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“Weak quantum chaos” and its resistor network modeling
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Weakly chaotic or weakly interacting systems have a wide regime where the common random matrix theory
modeling does not apply. As an example we consider cold atoms in a nearly integrable optical billiard with
a displaceable wall (piston). The motion is completely chaotic but with a small Lyapunov exponent. The
Hamiltonian matrix does not look like one taken from a Gaussian ensemble, but rather it is very sparse and
textured. This can be characterized by parameters s and g which reflect the percentage of large elements and their
connectivity, respectively. For g we use a resistor network calculation that has a direct relation to the semilinear
response characteristics of the system, hence leading to a prediction regarding the energy absorption rate of cold
atoms in optical billiards with vibrating walls.
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I. INTRODUCTION

So-called quantum chaos is the study of quantized chaotic
systems. Assuming that the classical dynamics is fully chaotic,
as in the case of a billiard with convex walls (Fig. 1),
one expects the Hamiltonian to be like a random matrix
with elements that have a Gaussian distribution. This is, of
course, a sloppy statement, since any Hamiltonian is diagonal
in some basis. The more precise statement behind random
matrix theory (RMT) is the following [1–6]. Assume that
there is a Hamiltonian H that generates chaotic dynamics, and
consider an observable F that has some classical correlation
function C(t), with some correlation time tR. Then the matrix
representation Fnm in the basis of H looks like a random
banded matrix. The bandwidth is h̄Planck/tR. If tR is small, such
that the bandwidth is large compared with the energy window
of interest, then the matrix looks like it is taken from a Gaussian
ensemble.

Our objective is to analyze the energy absorption rate
(EAR) of billiards with vibrating walls, which is related to
past studies of nuclear friction [7–9]. However, our interest
is focused on two-dimensional (2D) optical billiards [10–14]
whose geometrical shape can be engineered. In this problem
H is the Hamiltonian of the nondriven billiard, while Fnm is
the perturbation matrix due to the wall displacement. If the
driving is not too strong we expect a linear relation

Ė = Gḟ 2, (1)

where ḟ is the rms value of the vibrating wall velocity. If
one further assumes that the billiard is strongly chaotic, then
G = G0 can be determined [Eq. (98)] from simple kinetic
considerations as in Refs. [7–9], leading to a variation of the
so-called wall formula. Note that there is a strict analogy here
with the Drude formula and the Joule law.

We consider completely chaotic billiards [15,16], with no
mixed phase space, but we assume that they are only weakly
chaotic [17–24]. This means that tR is much larger than the
ballistic time tL. Consequently, the EAR coefficient is

G = gG0 (2)

with g �= 1. In the classical analysis g = gc is related to
classical correlations between the collisions with the vibrating
walls. In the quantum analysis the first tendency is to
assume g ≈ gc. In contrast to that we would like to highlight
the possibility to observe g � gc. This is the case if we
have weak quantum chaos (WQC) circumstances, in which
the traditional RMT modeling does not apply, meaning that
Fnm does not look like a typical random matrix. Rather, the
distribution of its elements is log-wide (resembles a log-normal
distribution), and it looks very sparse, as expected from
Refs. [25–28]. Consequently, the analysis of the EAR has to
go beyond the familiar framework of linear response theory
(LRT).

WQC circumstances are encountered in the analysis of any
weakly chaotic or weakly interacting system. In the WQC
regime the matrix Fnm is formed of elements that have a
log-wide distribution. The implied sparsity is important for
the analysis of the EAR [14,24], as expected from semilinear
response theory (SLRT) [29–31]. The main idea behind the
theory is demonstrated in Fig. 2: one observes that the energy
absorption process requires connected sequences of transitions
between the energy levels of the system. Accordingly, the
calculation of the EAR requires a semilinear resistor network
calculation.

We can characterize the sparsity of the perturbation matrix
by parameters s and gs which reflect the percentage of large
elements and their connectivity, respectively. The parameter
gs is defined through a resistor network calculation and has a
direct relation to the semilinear response characteristics of the
system, namely,

g = gsgc. (3)

For a strictly uniform matrix, gs = s = 1; for a Gaussian
matrix, s = 1/3 and gs ∼ 1, while for sparse matrix, s,gs � 1.
We would like to explore the dependence of gc and gs on the
parameters u and h of the system. Disregarding the physical
motivation, this exploration is mathematically interesting,
because it introduces a “resistor network” perspective into
RMT studies. Hence, it is complementary to the traditional
spectral and intensity statistics investigations.

