.

During the flow, the interface has a perturbed shape
described in the form of a Fourier series y = ζ (x,t) =∑

k ζk(t) exp(ikx) over the range 0 � x � L in the comoving
frame, where ζk(t) denotes the complex Fourier mode ampli-
tudes. The wave vectors k are constrained to lie on the x axis,
but can be either positive or negative. Note that the k = 0 mode
vanishes since we are in a comoving frame. Periodic boundary
conditions are applied along the x axis so that k = 2πn/L,
for integer n. The analytic model we employ [8] keeps up to
second-order terms in ζ , and describes the linear and early
nonlinear dynamics of the system.

In order to investigate the influence of inertia on the
Saffman-Taylor instability we follow the theoretical approach
originally developed in Refs. [15–20], and consider that the
fluid flow is governed by a gap-averaged nonlinear generalized
Darcy’s law equation

ρ

[
∂u
∂t

+ 6

5
(u·∇)u

]
= −∇p − 12η

b2
u, (1)

and by a 2D continuity equation for an incompressible fluid

∇ · u = 0. (2)

Here u = v + v∞, where v = vx x̂ + vy ŷ denotes the velocity
with respect to the comoving frame, and p is the hydrodynamic

pressure. The coefficients appearing in front of the terms ∂u/∂t

and (u·∇)u may vary depending on the way the gap averaging
is performed, but are always of order 1. By taking into
consideration the potential nature of the flow [18,19], Eq. (1)
can be conveniently rewritten in a dimensionless form as

Re

[
∂φ

∂t
− 3

5
|∇φ|2

]
= p − φ, (3)

where φ (u = −∇φ) is a velocity potential. The parameter

Re = ρUb2

12ηL
(4)

defines a Reynolds number that quantifies the effect of inertia
on the system. In Eq. (3) lengths and velocities are rescaled
by L, and by a characteristic velocity U = v∞, respectively.
From this point on, we work with the dimensionless version
of the equations.

Due to surface tension the pressure satisfies a Young-
Laplace boundary condition [2], which expresses the pressure
jump across the fluid-fluid interface

p = Bκ, (5)

where the in-plane interfacial curvature is denoted by κ , and

B = σb2

12ηUL2
(6)

represents an effective surface tension parameter. The problem
is specified by Eq. (5), augmented with the kinematic boundary
condition

∂ζ

∂t
=

(
vy − vx

∂ζ

∂x

)
y=ζ

, (7)

which states that the interface moves according to the local
fluid velocities.

Considering the incompressibility condition (2), we define
Fourier expansions for the velocity potential, which obeys
Laplace’s equation ∇2φ = 0. Then, we write φ in terms of
the perturbation amplitudes ζn by considering condition (7).
Substituting these relations, and the pressure jump condition
(5) into Eq. (3), always keeping terms up to second order in
ζ , and Fourier transforming, we find the equation of motion
for the perturbation amplitudes in rectangular geometry (for
k �= 0)

Reζ̈k +
(

1 − Re
|k|
5

)
ζ̇k − 
(k)ζk

=
∑
k′ �=0

[G(k,k′) + ReI (k,k′)]ζ̇k′ζk−k′

+ Re
∑
k′ �=0

[G(k,k′)ζ̈k′ζk−k′ + J (k,k′)ζ̇k′ ζ̇k−k′], (8)

where the overdot denotes total time derivative, and 
(k) =
|k|[1 − Bk2]. The mode coupling terms are given by

G(k,k′) = |k|[1 − sgn(kk′)], (9)

I (k,k′) = |k|
5

[|k|sgn(kk′) − |k′|], (10)
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and

J (k,k′) = |k|
{

3

5
[1 − sgn(k′(k − k′))] − sgn(kk′)

}
. (11)

The sgn function equals ±1 according to the sign of its
argument. Equations (8)–(11) constitute one of the principal
results of this work, yielding the time evolution of the
perturbation amplitudes accurate to second order, including
the action of inertial effects. Notice that when Re = 0 Eq. (8)
reproduces the simpler results obtained in Ref. [8] for the
corresponding problem without inertia.

While presenting our results in Secs. II B and II C we make
sure that the values of the relevant dimensionless quantities Re
and B are consistent with realistic physical parameters related
to existing experimental arrangements, and material properties
of the fluids [18]. This is also true for the results presented in
Sec. III for the radial flow problem [9–11].

