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Electrokinetic boundary conditions are derived for ac electrokinetic phenomena over leaky dielectric (i.e.,
semiconducting) surfaces. Such boundary conditions correlate the electric potentials across a semiconductor-
electrolyte interface (consisting of an electric double layer inside the electrolyte solution and a space charge layer
inside the semiconductor) in an ac electric field with arbitrary wave forms. The presented electrokinetic boundary
conditions allow for evaluation of the induced ζ potential contributed by both bond charges (due to electric
polarization) and free charges (due to electric conduction) from the leaky dielectric materials. Two well-known
limiting cases, (i) the conventional insulating boundary condition and (ii) the perfectly polarizable boundary
condition, can be recovered from the generalized electrokinetic boundary conditions derived in the present
paper. Subsequently, we demonstrate the implementation of the derived boundary conditions for analyzing the ac
induced-charge electrokinetic flow around a semiconducting cylinder. The results show that the flow circulations
exist around the semiconducting cylinder and become stronger in the ac field with a lower frequency and around
the semiconducting cylinder with a higher conductivity.
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I. INTRODUCTION

ac electrokinetic (ACEK) phenomena are widely used for
manipulations of particles and flows in microfluidic systems
[1–3]. The classic description of electrokinetic phenomena
relies on the electric double layer (EDL) formed on a charged
insulating surface whose surface charge density is fixed due to
the physiochemical bonds. Consequently, the surface charge
density is independent of the externally applied electric field.
However, for electrokinetic phenomena around polarizable
or conducting solids, it has been demonstrated that, in the
presence of an external electric field, extra electric charges
can be induced on polarizable or conducting solid surfaces
immersed in an electrolyte solution, thereby triggering the
charging of EDL inside the electrolyte solution. This is mani-
fested in a ζ potential, which is no longer a fixed equilibrium
material property but rather depends on the external electric
field. These induced-charge electrokinetic (ICEK) phenomena
were studied for polarizable colloidal particles [4,5] almost
two decades ago and recently were studied in the context of
microfluidic applications for pumping [6,7], mixing [6,8,9],
demixing [10], focusing [11], and particle manipulations
[12,13]. All of these studies focused on ICEK phenomena
around conductors with ideal polarizability.

Recently, attention has been paid to ICEK phenomena over
dielectric surfaces with finite polarizability, and the induced
ζ potential, in this case, is solely contributed by the bond
charges due to the electric polarization. Squires and Bazant [6]
predicted a decrease in the induced ζ potential due to the
presence of a thin dielectric coating on a conducting surface.
For solids with arbitrary polarizability, two effective electric
boundary conditions of a Robin-type and a Neumann-type
were derived by Yossifon et al. [14] and Zhao and Yang [15] by
using different methodologies. These derived effective electric
boundary conditions are required for determining the induced
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ζ potential on an arbitrarily polarizable dielectric surface.
Yossifon et al. [16] further derived the transient version of
these effective boundary conditions, which were used for
analyzing the temporary evolution of dc driven electrokinetic
phenomena around a polarizable object. Recently, Pascall and
Squires [17] experimentally verified that the very presence
(often inevitable) of thin dielectric layers on electrode surfaces
(e.g., due to surface contamination by oxidized or adsorbed
species) can substantially alter the induced ζ potential and,
thus, can affect the associated electrokinetic phenomena.

However, aforementioned studies all assumed that the
solids were perfectly dielectric, and, thus, there were no
free charge carriers and space charge layers (SCLs) inside
them. From a more general viewpoint, a solid can have
both finite dielectric constant and conductivity and is leaky
dielectric or semiconductive in nature. In this circumstance,
the SCL forms in the solid, and the EDL forms in the
electrolyte liquid, and these two layers constitute the interface
between a semiconductor and an electrolyte solution. On the
other hand, ac electric field is more desirable in microfluidic
applications since it introduces another control parameter of
frequency and also reduces possible negative effects, such
as electrolysis and dissolution of electrodes. Therefore, this
paper presents electrokinetic boundary conditions for ACEK
phenomena to correlate the electrical potentials across the
EDL and the SCL at a semiconductor-electrolyte solution
interface. Such general electrokinetic boundary conditions
allow for determining induced ζ potentials on the surface
of semiconducting solids subjected to an ac electric field of
arbitrary wave forms. Furthermore, the derived electrokinetic
boundary conditions are implemented for analyzing the ACEK
phenomena around a semiconducting cylinder.

