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Oil displacement through a porous medium with a temperature gradient
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We investigate the effect of a temperature gradient on oil recovery in a two-dimensional pore-network model.
The oil viscosity depends on temperature as μo ∝ eB/T , where B is a physicochemical parameter, depending on
the type of oil, and T is the temperature. A temperature gradient is applied across the medium in the flow direction.
Initially, the porous medium is saturated with oil, and then another fluid is injected. We have considered two cases
representing different injection strategies. In the first case, the invading fluid viscosity is constant (finite viscosity
ratio), while in the second one, the invading fluid is inviscid (infinite viscosity ratio). Our results show that for
the case of finite viscosity ratio, recovery increases with �T independent of strength or sign of the gradient.
For an infinite viscosity ratio, a positive temperature gradient is necessary to enhance recovery. Moreover, we
show that for �T > 0, the percentage of oil recovery generally decreases (increases) with B for a finite (infinite)
viscosity ratio. Finally, we also extend our results for infinite viscosity ratio to a three-dimensional porous media
geometry.
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I. INTRODUCTION

Thermal recovery processes have been used by petroleum
companies as a strategic method to improve oil production
from reservoirs. These processes consist, basically, in decreas-
ing the oil viscosity (increasing the pressure) by increasing the
temperature of the reservoir using a heat source [1]. In practice,
this can be done by injecting a hot fluid (steam or water)
into the reservoir. A method often called steam or hot-water
injection has been mostly used by companies exploiting heavy
oil reservoirs [2,3].

The oil viscosity is described by an exponential dependency
of temperature allowing a reduction of oil viscosity by
several orders of magnitude with only a modest increase of
temperature [1]. In general, oil properties in the operational
conditions of a reservoir field are very difficult to predict
and can be very different for each type of oil or oil mixture.
Therefore, their direct measurement is highly desirable for a
better understanding of this phenomenon and to improve the
efficiency of the recovery.

Several approaches to model and simulate oil recovery
have been utilized in the past. Some of them make use of
the macroscopic description of conservation laws in a porous
medium, simulating a whole reservoir, including injector and
producer wells [5,6]. Other authors use conservation laws
under a more microscopic approach [7–20], where a portion of
the porous medium can be represented by tubes connected to
one another. The fluid flow in each tube is easily computed by
the Hagen-Pouseille equation. For instance, Lu et al. [21–23]
have used this type of modeling approach to simulate oil
burning by air injection. This represents another thermal
recovery method, where the heat source is the burning oil
itself. In their work, they have studied the penetration of the
burning front into a solid oil phase.

In the present work, we study the displacement in a porous
medium of oil with temperature-dependent viscosity being
pushed by another fluid. We adopt a simple two-dimensional
network model [24–27] previously developed to simulate
two-phase flow with arbitrary viscosity ratio. Despite its

simplicity, the model is capable of reproducing a large variety
of experimental results [24]. In order to adapt this model
to our purpose, we implement a temperature gradient in the
injection direction and assume that the oil viscosity has an
Arrhenius-type dependency on temperature [4]. We studied
two different cases according to the viscosity ratio. In the first
one, the invading fluid viscosity is constant (finite viscosity
ratio) and in the second one, the invading fluid is inviscid
(infinite viscosity ratio). The aim of this work is then to
investigate the influence of a temperature gradient on the
efficiency of oil recovery under these different conditions.

II. MODEL FORMULATION

The porous medium, represented by links and nodes
elements, is microscopically disordered, but macroscopically
homogenous [28]. The links correspond to pieces of rock of
equal length � and cross-section area A. To each link we
assign a permeability k, which is a coarse-grain flow property
of the pore space, chosen randomly according to a uniform
distribution between 25 md and 10 D (1 D ≡ 10−12 m2).
This range is typical of rock permeabilities found in oil
reservoirs [2]. This randomness in the permeability represents
the disorder of the porous medium. The nodes where four links
meet are assumed to have no volume. The links are placed on
a square lattice tilted by 45◦ which assures that all links are
geometrically equivalent with regard to the average flow, i.e.,
the links are neither parallel nor perpendicular to the flow
direction. Initially, the porous medium is fully saturated with
oil and periodic boundary conditions are applied at the top and
bottom of the system. The penetration process starts with an
invading fluid being injected at a constant flow rate through
the left boundary of the system.