066216-11539-3755/2011/83(6)/066216(17) © 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.066216


ALEXANDER STOTLAND, LOUIS M. PECORA, AND DORON COHEN PHYSICAL REVIEW E 83, 066216 (2011)

R

Ly

Lx

ε

FIG. 1. (Color online) Sketch of the billiard system of
Eq. (13). The unperturbed billiard is a rectangle of size Lx × Ly .
The deformation U , due to the radius of curvature R of the left wall,
is characterized by the parameter u = Ly/R. In order to break the
mirror symmetry the center of the curved wall is shifted upward a
vertical distance ε. The time-dependent perturbation is due to the
displacement f (t) of the right wall.

A. Generic parameters

For a billiard of linear size L that has walls with radius of
curvature R, as in Fig. 1, the Lyapunov time and the ballistic
time are

tR = R/vE (Lyapunov time), (4)

tL = L/vE (ballistic time), (5)

where vE = (2E/m)1/2 is the velocity of the particle. The
quantization introduces an additional length scale into the
problem, the de Broglie wavelength:

λE ≡ 2π

kE
≡ hPlanck

mvE
. (6)

Accordingly, the minimal model for the purpose of our study
is featured by two small dimensionless parameters:

u = L/R (degree of deformation), (7)

h̄ = λE/L = 2π/(kEL) (scaled Planck). (8)

FIG. 2. (Color online) The driving induces transitions between
levels En of a closed system, leading to diffusion in energy space
and hence an associated heating. The diffusion coefficient DE can be
calculated using a resistor-network analogy. Connected sequences of
transitions are essential in order to have a nonvanishing result, as in
the theory of percolation.
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FIG. 3. (Color online) An image of the eigenstate En � 13618 for
the billiard of Fig. 1 with Lx = 1.5, Ly = 1.0, R = 8, and ε = 0.1. In
the numerics the units are chosen such that h̄Planck = 1 and the mass
is m = 1/2.

With the two classical time scales tL and tR, one may associate
two frequencies, while quantum mechanics adds an additional
frequency that corresponds to the mean level spacing:

�L = 2π/tL, (9)

�R = 2π/tR = u�L, (10)

�0 ≡ 2π/tH = (h̄/2π )d−1 �L, (11)

where d = 2 is the dimensionality of the billiard. The WQC
circumstances that we would like to consider are characterized
by the following separation of scales:

�0,�R � �L (WQC). (12)

However, this is not a sufficient condition to observe WQC.
The identification of the WQC regime in the (u,h) space is an
issue that we would have to address.

B. Detailed outline

1. The model

In Sec. II we define the model and explain the numerical
procedure. Schematically the Hamiltonian of the system can
be written as

Htotal = H − f (t)F (13)

= H0 + U − f (t)F, (14)

where H0 describes the undeformed rectangular box, U

describes the deformation of the fixed walls, and F is the
perturbation due to the displacement f (t) of the moving wall
(piston). The geometry of the billiard is characterized by u,
while h̄ defines via Eq. (8) the energy window of interest.

2. Eigenstates

Given u and h̄ we find the ordered eigenenergies En of
the Hamiltonian H within the energy window of interest.
This is done using the boundary element method [32].
A representative eigenstate is presented in Fig. 3. If the
deformation is small it is meaningful to represent it in the
basis which is defined by H0. See, for example, Fig. 4. As the
deformation becomes larger more and more levels are mixed
as demonstrated in Fig. 5.
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FIG. 4. (Color online) Using a truncated matrix representation of
the deformed billiard H0 + U in the unperturbed basis n̄ = (nx,ny)
of the nondeformed rectangular billiard H0, we find a representative
eigenstate n0 of the former and plot |〈En̄|En0 〉|2 vs the running index
n̄ of the ordered energies. The participation number (PN) of an
eigenstate in this basis reflects how many energy levels were mixed
due to the deformation u. Having PN > 1 indicates that our data are
beyond the FOPT regime. For the displayed eigenstate PN ≈ 5.77,
while its energy width is 19 levels. The billiard parameters are R = 8
and 1/h̄ ≈ 27.15.