II. EFFECTIVE ELECTRIC BOUNDARY CONDITIONS

It is known that there is usually a SCL (i.e., an EDL in the
solid) in the semiconducting solid adjacent to the EDL in the
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liquid electrolyte [18–21]. The thicknesses of EDL and SCL
have the same order of magnitude and typically range from
1 to 100 nm, and, thus, both of them need to be considered
simultaneously. Then, we need to model the transport (by
diffusion and migration) of both types of charge carriers (i.e.,
electrons and holes) in the solid as what we usually do for
both cations and anions in the liquid. We restrict our analysis
under the following three assumptions: (i) thin EDL and SCL,
(ii) negligible Peclet number, and (iii) small induced electric
field [i.e., � = ze�0/(kBT ) � 1, wherein z denotes the
valence of charge carriers inside the electrolyte solution,
e denotes the elemental charge, kB is the Boltzmann constant,
and T is the absolute temperature]. These assumptions were
also made in previous studies [6,16,22]. The thin EDL and
SCL assumption requires that the EDL thickness and the SCL
thickness are much smaller than the characteristic dimension
of the semiconductive solid wall a, that is, δ1 = λD1/a �
1,δ2 = λD2/a � 1. The EDL thickness for a symmetric elec-
trolyte (z:z) can be defined as λD1 = √

ε0εf kBT /(2n01z2e2),
and the SCL thickness is similarly defined as λD2 =√

ε0εwkBT /(2n02e2), where n0i denotes the bulk concentration
of charge carriers inside the liquid and solid domains (i = 1 for
the electrolytic solution and i = 2 for the semiconductor, this
convention is complied with in the whole paper), ε0 is the elec-
tric permittivity of vacuum. εf and εw are the dielectric con-
stants of the electrolyte and the semiconductor, respectively.

From a microfluidic application viewpoint, the aforemen-
tioned three assumptions are valid. Therefore, in the model
development, the hydrodynamic problem and the electrostatic
problem can be decoupled [6,16,22,23]. Furthermore, as
shown in Fig. 1, the electrostatic problem can be divided into
four subdomains: the two domains for the electroneutral bulk
solid wall and bulk solution with their harmonic dimensionless
electric potentials �w and �f , respectively, and the two
inner domains of the EDL and the SCL whose dimensionless
electric potentials, �EDL and �SCL, should satisfy Poisson’s
equation. Note that all these dimensionless potentials are
scaled with respect to the reference potential�0. To obtain

FIG. 1. Aschematic of the electrostatic problem in four subdo-
mains, namely, (i) the bulk electrolyte fluid domain �f , (ii) the bulk
leaky dielectric solid wall domain �w , (iii) the EDL domain �EDL

inside the liquid, and (iv) the SCL domain �SCL inside the solid. The
dashed lines inside the electrolyte fluid and solid wall, respectively,
represent the outer edges of the EDL and SCL where �EDL matches
�f and �SCL matches �w . λD1 and λD2 denote the thicknesses of
EDL and SCL, respectively.

the requisite electrokinetic conditions connecting �w and �f

on the semiconducting solid-electrolyte interface, we focus on
the inner domains, which (for δ1 � 1 and δ2 � 1) is locally
one dimensional in the direction of the y ′ axis, namely, outward
normal to the solid surface. We define the corresponding
outer (y) and inner (Y1,Y2) dimensionless spatial variables
throughy ′ = ay = λD1Y1 = λD2Y2.

In our analysis, the dimensionless net charge densities
inside the liquid and solid domains due to the difference
between the concentration of positive charge carriers and
that of negative charge carriers, i.e., np − nn, is expressed as
ρi = (npi − nni)/(2�n0i). For the leading order (in the limit
of small δ1, δ2, and �), �EDL and �SCL, respectively, satisfy
Poisson’s equations,

∂2�EDL

∂Y 2
1

= −ρ1 and
∂2�SCL

∂Y 2
2

= −zρ2, (1)

and the continuity equations for electric current (that is
obtained from the Nernst-Planck equations for positive and
negative carriers in both fluid and solid domains),

∂ρ1

∂τ
= ∂2ρ1

∂Y 2
1

− ρ1 and
tw

tf

∂ρ2

∂τ
= ∂2ρ2

∂Y 2
2

− ρ2, (2)

where τ is the dimensionless time normalized with the
reference time tf = λ2

D1/Df and, in Eq. (2), tw = λ2
D2/Dw

(where Df stands for the mass diffusivity for free charge
carriers in liquid; for a dilute symmetric binary electrolyte,
it is usually assumed that positive and negative free charge
carriers have the same diffusivity, namely, Dp1 = Dn1 = Df ;
in the solid wall, we also assume that both charge carriers have
the save diffusivities, i.e., Dp2 = Dn2 = Dw). Such reference
time tf also can be expressed as tf = ε0εf /σf = 1/ωD , which
denotes the charge relaxation time in the electrolytic solution
and also can be viewed as the time that ions take to travel
a Debye length by diffusion. ωD is the Debye frequency
of the electrolytic solution [24], and σf is the bulk electric
conductivity of the electrolytic solution and can be formulated
as σf = 2n01z

2e2Df /(kBT ). Similarly, the charge relaxation
time tw inside the semiconducting solid wall has the same
physical interpretation as tf .