The volumetric flow rate in a link connecting neighbor
nodes i and j is given by Darcy’s law,

qij = −Akij

μef

(pj − pi)

�
, (1)
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where pi is the pressure at node i and kij is the permeability
of the link. The effective viscosity μef for a given link is
calculated according to a linear mixing rule, namely, μef =
Soμo + Sinvμinv, where So and Sinv are the saturations of the
oil and the invading fluid, respectively, and μo and μinv are their
corresponding viscosities. For each species, the saturation is
calculated at a link as the volume fraction of the corresponding
phase. We assume that a link is immediately accessible when
touched by the invading fluid at one end, neglecting wetting or
drying effects, the pinning of the interface due to impurities,
and finite contact angles or capillary forces at the pore level.

Mass conservation at each node of the lattice leads to the
following set of coupled linear algebraic equations:

∑

j

qij = 0, for i = 1, 2, . . . , N2, (2)

where N2 is the total number of nodes and the summation j

runs over the nearest neighbor nodes of node i. The linear size
of the lattice in the x direction is L = N�. These equations
are solved to obtain the node pressures at each time step.
In order to simulate the dynamics of viscous invasion, we
neglect the effects of fingers in each link containing both
phases and consider an abrupt saturation profile along its axial
direction. In this way, we can define an interface inside the link
separating the oil and the invading fluid. This interface is an
approximation and should not be confused with a meniscus in
a pore. Then, we allow those interfaces to displace by a length,
�xij = qij�tmin/A, where �tmin is the minimum time, among
all links containing both phases, necessary for the invading
fluid to reach the end of a link. When an interface reaches the
end of a link, reaching a pointlike node, it is instantaneously
transferred to those neighbor links whose pressure differences
allow for oil displacement. To avoid multiple interfaces in a
single link the following rule is adopted. When a third interface
appears in a link, these three interfaces are reduced to a
single one by merging bubbles of the same phase, so that the
phase volume in each link is conserved. The unphysical jumps
on the pressure resulting from this reorganization scheme
represent only negligible perturbations due to the small size of
the corresponding bubbles [24]. This procedure is executed at
each time step until a breakthrough happens, i.e., the invading
fluid just reaches the other end of the system.

Here we assume that the viscosity of the oil phase
typically obeys an exponential dependency on the inverse of
temperature,

μo = μre
B/T , (3)

where μr and B are physicochemical parameters, in units
of viscosity and temperature, respectively. The parameter B

controls the oil viscosity dependency on temperature. One
calls a fluid “heavy oil” if B is high and “light oil” if B is
small.

In order to impose a temperature gradient across the
medium, different temperatures are assigned to the left (inlet),
Tin, and right (outlet), Tout, boundaries of the lattice and
we assume, then, a linear temperature variation from inlet
to outlet. This imposed gradient is constant in time, which
is analogous to assume that the thermal conductivities of
both fluids are negligible compared to that of the rock. Our

results are expressed in terms of a dimensionless temperature,
�T ′ = �T/Tr , where �T = Tin − Tout and Tr is a reference
temperature defined here as the reservoir temperature with-
out heating. Our simulations are performed for temperature
differences in the range −4 � �T ′ � 4. Negative values of
�T ′ represent a cold injection which is not of technological
interest, but can help to understand the nature beyond the fluid
displacement under a temperature gradient.

In our approach, � and Tr represent adjusting parameters
which one can use for practical applications. For example, if we
consider Tr = 20 ◦C and � = 10 cm, the temperature gradient,
�T/L, varies from 0 to 0.1 ◦C/cm as �T ′ changes from 0
to 4, respectively, with a lattice size of N = 80 nodes. By
also considering a permeability value of k = 10 D, B/T = 3,
μr = 1 cp, and a pressure gradient of 1 atm/cm, we obtain
from Eq. (1) an oil flow velocity v ≈ 4 cm/min. For a typical
value of the interfacial tension of the oil (e.g., γ = 20 dyn/cm),
the corresponding capillary number can be calculated as
Ca = 5 × 10−3 which is moderately high [29], meaning that
the capillary forces can be considered negligible compared to
the viscous ones.

In the next section, we show results for the two different
cases of the viscosity ratio. In both, μo is given by Eq. (3), while
μinv is constant, i.e., independent of the temperature. This
can be justified since, for example, water, which is a typical
invading fluid, has a viscosity that hardly changes, compared
to many types of oils, for common operational temperature
intervals.

x

FIG. 1. Snapshots of the invading fluid near breakthrough for
the finite viscosity ratio case, using distinct types of oil and
temperature differences. All patterns have been generated with the
same distribution of permeability for the random links and N = 80.
From top to bottom, B ′ changes from 7 to 3, while from left to right,
�T ′ assumes the values −4, 0, and 4.
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FIG. 2. Near-breakthrough saturation of the invading fluid for the
finite viscosity ratio case. The curves correspond to three values of the
temperature difference, �T ′ = −4, 0, and 4, B ′ = 5, and N = 80.
In the inset, we also show the near-breakthrough saturation behavior,
but for a fixed value of �T ′ = 4 and B ′ = 3, 5, and 7.