3. Perturbation matrix

Once we have the eigenstates, we calculate the matrix
elements Fnm of the perturbation term F within the energy
window of interest. An image of a representative matrix is
shown in Fig. 6. The distribution of its elements is definitely
not Gaussian, as shown in Fig. 7. In fact we see that the
statistics of |Fnm|2 resembles a log-normal distribution.

4. Band profile

In order to characterize the band profile of the perturbation
matrix we define in Sec. II spectral functions C̄a(r) and
C̄s(r) that are displayed in Fig. 8. We explain how C̄a is
semiclassically related to the power spectrum C̃(ω) of the
collisions and how C̄s gives an indication for the sparsity of
the matrix.

5. Sparsity

We characterize the sparsity and the texture of the matrix
by a parameter gs that is defined in Sec. III. The numerical
results for gs are presented in Fig. 9. This characterization
cares about the connectivity of the matrix elements and is
based on a calculation of a resistor network average. Some
further details with respect to the resistor network average are
given in Appendix A.

6. Classical analysis

In Sec. IV we provide a detailed analysis of the classical
power spectrum C̃(ω). In particular, we derive an expression
for the zero frequency peak, which reflects the long time
correlations of the bouncing trajectories in our weakly chaotic
billiard. Appendix B provides optional perspectives with
regard to this classical calculation.
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FIG. 5. (Color online) The participation number (PN) of the
eigenstates as a function of (a) u and (b) h̄. The parameter h̄

characterizes an energy window that contains ∼100 eigenstates. The
method of calculation is as explained in Fig. 4. The average energy
width in units of mean level spacing is represented by the solid (red)
line. Having average width larger than the average PN is an indication
of sparsity.

7. Quantum analysis

In Sec. V we use first-order perturbation theory for the
analysis of the eigenstates of the deformed billiard and
hence get an approximation for C̃(ω). The validity of this

FIG. 6. Image of the perturbation matrix X = {|Fnm|2} for the
billiard of Fig. 3, within the energy window 3500 < En < 4000.
This matrix is sparse. More generally it might have some texture.
The latter term applies if the arrangement of the large elements is
characterized by some pattern.
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FIG. 7. (Color online) Histogram of the values of the elements
Xnm that reside in the central band of the matrix. The analysis is
done for the billiard of Fig. 3 where R = 8. The statistics includes
all the elements in the energy windows 100 < E < 4000 (EW1) and
10 000 < E < 14 000 (EW2). For the sake of comparison we display
results also for R = 1.

approximation is very limited. We therefore fuse perturbation
theory with semiclassical considerations in Sec. VI. This
allows us to obtain some practical approximations for gc and
gs .

8. The WQC regime

Eventually we turn to define the borders of the WQC regime
in the (u,h) parameter space. This is also an opportunity to
make a connection with previous works that concern spectral
and intensity statistics for such types of weakly chaotic
billiards.

9. Implications

The relevance of the resistor network analysis to the EAR
calculation is clarified in Sec. VIII, and the experimental
feasibility of observing the implied SLRT anomaly is discussed
in Sec. IX. A broader perspective with respect to EAR
predictions is presented in Sec. X. In particular, we clarify
how to bridge between what look like contradicting results
with regard to diffusive and diffractive systems, as opposed to
ballistic billiards.

II. THE MODEL, NUMERICS

The Hamiltonian of the system is

Htotal = p2

2m
+ Wbox(x,y) + Wf (x−f (t)Df (y)). (15)

We write it formally as in Eq. (13), where H0 describes the
undeformed rectangular box Lx × Ly . The ballistic time is
defined as tL = Lx/vE, which is the typical time for successive
collisions with the piston. The term U in the Hamiltonian
is due to a deformation Du(y) of the left static wall. The
amplitude of this deformation is D0 ∼ L2

y/R, while u ≡ Ly/R

is conveniently defined as the dimensionless deformation
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FIG. 8. (Color online) The band profile of the perturbation matrix
for the billiard of Fig. 3 where R = 8. (a) The algebraic average and
median along the diagonals of the Xnm matrix vs ω ≡ (En−Em).
The vertical axis is normalized with respect to C∞, while the
horizontal axis is ω/vE. The classical power spectrum is presented
to demonstrate the applicability of the semiclassical relation of
Eq. (27). The dashed (red) curve is the analytical expression that
applies to zero deformation. The dotted vertical line is the frequency
1/tL and the dashed one is 1/tR. (b) Zoom of the ω � 1/tL region.
For the sake of comparison we display results also for R = 2. The
vertical lines indicate the mean level spacing. The dashed (red) curves
are based on Eq. (52).

parameter. The driving term −f (t)F is due to the deformation
f (t)Df (y) of the right wall, leading to the identification

F = Df (y)W ′
f (x). (16)

For parallel displacement of a “piston,” we set Df (y) = 1.
Note that f (t)Df , unlike Du, is assumed to be small compared
with the de Broglie wavelength.