On the solid surface, �EDL and �SCL satisfy the electrostatic
boundary conditions [25]

�EDL = �SCL, (3a)

and
∂�EDL

∂Y1
− β

∂�SCL

∂Y2
= −q at Y1 or Y2 = 0, (3b)

which, respectively, describe the continuity of the electric
potential and the discontinuity of the electric displacement
due to the presence of free charges at the interface between
two different media. In Eq. (3), β = (εwλD1)/(εf λD2), and q
is the dimensionless free surface charge density that is scaled
by ε0εf �0/λD1.

Under the widely adopted assumptions—the solid surface
is totally blocking, and there is no Faradaic reaction on the
semiconducting surface, namely, the charge carrier fluxes
cannot penetrate through the solid wall. The vanishing of
normal components of the positive carriers flux and the
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negative carrier flux inside both domains leads to the boundary
conditions for ρ1 and ρ2, respectively, as

∂ρ1

∂Y1
= −∂�EDL

∂Y1
at Y1 = 0, (4a)

z
∂ρ2

∂Y2
= −∂�SCL

∂Y2
at Y2 = 0. (4b)

At the outer edges of the EDL and the SCL, we impose the
asymptotic matching conditions as

�EDL|Y1→∞ = �f

∣∣
y→0 and �SCL|Y2→−∞ = �w|y→0 ,

(5)

and the electroneutrality conditionsas

ρ1 → 0 as Y1 → ∞, (6a)

ρ2 → 0 as Y2 → −∞. (6b)

We consider time periodic electrokinetic phenomena in
an externally applied ac electric field with arbitrary wave
forms, e.g., sinusoidal, triangular, rectangular, etc. The general
time-dependent electric field is assumed to be continuous and
to have a piecewise continuous first-order derivative over
the period such that its value at τ = τ + kT0 is identical
for any integer k. Thus, a general periodic field quantity,
X, can be expressed as a form in complex Fourier series,
X(τ ) = ∑+∞

k=−∞ X(k)exp(jk�τ ), where j = √−1, � is the
normalized frequency with respect to the Debye frequency
ωD of the electrolyte solution and it can be determined from
� = 2π/T0. Here, X(k) represents the complex amplitude
of the ambient field such that X(−k) denotes the complex
conjugate of X(k). Thus, the aforementioned sum always
renders a real function, and X(k) can be defined as X(k) =
[∫X(τ )exp(−jk�τ )dτ ]/T0.

Due to its linearity, the present problem can be obtained as
a superposition of an induced part satisfying the homogenous
version of Eq. (3b), and an equilibrium part solely contributed
by the surface charge density q. We focus on the induced
part of the problem. Then, similar Fourier decompositions are
assumed for the electric potentials (�EDL,�SCL,�w, and �f )
and the net charge densities ρi (i = 1,2) in terms of their
corresponding complex amplitudes �

(k)
EDL,�

(k)
SCL,�(k)

w , �
(k)
f and

ρ
(k)
i . Note that the component k = 0 corresponds to a steady

dc electric forcing. The transformed problems resulting from
Eq. (2) together with the boundary conditions given by
Eqs. (4a) and (4b) yield the complex amplitudes for net charge
densitiesρ(k)

i . Substituting these two results into the right-hand
side of the transformed Eq. (1) and integrating twice with
respect to Y1 and Y2, we can obtain

�
(k)
EDL = d�

(k)
EDL

dY1

∣∣∣∣
Y1=0

[(
1 − 1

γ 2
1

)
Y1 − 1

γ 3
1

e−γ1Y1

]
+ A1,

(7a)

�
(k)
SCL = z

d�
(k)
SCL

dY2

∣∣∣∣
Y2=0

[(
1 − 1

γ 2
2

)
Y2 + 1

γ 3
2

eγ2Y2

]
+ A2,

(7b)

with γ 2
1 = 1 + jk� and γ 2

2 = 1 + twjk�/tf . At the outer
edges of the two inner regions, i.e., Y1 → ∞ and Y2 → −∞,

the solutions given by Eqs. (7a) and (7b) are going to be
matched with the solutions outside the EDL and SCL to
determine the unknown coefficients. Hence, we have

�
(k)
f = A1 and

d�
(k)
f

dy

= 1

δ1

d�
(k)
EDL

dY1

∣∣∣∣
Y1=0

(
1 − 1

γ 2
1

)
as y → 0, (8a)