B. Linear stability analysis

At the linear level Eq. (8) is significantly simplified yielding
a second-order ordinary differential equation with constant (in
time) coefficients

Reζ̈k +
(

1 − Re
|k|
5

)
ζ̇k − 
(k)ζk = 0. (12)

By setting ζk(t = 0) = ζk(0), and ζ̇k(t = 0) = 0 the linear
solution can be written in closed form as

ζk(t) = ζk(0)

λ− − λ+
[λ− exp (λ+t) − λ+ exp (λ−t)], (13)

where

λ± = 1

2Re

[
±

√(
1 − Re

|k|
5

)2

+ 4Re
(k)

−
(

1 − Re
|k|
5

)]
. (14)

For experimental situations of interest [18] the term involving
exp (λ−t) drops off very quickly. So, after a very short
transient, the linear solution can be accurately rewritten in
a simpler form

ζk(t) = ζk(0)

[ (
1 − Re |k|

5

) + Reλ(k)(
1 − Re |k|

5

) + 2Reλ(k)

]
exp [λ(k)t], (15)

where λ(k) = λ+ denotes the linear growth rate. We point
out that oscillatory solutions of Eq. (12) fall off exponentially
with time. We can see that in the limit Re → 0, λ(k) → 
(k),
i.e., we recover the growth rate expression obtained for the
noninertial problem [8].

The critical wave number separating unstable from stable
regions is obtained by the condition λ(k) = 0, yielding

kc = 1√
B

. (16)
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FIG. 2. (Color online) Linear growth rate λ(k) as a function of k,
for Re = 0, Re = 0.12, and B = 0.001. The maxima of the curves
are indicated by small circles.

It defines the width of the band of unstable modes, and is
independent of the controlling parameter Re. While kc is not
modified by inertia, the fastest growing mode [obtained by
setting dλ(k)/dk=0] has a complicated dependence on the
Reynolds number, being a solution of a quartic algebraic
equation in k. But in the lowest order correction in Re the
mode of maximum growth rate simplifies to

kmax ≈ ko
max

(
1 + ko

max

15
Re

)
, (17)

where ko
max = 1/

√
3B is the fastest growing mode when inertia

is neglected.
Figure 2 plots λ(k) as a function of wave number k for

two values of Re: 0 and 0.12, and for B = 0.001. First, it is
evident that the band of unstable modes is not modified as
the Reynolds number is changed. However, it is also clear that
there is a considerable decrease in the magnitude of the growth
rate of the wave number of maximum growth when inertial
effects are taken into account. This characterizes a stabilizing
role of the inertial effects in rectangular geometry. In addition,
it can also be observed that the position of the wave number
of maximum growth is shifted toward higher values of k for
a nonzero Re. This wavelength selection at the linear regime,
which results from the action of inertia, sort of encourages
the idea that inertia could lead to enhanced tendency toward
finger broadening at subsequent stages of the dynamics. The
correctness of this a bit conjectural linear prediction will be
checked by our early nonlinear analysis.

C. Weakly nonlinear analysis

To establish a better connection with the weakly nonlinear
results originally obtained in Ref. [8] for the noninertial
situation, we begin by performing a small manipulation in the
mode-coupling equation (8). From the simplicity of the linear
solution (15), we can write that ζ̇k = λ(k)ζk [20]. Therefore,
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Eq. (8) can be suitably written as a first-order (in time)
differential equation

ζ̇k = λ(k)ζk +
∑
k′ �=0

Y (k,k′)ζk′ζk−k′, (18)

where

Y (k,k′) = λ(k′){G + Re[I + λ(k′)G + λ(k − k′)J ]}
1 + Re

[
λ(k) + λ(k′) + λ(k − k′) − |k|

5

] (19)

is obtained by substituting Eq. (18) into Eq. (8), and keeping
consistent second-order expressions involving the perturbation
amplitudes. In Eq. (19) G, I , and J are the functions presented
in Eqs. (9)–(11), respectively. We call attention to the fact that
when Re = 0, Eq. (18) reproduces the second order form of
the mode coupling equation originally derived in Ref. [8]. It is
beneficial to recast Eq. (8) as Eq. (18) since this is exactly the
form which allows one to gain insight about morphological
aspects of the interface in a fairly simple fashion.