III. RESULTS

In this section, we study the patterns of the invaded region
and the percentage of recovered oil when an external fluid
with unity viscosity is injected into the medium. We also
assume a unity value for μr in Eq. (3). According to our
model, the viscosity ratio, μo/μinv, has a finite value which
changes on x direction, if �T ′ is different from zero. In
Fig. 1 we show six different patterns of the invading fluid
with the same distribution of random links for different values
of �T ′ and B ′, where B ′ = B/Tr . From top to bottom we
change B ′ from 7 to 3, while from left to right �T ′ assumes
the corresponding values of −4, 0, and 4. We clearly observe
that either decreasing B ′ or for positive values of �T ′, the
invading patterns become more compact.

In the isothermal case, �T ′ = 0, the oil viscosity is a
constant depending only on B ′. For a heavy oil (B ′ = 7),
we can see finger patterns appearing in the invaded region.
When �T ′ > 0, the viscosity ratio is small on the left side of
the lattice and becomes larger as the invading fluid penetrates
in the x direction. First, the front advances compactly but at
some time, a finger appears and grows faster until it reaches
the other end of the lattice. In the opposite case, when �T ′
< 0, fingers appear initially and then become broader. For B ′
= 3, the changes in the viscosity ratio due to the temperature
difference suppress the appearance of fingers.
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FIG. 3. Percentage of recovered oil versus �T ′ for the finite
viscosity ratio case using three different values of B ′ and N = 80.

FIG. 4. Snapshots of the invading fluid near breakthrough for the
infinite viscosity ratio case. All patterns have been generated with the
same distribution of permeability for the random links B ′ = 5 and
N = 256. From left to right, �T ′ = −4, 0, and 4.

For each set of parameters, we perform simulations with
50 realizations of the disordered porous media, to obtain
average values of both the invading fluid saturation and the
percentage of recovered oil at the breakthrough. In Fig. 2, we
show the near-breakthrough saturation profile of the invading
fluid for different values of �T ′ and B ′. We observe that for a
positive �T ′ the saturation profile has a plateau before it starts
decreasing in the x direction. However, for a negative �T ′,
finger patterns in the beginning of the lattice produce a dip
in the saturation profile close to the inlet. The percentage of
recovered oil versus �T ′ is shown in Fig. 3 for three different
values of B ′. We see that, despite heavy oil recovery being
lower, all types of oil tend to the recovery performance for
high values of �T ′.

Now we study the recovery of an oil that is much heavier
than the invading fluid, i.e., for the case of an extremely
large viscosity ratio, μo/μinv → ∞. This idealized condition
is implemented here by considering that the pressure in the
invaded fluid immediately adjusts to the injection pressure,
i.e., the invading fluid is inviscid. This simplification allows us
to simulate bigger lattice sizes, since we need to solve Eq. (2)
only for noninvaded sites.

0 0.2 0.4 0.6 0.8 1
x/L

0

0.2

0.4

S in
v

ΔT’ = -4
ΔT’ =  0
ΔT’ =  4

0 0.2 0.4 0.6 0.8 1
x/L

0

0.2

0.4

S in
v B’

FIG. 5. Near-breakthrough saturation of the invading fluid for the
infinite viscosity ratio case. The curves correspond to three values of
the temperature difference, �T ′ = −4, 0, and 4, B ′ = 5, and N =
256. In the inset, we also show the near-breakthrough saturation
behavior, but for a fixed value of �T ′ = 4, and B ′ = 1, 3, and 5.
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FIG. 6. Percentage of recovered oil versus �T ′ calculated in the
infinite viscosity ratio case, for different values of N and B ′. In the
main plot, after proper rescaling, we show that these curves collapse
on top of each other and can all be fitted to a hyperbolic tangent
function. In the inset, we show the same results before rescaling.

In this case, the observed patterns of the interface are always
viscous fingeringlike, as shown in Fig. 4, for �T ′ = −4,
0, and 4, with B ′ = 5 and N = 256. For �T ′ = 0, these
patterns show fingers which agree with well known two-phase
displacement patterns with infinite viscosity ratio [30,31]. We
can also see that different patterns occur for different values of
�T ′. The reason for this behavior is that, despite the inviscid
characteristic of the defending fluid, the oil viscosity has a
finite value given by Eq. (3) which falls as the temperature is
raised. Then the number of longer fingers for B ′ = 5 increases
with �T ′ as shown Fig. 4. This observation is also valid for
B ′ = 1 and 3 (not shown), and therefore represents a standard
behavior in the case of infinite viscosity ratio.