�(k)
w = A2 and

d�(k)
w

dy

= z

δ2

d�
(k)
SCL

dY2

∣∣∣∣
Y2=0

(
1 − 1

γ 2
2

)
as y → 0. (8b)

The coefficient of the exponential term on the right-hand
side of Eq. (7a) can be viewed as the complex amplitude for
the effective induced ζ potential, that is, the potential drop
across the EDL, i.e.,

ζ
(k)
i = −(

d�
(k)
EDL

/
dY1

∣∣
Y1=0

)/
γ 3

1

= −δ1
(
d�

(k)
f /dy

∣∣
y=0

)/[
γ1

(
γ 2

1 − 1
)]

. (9)

Making use of Eqs. (8a) and (8b), we can eliminate A1, A2,
d�

(k)
EDL/dY1|Y1=0, and d�

(k)
SCL/dY2|Y2=0 from the transformed

boundary conditions Eq. (3) to obtain the following two
equations:

�
(k)
f − �(k)

w = d�
(k)
f

dy

δ1

γ1
(
γ 2

1 − 1
)

+d�(k)
w

dy

δ2

γ2
(
γ 2

2 − 1
) at y = 0, (10a)

δ1
γ 2

1(
γ 2

1 − 1
) d�

(k)
f

dy
− βδ2

γ 2
2(

γ 2
2 − 1

) d�(k)
w

dy
= 0 at y = 0.

(10b)

Equations (10a) and (10b) constitute the transformed
version of the sought electrokinetic boundary conditions that
directly connect the complex amplitudes of two bulk potentials
(�(k)

w and �
(k)
f ) across a semiconductor-electrolyte interface.

These derived electrokinetic boundary conditions are the key
results of the present analysis. They are applicable to the ac
induced-charge electrokinetic flow over solids of any dielectric
constant and conductivity in an electric field with arbitrary
wave forms. For all finite values of β and tw/tf , the solution
of the electrostatic problem consists of the simultaneous
determination of the potentials �

(k)
f (r) and �(k)

w (r) (wherein
r denotes the position vector), which are harmonic (governed
by Laplace’s equation) within the respective fluid and solid
domains, and satisfy the boundary conditions (10a) and (10b)
on the surface of semiconducting solids [as well as the far-field
conditions for �

(k)
f (r)].

For conventional electrokinetic phenomena, solid walls are
considered as perfect insulators, suggesting that both β and
tf /tw are equal to zero. Then, it can be obtained from Eqs. (10a)
and (10b) that there is no induced ζ potential (since, in this
case, there is no electric field inside the solid, and �

(k)
f − �(k)

w is
the effective induced ζ potential drop across the EDL), and the
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bulk electrostatic potential inside the liquid domain satisfies
the homogeneous Neumann condition, i.e., the electrically
insulating condition (d�

(k)
f /dy = 0).

For ideal dielectric objects in a dc electric field, the
conductivity of the solids is zero (tf /tw = 0). Then, there
is no SCL effect inside the solid, and the frequency of the
external electric field is zero (� = 0). Hence, Eqs. (10a) and
(10b) can reduce to

�(k)
w + εwλD1

εf a

d�(k)
w

dy
= �

(k)
f at y = 0, (11a)

d�
(k)
f

dy
= 0 at y = 0, (11b)

which shows the Robin-type and Neumann-type boundary
conditions of the steady electrostatic problems for the solid
wall and the bulk liquid, respectively. The detailed derivation
of Eqs. (11a) and (11b) was provided in Ref. [15] [see their
Eqs. (2) and (9)].

To gain further physical insight into the two boundary
conditions given in Eqs. (10a) and (10b), we substitute Eq. (9)
into Eq. (10a) to obtain the charging equations for the EDL
and the SCL, respectively, as

d�
(k)
f

dy
= −ζ

(k)
i

δ1

(
γ 2

1 − 1
)
γ1 at y = 0, (12a)

d�(k)
w

dy
= −�(k)

w − �
(k)
f − ζ

(k)
i

δ2

(
γ 2

2 − 1
)
γ2 at y = 0.