To get useful analytical information about the problem, as
in Refs. [8,12], we advance by considering the coupling of a
small number of modes. Our discussion is simplified further by
rewriting Eq. (18) in terms of cosine and sine modes, where the
cosine ak = ζk + ζ−k and sine bk = i (ζk − ζ−k) amplitudes
are real valued. Without loss of generality we choose the phase
of the fundamental mode so that ak > 0 and bk = 0. The finger
tip behavior (tip widening and tip narrowing phenomena) is
related to the influence of a fundamental mode k [assuming
that λ(2k) = 0] on the growth of its harmonic 2k [8]. The
equations of motion for the harmonic mode are written as

ȧ2k = λ(2k)a2k + 1
2T (2k,k)a2

k , (20)

ḃ2k = λ(2k)b2k, (21)

where a generalized finger tip function (including inertial
effects)

T (2k,k) = Y (2k,k), (22)

controls the appearance of the finger. From Eq. (21) it is
obvious that there is no second-order coupling for the sine
harmonic mode. The sign of T (2k,k) dictates whether finger
tip widening or finger tip narrowing is favored by the dynamics.
If T (2k,k) < 0, the result is a driving term of order a2

k forcing
growth of a2k < 0, the sign that is required to cause fingers to
get wider. By contrast, if T (2k,k) > 0 growth of a2k > 0 would
be favored, leading to finger tip narrowing. It is important
to note that when Re = 0 the finger tip function vanishes,
meaning that there is no second-order coupling at all when
inertia is absent. Hence, if inertial effects are neglected one
cannot detect any sign of finger broadening behavior at second
order in rectangular flow geometry.

Figure 3 illustrates how the finger tip function T (2k,k) is
changed as Re is increased. The solid (dashed) curve considers
that B = 0.001 (B = 0.003). First, as expected, when Re = 0
the finger tip function is indeed zero. For a given B we see
that increasingly larger values of Re lead to more negative
values of T (2k,k). Therefore, inertial effects tend to favor
the broadening of the fingers. Additionally, one can see that
such a behavior is more intense for smaller values of B. We
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45

60

T
2k

,k

B 0.003

B 0.001

FIG. 3. (Color online) T (2k,k) as a function of Re, for two
different values of B: 0.001 (solid curve) and 0.003 (dashed curve).

emphasize that these theoretical findings are consistent with
the experimental results observed in Ref. [18].

It is worth noting that in Fig. 3 we are able to fix the
value of B while the Reynolds number is increased. However,
in the experiments performed in Ref. [18] the main tuning
parameter is the flow velocity U , so that by changing U both
B and Re are simultaneously modified. This would imply in
an interplay between these two parameters in determining the
finger broadening behavior. But, in the end, both in this work
and in [18] the net effect of inertia is to widen the fingers.

III. EFFECT OF INERTIA: RADIAL GEOMETRY

In this section we turn to the investigation of the role played
by inertia on the Saffman-Taylor problem in radial geometry.
We do that by focusing on the influence of inertial effects
on the most celebrated morphological feature in radial Hele-
Shaw flows: the finger tip splitting phenomenon. To study this
interfacial behavior we must go beyond purely linear stages,
and access the early nonlinear dynamics of the system.

Similarly to what we have done in Sec. II A, we consider a
Hele-Shaw cell of spacing b initially containing a viscous
incompressible fluid of viscosity η and density ρ. Then,
another fluid of negligible density and viscosity is injected
into the viscous fluid at a constant injection rate Q, equal
to the area covered per unit time (see Fig. 4). Between the
two fluids there exists a surface tension σ . The perturbed
fluid-fluid interface is described as R(θ,t) = R(t) + ζ (θ,t),
where θ represents the azimuthal angle, and R(t) is the time de-
pendent unperturbed radius R = R(t) =

√
R0

2 + Qt/π , with
R0 being the unperturbed radius at t = 0. In addition, ζ (θ,t) =∑+∞

n=−∞ ζn(t) exp (inθ ) denotes the net interface perturbation
with Fourier amplitudes ζn(t), and discrete azimuthal wave
numbers n. As in Sec. II our perturbative approach keeps terms
up to the second order in ζ . In the Fourier expansion of ζ we
include the n = 0 mode to maintain the area of the perturbed
shape independent of the perturbation ζ . Mass conservation
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FIG. 4. Schematic representation of the radial Hele-Shaw flow
setup.

imposes that the zeroth mode is written in terms of the other
modes as ζ0 = −(1/2R)

∑
n�=0 |ζn(t)|2.