For a billiard system with “hard” walls the potential is zero
inside the box and becomes very large outside of the box.
Accordingly, it is assumed that Wf (r) = 0 for r < 0, with a
steep rise as r becomes greater than zero. Accordingly, the
penetration distance upon collision is much smaller compared
with the linear dimension L of the box. Say that the force which
is exerted on the particle by the piston is W ′

f (r) = F0 for r > 0
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FIG. 9. (Color online) SLRT vs LRT. The scaled absorption
coefficient gc (LRT) and g = gsgc (SLRT) vs the dimensionless
1/h̄ (top) and vs the dimensionless deformation parameter u = L/R

(bottom). Note that g = 1 is the prediction of the wall formula, while
the line is based on the classical analysis. In the top panel the analysis
has been done for the billiard of Fig. 1. The calculation of each point
has been carried out on a 100×100 submatrix of X centered around
the h̄ implied energy E. The “untextured” data points are calculated
for artificial random matrices with the same band profile and sparsity
(but no texture). The complementary bottom panel is oriented to show
the small u dependence. The analysis is based on a truncated matrix
representation of H0 + U , within an energy window that corresponds
to 1/h̄ ∼ 9. Due to the truncation there is some quantitative inaccuracy
with regard to the larger g values.

and zero otherwise; then it is assumed that E/F0 � L, where
E is the kinetic energy of the particle inside the box. Below
we take the limit F0 → ∞.

Following Refs. [33–35] we discuss the definition and the
calculation of the spectral function C̃(ω) that describes the
fluctuations of F in the nondriven billiard system. We first
discuss the classical context and then turn to the quantum
context.

A. Classical context

In the classical context the Hamiltonian H can be used
to generate a trajectory (tj ,yj ,θj ), where j labels successive
collisions with the piston at (0,yj ) with incident angle θj .
Consequently, the associated F (t) consists of impulses of

height F0 whose duration is 2mvE cos(θj )/F0. In the hard wall
limit one can write formally

F (t) =
∑

j

2mvE cos(θj )Df (yj )δ(t − tj ). (17)

Assuming ergodic motion, the autocorrelation function of
F (t) can be calculated from the time dependence of a single
trajectory that has some long duration t∞:

C(t) = 〈F (t)F (0)〉 = F (t)F (0). (18)

The associated power spectrum is

C̃cl(ω) ≡
∫ ∞

−∞
C(t)eiωtdt = 1

t∞
|F̃ (ω)|2 (19)

= 1

t∞

∣∣∣∣∣∣
∑

j

2mvE cos(θj )Df (yj )eiωtj

∣∣∣∣∣∣
2

. (20)

If we regard the impulses as uncorrelated we get the result

C̃cl(ω) →
[

8

3π

m2v3
E

Lx

]
≡ C∞, (21)

which holds in the ω → ∞ limit. More details about this
calculation and its refinement are presented in Sec. IV.

B. Quantum context

The unperturbed energy levels of the rectangular box are

En̄ = Enxny
= 1

2m

[(
πnx

Lx

)2

+
(

πny

Ly

)2
]

(22)

with the mean level spacing

�0 = 2π

mLxLy

. (23)

For a given deformation we diagonalize H, and find the
ordered eigenenergies En with n = 1,2,3, . . ., within an
energy window of interest which is characterized by the
dimensionless parameter h̄. This is done using the boundary
element method [32]. Each eigenstate ψ(x,y) is represented
by a boundary function ϕ(y) ≡ ψ ′(0,y), where the normal
derivative is with respect to x at the position x = 0 of the
piston. Consequently, the matrix elements of F are

Fnm = − 1

2m

∫ Ly

0
ϕ(n)(y)ϕ(m)(y)Df (y) dy. (24)

Given Fnm one can calculate the quantum mechanical version
of the spectral function

C̃qm(ω) =
∑
m

|Fnm|2 2πδ[ω − (Em−En)], (25)

where it is implicit that the δ functions have a finite smearing
width related to the measurement time t∞, and an average
over the reference state (En ∼ E) is required to reflect the
associated uncertainty in energy.