(12b)

In Eqs. (12a) and (12b), the left-hand sides, respectively,
represent the instantaneous Ohmic charging rates at the outer
edges of the EDL and SCL, which are equal to the growth rates
of their total induced charges shown on the right-hand sides
of Eqs. (12a) and (12b). It is noted that �(k)

w − �
(k)
f − ζ

(k)
i in

Eq. (12b) denotes the potential drop across the SCL and is the
counterpart of induced ζ potential ζ

(k)
i in the solid. If the EDL

and SCL are to be considered as effective capacitors, we also
can obtain frequency-dependent capacitances (in dimensional
form) for the EDL as ε0εf γ1/λD1 and the SCL as ε0εwγ2/λD2.
Therefore, the present paper provides a rigorous alternative
to the widely used equivalent RC-circuit models for the
EDL in ACEK phenomena, where the capacitance of EDL
reads ε0εf /λD1, which is independent of frequency [1,24,26].
Also shown in the above conditions is the parameter β =
(εwλD1) /(εf λD2), which, based on the equivalent RC-circuit
model, represents the ratio of the capacitance of the SCL
ε0εw/λD2 and that of the EDL ε0εf /λD1. From this analogy,
it is anticipated that, when β � 1, the difference �(k)

w − �
(k)
f ,

effectively representing the complex amplitude of induced ζ

potential ζ (k)
i , becomes of comparable magnitude as �

(k)
f . In the

limit case of β→∞ (i.e., a perfectly polarizable solid), �(k)
w = 0

(also d�(k)
w /dy = 0 since the electric field does not exist inside

such a perfectly polarizable solid) and our derived Eq. (12a)
then precisely reduce to the macroscale model presented in
Ref. [6] [see their Eqs. (7.48) and (7.50)].

FIG. 2. (Color online) A semiconducting cylinder immersed in
an unbounded electrolyte solution is under an ac electric field with a
sinusoidal wave form. The external electric field E is applied along the
x direction. Coordinates are normalized with respect to the radius of
cylinder (R), and the electric field strength is normalized with respect
to �0/R.

III. ACEK FLOW AROUND A SEMICONDUCTIVE
CYLINDER

In this section, we will demonstrate the implementation of
the effective boundary conditions derived in Sec. II for an ac
induced-charge flow around a semiconducting cylinder (see
Fig. 2). Such a semiconducting cylinder with a radius of R
immersed in an electrolyte solution is put (electrically floating)
in an ac electric field of sinusoidal wave form, expressed
as E = Re[E0exp(j�τ )] with Re( ) denoting the real part
of the complex number. Then, the EDL inside the liquid
domain and the SCL inside the solid domain develop near
the semiconducting surface. It was already mentioned that the
complex amplitudes of potentials inside the bulk electroneutral
liquid and solid domains, �f and �w, were all governed by
Laplace’s equation. The boundary conditions connecting these
two domains are described by Eqs. (10a) and (10b), which, in
polar coordinates, can be reformulated as

�f − �w = ∂�f

∂r

δ1

γ1
(
γ 2

1 − 1
)

+ ∂�w

∂r

δ2

γ2
(
γ 2

2 − 1
) at r = 1, (13a)

δ1
γ 2

1(
γ 2

1 − 1
) ∂�f

∂r

−βδ2
γ 2

2(
γ 2

2 − 1
) ∂�w

∂r
= 0 at r = 1. (13b)

For the RC-circuit model, the effective electric boundary
conditions can be formulated as

�f − �w = ∂�f

∂r

δ1(
γ 2

1 − 1
) + ∂�w

∂r

δ2(
γ 2

2 − 1
) at r = 1,

(14a)

δ1
γ 2

1(
γ 2

1 − 1
) ∂�f

∂r
− βδ2

γ 2
2(

γ 2
2 − 1

) ∂�w

∂r
= 0 at r = 1,

(14b)

which are to be compared against our present model in Eq. (13).
For simplicity, the following derivations are carried out only
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for the boundary conditions presented in Eq. (13) but not for
the boundary conditions in Eq. (14).

In addition, we also need a far-field condition for �f ,

�f = −E0x = −E0r cos θ as r → ∞. (15)

In Eqs. (13)–(15), the potentials, electric field strength, and
radial coordinate, respectively, are normalized with respect
to �0,�0/R, and R. Referring to the definitions of two
electrokinetic parameters, δ1 and δ2, in Sec. II, one can
write δ1 = λD1/R and δ2 = λD2/R in this case. For the
given sinusoidal ac electric field, γ 2

1 = 1 + j� and γ 2
2 =

1 + j tw�/tf .
The electrostatic potentials satisfy Laplace’s equation in

both bulk liquid and solid domains, and the solutions for
complex amplitudes of the potential inside the bulk electrolyte
domain �f and inside the bulk semiconductive cylinder �w

are assumed as [27]

�f = −E0 cos θ

(
r + A

r

)
, (16a)

�w = −BE0r cos θ. (16b)

Substitution of Eqs. (16a) and (16b) into Eqs. (13a) and
(13b) gives two expressions for

A = 1 − 2βG2γ
3
2

G1γ
3
1 (1 + G2) + βG2γ

3
2 (1 + G1)

, (17a)

B = 2G1γ
3
1

G1γ
3
1 (1 + G2) + βG2γ

3
2 (1 + G1)