By utilizing the generalized Darcy’s law (3), the relevant
boundary conditions [Eqs. (5) and (7)], and by following the
same basic steps described in Sec. II, we obtain the second-
order mode-coupling dimensionless equation for the radial
flow geometry (with n �= 0)

Reζ̈n +
[

1 − Re
Ṙ

R

( |n|
5

− 2

)]
ζ̇n

−
[

(n) − Re

Ṙ2

R2
(|n| − 1)

]
ζn

=
∑
n′ �=0

[F(n,n′) + ReH(n,n′)]ζn′ζn−n′

+
∑
n′ �=0

[G(n,n′) + ReI(n,n′)]ζ̇n′ζn−n′

+ Re
∑
n′ �=0

[G(n,n′)ζ̈n′ζn−n′ + J (n,n′)ζ̇n′ ζ̇n−n′ ], (23)

where 
(n) = (|n| − 1)Ṙ/R − B|n|(n2 − 1)/R3. The mode-
coupling terms are given by

F(n,n′) = |n|
R

{
Ṙ

R

[
1

2
− sgn(nn′)

]

− B

R3

[
1 − n′

2
(3n′ + n)

] }
, (24)

G(n,n′) = 1

R

{|n|[1 − sgn(nn′)] − 1
}
, (25)

H(n,n′) = |n| Ṙ
2

R3

{ ( |n|
5

+ 2

)
sgn(nn′) − 1

− |n′|
5

− 3

5
sgn(n′(n − n′))

}
, (26)

I(n,n′) = |n| Ṙ

R2

{ ( |n|
5

− 1

)
sgn(nn′) + 1

− |n′|
5

− 6

5
sgn(n′(n − n′)) − sgn(n(n − n′))

}
,

(27)

and

J (n,n′) = 1

R

{
3

5
|n|[1 − sgn(n′(n − n′))]

− |n|sgn(nn′) − 1

}
. (28)

Here, lengths are rescaled by L = R0 and velocities by
U = Q/2πR0. We mention that when Re = 0 Eqs. (23)–(28)
reproduce the results obtained in Ref. [12] for the problem
without inertia. For instance, if Re = 0, 
(n) represents the
linear growth rate of the noninertial system. We have also
verified that the radial geometry Eqs. (23)–(28) reduce to the
corresponding rectangular geometry equations computed in
Sec. II A [Eqs. (8)–(11)] if we take the “rectangular geometry
limit.” Specifically, F → 0, G → G, H → 0, I → I , and
J → J . This limit operation can be better understood in
the dimensional version of the expressions: after appropriate
reintroduction of dimensions, it is obtained by setting R → ∞
and Q → ∞, such that Q/(2πR) ≡ v∞ and n/R ≡ k remain
constant. In dimensionless form the corresponding limit can
be obtained by setting R → ∞, and Ṙ → 1.

Before turning to the analysis of the impact of inertia on
the finger tip splitting mechanism, we briefly comment on the
first-order (in ζ ) portion of the mode-coupling equation (23).
In contrast to the equivalent expression obtained in Sec. II B
for the rectangular flow configuration [Eq. (12)], in radial
geometry we obtain a differential equation containing time
dependent coefficients

Reζ̈n +
[

1 − Re
Ṙ

R

( |n|
5

− 2

)]
ζ̇n

−
[

(n) − Re

Ṙ2

R2
(|n| − 1)

]
ζn = 0, (29)

in view of the fact that R = R(t). This creates an impediment to
obtain simple, closed form analytical expressions for the linear
growth of the radial flow system. However, in agreement with
Ref. [19] we have also verified that at the linear level inertia
acts to restrain the growth of the perturbation amplitudes,
characterizing a stabilizing behavior. This information is pretty
much what one can extract at the linear regime.

We proceed by targeting the unveiling of more interesting
morphological issues related to the action of inertia at the
onset of nonlinearity. While an analysis like the one performed
in Sec. II C (which directly uses the concept of a finger tip
function) is not possible in the radial case with inertia, we can
still examine finger tip splitting related issues by considering
the coupling of just two Fourier modes: the fundamental n,
and its first harmonic 2n.