066216-5



ALEXANDER STOTLAND, LOUIS M. PECORA, AND DORON COHEN PHYSICAL REVIEW E 83, 066216 (2011)

C. Correspondence

For a chaotic system, if the correlation time is short, one
expects quantum-to-classical correspondence (QCC) with re-
gard to C̃(ω). It follows from Eq. (25) that this spectral function
should reflect the band profile of the perturbation matrix [1–4].
Let us express this observation in a convenient way that allows
a practical procedure for numerical verification. We calculate
Fnm in an energy window of interest and define the associated
matrix

X = {|Fnm|2}. (26)

The band profile C̄a(r) is defined by the average of the elements
Xnm along the diagonals n − m = r . In the same way we also
define a median-based band profile C̄s(r). Given that the mean
level spacing �0 is small compared with the energy range of
interest, the correspondence between C̃qm(ω) and C̃cl(ω) can
be expressed as

C̄a(n − m) ≈
(

2π

�0

)−1

C̃cl(En − Em). (27)

In particular, it follows from Eq. (21) that the unrestricted
average value of the elements Xnm is

〈〈X〉〉∞ =
(

8

3π

)
mv3

E

LyL2
x

. (28)

In fact this result can be established without relying on QCC
considerations via a sum rule that we discuss in Sec. VI, and the
same result is also obtained from the zero-order evaluation of
matrix as described in Sec. V. Whenever applicable we rescale
the numerical results with respect to this reference value.

The applicability of the QCC relation, Eq. (27), to the
analysis of our billiard system is confirmed in Fig. 8, down
to very small frequencies. We also see that

C̄s(r) � C̄a(r) → 〈〈X〉〉∞, (29)

where the value on the right-hand side is obtained in the limit
r → ∞. The inequality C̄s � C̄a means that the value of the
typical matrix element is very small compared with the average
value. We are therefore motivated to define notions of sparsity
and texture in Sec. III.

III. SPARSITY AND TEXTURE

For strongly chaotic systems the elements within the band
have approximately a Gaussian distribution. But for WQC
the matrix becomes sparse and textured as demonstrated in
Fig. 6. These features go beyond the semiclassical analysis of
the band profile. The sparsity is related to the size distribution
of the in-band elements: Loosely speaking, one may say that
only a small fraction (s) of the elements are large, while most
of the elements are very small. (For a precise definition of s

see below.) The texture refers to the nonrandom arrangement
of the minority of large elements.

In the WQC regime the size distribution of the in-band
elements becomes log-wide (approximately log-normal), as
seen in Fig. 7. This is reflected by having C̄s(r) � C̄a(r) as
seen in Fig. 8. Accordingly, an optional measure for sparsity
is the parameter q which is defined as the ratio of the median
to the average.

The sparsity and the texture of Fnm are important for the
analysis of the energy absorption rate as implied by SLRT.
Accordingly, it is physically motivated to characterize the
sparsity by a resistor network measure gs that reflects the
connectivity of the elements and hence has a direct relation
to the semilinear response characteristics of the system. The
precise definition of gs is given below. For a strictly uniform
matrix gs = s = 1; for a Gaussian matrix, s = 1/3 and gs ∼ 1;
while for a sparse matrix, s, gs � 1. The dependence of the
sparsity on the energy and on the degree of deformation is
demonstrated in Fig. 9 and is related to the mixing of the
levels in Fig. 5.

A. Definition of s

Define a matrix X whose elements are Xnm = |Fnm|2.
Associate with it an untextured matrix Xutx and a uniform
matrix Xunf that have the same band profile C(r). The former is
obtained by performing random permutations of the elements
along the diagonals, while the latter is obtained by replacing
each of the elements of a given diagonal by their average.
The participation number (PN) of a set {Xi} is defined
as (

∑
i Xi)2/

∑
i X

2
i and reflects the number of the large

elements. Here the index is i = (n,m). The PN of {Xnm} counts
the number of large elements in the matrix. The PN of {Xunf

nm}
counts the number of the in-band elements. Accordingly, the
ratio constitutes a measure for sparsity:

s = s[X] ≡ PN [X]

PN[Xunf]
. (30)

It should be clear that X and Xutx have the same s but only
the former might have texture. So the next question is how to
define texture while avoiding a subjective visual inspection.