, (17b)

where G1 and G2 are two complex groups related to the liquid
domain and the solid domain, respectively,

G1 = δ1

γ1
(
γ 2

1 − 1
) , (18a)

G2 = δ2

γ2
(
γ 2

2 − 1
) . (18b)

Furthermore, the tangential electric field strength on the
semiconducting surface reads

Eθ = −1

r

∂�f

∂θ
= −E0 sin θ (1 + A) at r = 1. (19)

In this particular case, the complex amplitude of the induced
ζ potential defined by Eq. (9) can be formulated as

ζi = −∂�f

∂r

δ1

γ1
(
γ 2

1 − 1
) = G1(1 − A)E0 cos θ at r = 1.

(20)

It is evident from Eq. (20), that the induced ζ potential
is linearly proportional to the external electric field strength.
For a conducting cylinder with ideal polarizability under a dc
forcing, i.e., β → ∞ and � → 0, we can obtain the induced
ζ potential as

ζi = 2E0 cos θ, (21)

which is identical to the result given by Eq. (3.5) in
Ref. [6].

Utilizing the well-known Smoluchowski equation, the ac
induced-charge electroosmotic slip velocity on the surface of
such semiconducting cylinder can be determined by

us = U0E
2
0 sin θ coŝθ , (22)

where ̂θ denotes the unit vector along the azimuthal direction,
and U0 can be determined as

U0 = Re[G1(1 − A)exp(j�τ )]Re[(1 + A)exp(j�τ )]. (23)

The Smoluchowski slip velocity approach is strictly valid
when the induced EDL is in quasiequilibrium (� � 1),
however, it was also shown to be a good approximation even
for relatively high frequencies (� ∼ 1) [28].

Once the slip velocity us is obtained from the above solution
of the electrostatic problem, we can now proceed to solve the
flow field around the semiconducting cylinder. Because the
Reynolds number is very small in microfluidics, the flow of
the bulk electroneutral fluid is governed by the dimensionless
continuity equation and the Stokes equation [29],

∇ · u = 0 and − ∇p + ∇2u = 0, (24)

respectively, which are subjected to the slip boundary condi-
tion

u = us at r = 1, (25)

and the far-field boundary condition

u = 0 as r → ∞, (26)

where u and p represent the fluid velocity vector and the pres-
sure, respectively, and they are normalized by ε0εf �2

0/(μR)
and ε0εf �2

0/R
2, respectively.

It is convenient to make use of the stream function
formulation to solve such a hydrodynamic problem. First,
we can express the radial (ur ) and azimuthal (uθ ) velocity
components in terms of the stream function ψ ,

ur = 1

r

∂ψ

∂θ
and uθ = −∂ψ

∂r
, (27)

where the stream function is normalized with respect to
ε0εf �2

0/μ.
Then, substituting Eq. (27) into Eq. (24), we can obtain the

following biharmonic equation that governs the flow field:

∇2(∇2ψ) = 0, (28)

where operator ∇2 in the polar coordinate can be expressed as

∇2 = 1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂θ2
. (29)

The boundary conditions given by Eqs. (25) and (26) can
be transformed to
1

r

∂ψ

∂θ
= 0 and

∂ψ

∂r
= −U0E

2
0 sin θ cos θ at r = 1, (30)

as well as the far-field boundary conditions

1

r

∂ψ

∂θ
= 0 and − ∂ψ

∂r
= 0 as r → ∞. (31)

Squires and Bazant [6] derived the solutions for the fluid
motion around a perfectly polarizable cylinder immersed in an
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electrolyte solution in a dc field (see their Table 1). By analogy,
we can find the stream function and the corresponding velocity
components of the fluid flow outside the semiconducting
cylinder to be

ψ = 1 − r2

4r2
U0E

2
0 sin 2θ, (32a)

ur = 1 − r2

2r3
U0E

2
0 cos 2θ, (32b)

uθ = 1

2r3
U0E

2
0 sin 2θ, (32c)

which reveal that the flow field scales nonlinearly with respect
to the external electric field strength. This feature differs from
classic electrokinetic flows over insulating surfaces where the
flow field is linearly proportional to the external electric field
strength. Again, for the limiting case of an ideally polarizable

cylinder under the dc forcing, Eqs. (32a)–(32c) are shown to
be identical to those results given in Ref. [6],

ψ = 1 − r2

r2
E2

0 sin 2θ, (33a)

ur = 2(1 − r2)

r3
E2

0 cos 2θ, (33b)

uθ = 2

r3
E2

0 sin 2θ. (33c)