Regarding this point, Fig. 5 illustrates a parametric plot ex-
pressing the behavior of the ratio a2n/R relative to an/R as time
advances, for the coupling between modes n = 5, and 2n =
10. The initial perturbation amplitudes are an(0) = 3.0 × 10−3

and a2n(0) = 3.0 × 10−4, such that an(0) 
 a2n(0). For the
case Re = 0.1 the initial conditions ȧn(0) and ȧ2n(0) match
those conditions at Re = 0. This type of plot is convenient
to compare the morphologies for the cases with and without
inertia, since the ratio an/R is related to the average size
and overall n-fold symmetry of the patterned structure, while
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FIG. 5. (Color online) Behavior of a2n/R(t) with respect to
an/R(t) in the absence (Re = 0) and presence (Re = 0.1) of inertial
effects.

a2n/R determines the typical morphology of the finger tip
(i.e., if the tips are wide and split, or if they are narrow and get
sharper).

Situations involving both the absence (Re = 0), and the
presence (Re = 0.1) of inertial effects are presented in Fig. 5
by considering a characteristic value for B = 0.01. It is clearly
that as an/R is increased, a2n/R tends to become more and
more negative. Incidentally, this is the phase of the harmonic
that favors finger tip widening and splitting. Furthermore, for
any given value of an/R, it is apparent that when Re = 0.1
the ratio a2n/R is more negative than for Re = 0. This
observation suggests that, due to inertia, nonlinear effects
naturally enhance tendency toward finger tip splitting.

Supplementary information about the role of inertial ef-
fects on the development of finger tip splitting events is
provided by Fig. 6. It is nothing but the time evolution
of the interfaces [R(θ,t) = R(t) + a0(t) + an(t) cos (nθ ) +
a2n(t) cos (2nθ )] obtained by the perturbation amplitudes
shown in Fig. 5, plotted at equal time intervals, assuming
that Re = 0 for 0 � t � 12.5 (left panel), and Re = 0.1 for
0 � t � 19.4 (right panel). Notice that, the time evolutions
cease when the same value of the ratio an/R ≈ 0.15 is reached
for both Reynolds numbers used.

We stress that the patterns on the left and right panels
of Fig. 6 are not in scale. This is justified by the fact that,
due to the stabilizing role of inertia, it takes a longer time
to reach the prescribed condition for the ratio an/R. On
the other hand, as seen in Fig. 6 the delayed fingers for
Re = 0.1 will arise more bifurcated than those resulting from
the equivalent evolution when Re = 0. Therefore, our weakly
nonlinear results predict favored tip splitting behavior when
inertia is taken into account.

FIG. 6. (Color online) Snapshots of the evolving interface, plotted
at equal time intervals for the interaction of two cosine modes n = 5
and 2n = 10 when Re = 0 (left panel) and Re = 0.1 (right panel).
Finger tip splitting is clearly favored on the right panel.

IV. CONCLUSION

By contrast to the great majority of studies of the Saffman-
Taylor instability to date, recent experiments in rectangular
Hele-Shaw flow [18], and a linear analysis in radial Hele-Shaw
geometry [19], revealed that inertia can introduce important
modifications on the stability and morphological aspects of the
viscous fingering patterns. To examine further the influence
of inertia on these systems, we approached the problem
analytically by employing a mode coupling theory. The most
advantageous and useful aspect of our theoretical model refers
to its potential to capture inertially induced morphological
changes already at lowest nonlinear perturbative order.

In agreement with previously reported linear stability
results, we have verified that, for both flow geometries inertia
acts to stabilize interfacial disturbances. Moreover, in line
with existing experimental observations, we have found that
increased inertia leads to the formation of wider fingers in
rectangular channels. In the radial flow setup, despite the
stabilizing nature of inertia at linear stages, we predict that
finger tip splitting events are favored by the action of inertial
effects. This enhanced bifurcation of the finger tips still needs
to be checked by experiments.

On the theoretical side, a quantitative test of our chief
analytic results to fully nonlinear stages of interface evolution
would require the elaboration of numerical simulations capable
of revealing inertial effects on convoluted patterns at advanced
time regimes. Both boundary integral methods [21] and phase-
field techniques [22] seem to be appropriate to effectively
attack this long-time evolution problem.
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