For each set of parameters, we averaged over 100 realiza-
tions to obtain the invading fluid saturation and the percentage
of recovered oil. The near-breakthrough saturation profile of
the invading fluid is shown in Fig. 5 for different values of the
relevant parameters. For a negative value of �T ′, the saturation
profile always decays in the x direction. However, for a positive
�T ′, we can identify a region in the center of the medium
with approximately constant saturation. The extension of this
region increases with B ′ because heavier oils create slower and
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FIG. 7. Near-breakthrough saturation profile of the invading fluid
penetrating in a cubic lattice for the case of infinite viscosity ratio.
The curves are the results of simulations for �T ′ = −4, 0, and 4,
with parameter B ′ = 5 and system size N = 20. In the inset, we also
show the near-breakthrough saturation behavior, but for a fixed value
of �T ′ = 4 and B ′ = 3, 5, and 7.
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FIG. 8. Dependence of the percentage of recovered oil on the
temperature difference �T ′ or different values of B ′ on a cubic lattice
with N = 20 for infinite viscosity ratio.

wider fingers, which tend to make the invasion patterns more
compact.

In the inset of Fig. 6, the percentage of recovered oil R(%)
versus �T ′ is shown for different values of N and B ′. The
main plot shows that, after rescaling, these curves collapse on
top of each other and can be closely described by a hyperbolic
tangent function in the form

R(%) = a + bB ′ tanh(�T ′)
Nα

, (4)

with parameters a = 51.11 and b = 1.74 obtained through
the best nonlinear fit to the data. The exponent α is found
to be about 0.2 and can be computed as α = d − df , where
d = 2 is the Euclidean dimension of the lattice and df is the
fractal dimension, which is found to be 1.8 for our system.
The results show that above a certain value of temperature
difference, �T ′≈ 2, no relevant change in R(%) is observable
anymore for all types of oil. This means that a too strong tem-
perature gradient can be an unnecessary cost to the recovery
process.

Finally, we also performed simulations with our model
in the infinite viscosity ratio regime using a more realistic
three-dimensional porous medium substrate. More precisely,
we obtained results for a cubic lattice with size N = 20 and
averaged over 100 realizations for several values of B ′ and
�T ′. As shown in Figs. 7 and 8, the saturation profiles
and the recovery performance of the system, respectively,
remain basically the same as compared to the results found
for two-dimensional porous media models (for comparison,
see Figs. 5 and 6). This qualitative similarity reinforces the
validity of our approach as a way to increase the efficiency of
the recovery process by means of a temperature gradient.

IV. CONCLUSIONS

In summary, the main purpose here was to investigate how
the front between two immiscible fluids propagates in a model
porous medium as a function of the ratio of their viscosity and
under the influence of an imposed global temperature gradient.
An obvious technological application of our study would be
to enhance the recovery efficiency of oil being pushed by hot
water in a petroleum reservoir. In our simulations, this has been
accomplished by explicitly coupling the oil viscosity with the
inverse of temperature locally in terms of a simple exponential
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dependence. We thus proceeded with the displacement of
several types of oil through many realizations of disordered
porous medium and subjected to a range of distinct temperature
differences.

Two different regimes of viscosity ratio have been studied.
In the first, oil viscosity changes with temperature and the
viscosity ratio is always finite, but can vary over several
orders of magnitude. In the second regime, oil is assumed
to be “heavy” in the sense that it is extremely viscous
when compared to the invading fluid, even if a maximum
temperature difference is applied, hence the viscosity ratio can
be considered as infinite. We find that the best conditions for
recovery are significantly dependent on the adopted regime.
In the finite viscosity ratio case, an oil with a viscosity that is
only weakly dependent on the temperature is better recovered,
independent of the strength or sign of the gradient. Also
in this case, different invasion patterns can be observed as
the viscosity ratio changes, namely, we find fronts that are
compact, unstable, and sometimes a mix of both.

In the case of infinite viscosity ratio, oil recovery increases
with the exponential parameter B if the temperature difference

is positive. Moreover, recovery is found to follow a hyperbolic
tangent behavior on the temperature difference and the
best recovery is obtained for positive temperature gradients
(hot-water injection). It would be interesting to verify our
predictions with experimental results. Since field experiments
in this area are usually difficult and expensive, it would be
advisable to run laboratory-size experiments in which interface
patterns are dynamically registered and the recovered volume
is systematically measured while a viscous fluid is displaced
by a less viscous one in a porous medium under the influence
of temperature gradients.
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