IV. RESULTS AND DISCUSSION

Calculations are performed by using the derivations pre-
sented in Sec. III to show the induced-charge electrokinetic
flow patterns around a semiconducting cylinder under various
ac phases. For simplicity, we first consider a special cylindrical
conductor with ideal polarizability (β → ∞). The stream

FIG. 3. (Color online) Contours for the stream function of an ac induced-charge electrokinetic flow at four different ac phases for the case
of a conducting cylinder with perfect polarizability (β → ∞): (a) �τ = 0, (b) �τ = π/4, (c) �τ = π /2, and (d) �τ= 3π /4. The arrowed lines
are stream lines. In the calculations, the electrokinetic parameter is δ1 = 1/100, and the frequency is � = 0.001.
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function contours (normalized with respect to E2
0) of induced-

charge electrokinetic flow at four different ac phases are
plotted in Fig. 3. In the calculation, the reference zero stream
function is chosen on the cylinder surface. Then, the stream
function value at a given point in the flow field denotes the
volumetric flow rate through a line connecting that point and
the semiconducting surface. Usually, the magnitude of the
stream function value can be seen as a measure of the flow
strength. It is evident from Fig. 3(a) that the flow is strongest
at the phase �τ = 0. Basic flow field involves four vortices
symmetric with respect to both x and y axes. These flow
circulations are the consequence of induced slip velocities on
four segments of the cylinder surface, which all direct toward
the line x = 0. With time evolving, both the external field
strength and the induced ζ potential decrease, which then leads
to a reduction in the flow strength [see the phase �τ = π /4
shown in Fig. 3(b)]. For the phase �τ = π /2 in Fig. 3(c),
although the external electric field further decreases to zero,
the tangential electric field strength on the cylinder surface
given by Eq. (19) and the induced ζ potential given by Eq. (20)
are not zero due to the essential phase lags among these two
and the external field. Consequently, the fluid slip velocity
on the cylinder surface and, thus, the weak circulations still
persist. After the phase �τ= π /2, the external electric field
changes its direction, and the local induced ζ potential on the
cylinder surface also reverses its sign. Thus, the direction of
the induced slip velocity (as a product of the tangential electric
field strength and the induced ζ potential) on cylinder surface
still remains the same as that in the first half period (namely, �τ

from 0 to π /2) and so does the direction of flow circulations.
With the magnitude of electric field strength increasing, the
flow becomes intensified as shown in Fig. 3(d) for the phase of
�τ= 3π /4. Until the phase �τ = π (not shown here), the
flow is enhanced to reach the same situation as for the phase
�τ = 0. Finally, it is also worth mentioning that the frequency
of induced-charge flow oscillation is doubled to 2� since both
driving electric field and induced ζ potential oscillate at the
frequency of �.

If the case of an ideally polarized cylinder under the dc
forcing is taken as a reference, the induced-charge flow field
around a semiconducting cylinder can be found by multiplying
the solutions given by Eq. (33) with a scale factor of U0/4.
This scale factor is important since the parameters affecting the
dynamics of the induced-charge oscillating flow around the
semiconducting cylinder are included in such a factor, such as
the period, the amplitude, and the phase. Figure 4 characterizes
the dependence of U0/4 on the ac phase for a semiconducting
cylinder under various frequencies of the external field (�)
and ratios of the free charge relaxation times (tw/tf ). It is
seen that the amplitude of the flow oscillation increases with
decreasing � or tw/tf . It is also noted that the phase lag between
the induced-charge flow and the external electric field also
reduces with the decrease in � or tw/tf . These features can
be interpreted as follows: when � is low, there is sufficient
time for free charge carriers to diffuse into the EDL and SCL
to charge them up. On the other hand, with decreasing tw/tf ,
the cylinder becomes more conducting, and the free charges
inside such a semiconducting cylinder can respond quickly to
form the SCL, which effectively represents a surface charge
on the cylinder surface.

FIG. 4. Variation of U0/4 for an ac induced-charge electrokinetic
flow around a semiconducting cylinder with an ac phase angle [here,
the expression for U0 is given by Eq. (23)]. (a) Dependence of U0/4
on the frequency of the ac field, �, when tw/tf = 1.0. (b) Dependence
of U0/4 on the free charge relaxation time ratio tw/tf , when � = 0.01.
In all calculations, β = 1 and δ1 = δ2 = 1/100 are chosen.

In addition, it is known that the RC-circuit model is widely
used in the literature. To illustrate the difference between our
present model and the conventional RC-circuit model, the ratio
of the complex amplitude for the induced ζ potential obtained
from our model (ζi) to that predicted from the RC model
(ζi,RC) is presented in Fig. 5. ζi and ζi,RC are evaluated by
using boundary conditions (13) and (14), respectively. Since
ζi/ζi,RC is a complex number, its modulus represents the ratio
of the magnitude of the induced ζ potential evaluated from our
model to that evaluated from the RC model, and its argument
represents the phase lag between our model and the RC model.
It is noted that our model and the RC model become identical
only in the case of dc electric forcing (� → 0). However, as
the frequency of applied field increases, our model predicts
smaller induced ζ potentials, and the phase lag between our
model and the RC model becomes larger. Similarly, it also
can be readily found that both the tangential electric field
strength given by Eq. (19) and the resultant Smoluchowski
slip velocity given by Eq. (22) are smaller than those predicted
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FIG. 5. Ratio of the complex amplitude of the induced ζ poten-
tials predicted by the present model (ζi) to that predicted by the
conventional RC-circuit model (ζi,RC)for the case of a conducting
cylinder with perfect polarizability (β →∞) and δ1 = 1/1000. The left
vertical axis represents the argument for the complex ratio ζ i / ζi,RC ,
and the right vertical axis represents the corresponding modulus.

by the RC model. As pointed out in a review paper by Bazant
et al. [30], the RC model was shown to overestimate existing
experimental results for the ICEK flow velocity. Therefore, the
model presented in this paper could reduce such a discrepancy
to some extent.

Considering the fact that the SCL is actually an equivalent
EDL in the solid, the derived effective boundary conditions
can be extended to describe dynamic behavior of an in-
terface between two immiscible electrolyte solutions under
ac electric forcing. Interfaces between two immiscible elec-
trolyte solutions are widely used for biomimetics, catalysis,
surface cleaning, and assembly of nanoparticle arrays [31,32].
Monroe and co-workers [33,34] investigated the behavior of
an interface between two immiscible electrolyte solutions
under the dc forcing, and they pointed out that two EDLs
forming near the interface between two immiscible electrolyte
solutions play an essential role. Another potential application
of presented boundary conditions is to modify the classic
dielectrophoresis theory for semiconducting particles in elec-
trolyte solutions. It is known that EDL and SCL are not
considered in the conventional theories of dielectrophoresis.
Usually, an assumption of the continuity in both electric
potential and electric displacement should be made when
deriving the dielectrophoretic force and torque acting on
a particle. However, this assumption is not valid for a
semiconducting particle in which the SCL of finite thickness
develops. Obviously, in this case, the continuity of electric
potential does not hold anymore [see Eq. (10a)] due to the
charging of EDL and SCL. Then, the local electric field around
the particle should be modified accordingly. Ultimately, the
effective dipole moment and, therefore, the dielectrophoretic

force and torque on a semiconducting particle need to be
modified by taking the dynamic charging of EDL and SCL
into account. Although some researchers [22,35–37] noticed
this problem and already addressed the EDL charging effect
on dielectrophoretic force, the SCL effects have yet to be
addressed. Furthermore, no one has ever provided any simple
formulas for the dielectrophoretic force and torque on a
spherical particle to include both EDL and SCL effects. With
our derived effective boundary conditions, it can be expected
that the modification of conventional dielectrophoretic theory
can be included in a modified Clausius-Mossoti factor. This
will be our next effort.

V. SUMMARY

To conclude, we have derived effective electric boundary
conditions for ACEK phenomena around floating semicon-
ducting solids in an ac electric field with arbitrary wave
forms. The general electric boundary conditions take the
contributions from both the electrical polarization and the elec-
trical conduction to induced ζ potentials into account. We
have demonstrated that our general boundary conditions can
recover two well-known limiting cases, (i) the conventional
electrokinetic phenomena with perfect insulating surfaces
and (ii) the induced-charge electrokinetic phenomena with
perfectly polarizable surfaces. The effective electric boundary
conditions also allow us to analyze ACEK phenomena with
induced EDL and SCL effects without the need of resolving
trivial details of the EDL and SCL.

A case study of the ac induced-charge electrokinetic flow
around a semiconducting cylinder is presented to demonstrate
the implementation of the derived boundary conditions. Our
analyses show that four flow circulations are induced around
the semiconducting cylinder. Furthermore, the intensity of
these circulations can be modulated by adjusting the param-
eters associated with the EDL and SCL. Particularly, when
decreasing the frequency of the applied electric field (�) or the
ratio of the free charge relaxation times (tw/tf ), the amplitude
of the induced-charge flow oscillation increases, and the phase
lag between the induced-charge electrokinetic flow and the
external electric field decreases. In addition, a comparison
between our present model and the conventional RC-circuit
model shows that the RC model predicts larger values for
the induced ζ potential, and, thus, stronger induced-charge
electrokinetic flows. This could explain the finding reported
by some studies that the RC model usually overestimates the
experimental data of induced-charge electrokinetic flows.
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