B. Definition of gs

Complementary information about the sparsity of the
matrix, that takes into account the texture as well, is provided
by the resistor network measure gs . Coming back to Xnm we
can associate with it a matrix

Gnm = 2F (n−m)
Xnm

(n − m)2
, (31)

where
∑

r F (r) = 1 is a weight function whose width should
be quantum mechanically large (i.e., 
1) but semiclassically
small (i.e., � the bandwidth). With such a choice the Gnm

are proportional to the Fermi golden rule transition rates
that would be induced by a low-frequency driving −f (t)F .
Optionally we can regard these Gnm as representing connectors
in a resistor network, as in Fig. 2. The inverse resistivity of the
strip can be calculated using standard procedure, as in electrical
engineering, and the result we call 〈〈X〉〉s . For more details see
Appendix A. It is useful to notice that if all the elements of
X are identical then 〈〈X〉〉s equals the same number. More
generally, 〈〈X〉〉s is smaller than the conventional algebraic
average 〈〈X〉〉a (calculated with the same weight function).
Accordingly, the resistor network quantity 〈〈X〉〉s can be
regarded as a smart average over the elements of X that takes
their connectivity into account. Consequently, it is natural to
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define a physically motivated resistor-network measure for
sparsity and texture:

gs = gs[X] ≡ 〈〈X〉〉s
〈〈X〉〉a . (32)

One can show that 〈〈X〉〉s is strictly bounded from below
by the harmonic average. In practice the geometric average
or the median provides better lower bounds. In the RMT
context a realistic estimate for 〈〈X〉〉s can be obtained using a
generalized variable-range-hopping procedure (see Ref. [31]
for details).

C. Additional definitions

If the elements Xnm have a well-defined average 〈〈X〉〉∞ in
the limit of infinite truncation, then it is convenient to define

gc ≡ 〈〈X〉〉a
〈〈X〉〉∞ , (33)

g ≡ 〈〈X〉〉s
〈〈X〉〉∞ = gsgc. (34)

Later, in Sec. VIII, we discuss the physical significance of
g and identify it as the dimensionless absorption coefficient.
In particular, gc is identified as the dimensionless absorption
coefficient in the classical calculation, which is determined by
taking into account classical correlations. In the quantum case
we have an additional suppression factor gs due to the sparsity
of the perturbation matrix.

IV. CLASSICAL ANALYSIS OF C̃(ω)

Let us assume that we have a collision in angle θ with the
flat piston. The force which is exerted on the particle during
the collision is F0, such that the impact is

qθ = 2mvE cos(θ ). (35)

Consequently, the force F (t) looks like a train of spikes as in
Eq. (17). Note that the duration of a collision is qθ/F0. In the
absence of deformation the time distance between the spikes
is

τθ = 2Lx

vE cos θ
, (36)

where θ is a constant of the motion. For the following
calculations it is useful to define the following averages:

C∞ =
〈(

q2
θ

τθ

)〉
θ

= 8

3π

m2v3
E

Lx

, (37)

c0 =
〈(

qθ

τθ

)2
〉

θ

= 3

8

m2v4
E

L2
x

, (38)

c∞ =
〈(

qθ

τθ

)〉2

θ

= 1

4

m2v4
E

L2
x

, (39)

Var
[q

τ

]
≡ c0 − c∞ = 1

8

m2v4
E

L2
x

. (40)

If we have a very small u the effect would be to ergodize
θ with some rate γθ . After time t the number (#) of collisions
is t/τθ and consequently the deviation of the perturbed tra-
jectory is multiplied by (1 + L/R)# ≈ exp [(vEt/R) cos(θ )].
Accordingly, the instability exponent is

γθ ≈ γ0 + vE

R
cos(θ ). (41)

For the sake of generality we have added a background term
γ0. This background term would arise if the upper or lower
walls were deformed, or if the potential floor were not flat.
A nonzero γ0 is unavoidable in a realistic system. As we see
shortly, the effect of the deformation is twofold. The primary
effect is to ergodize θ , and the secondary effect is to modify
the small ω spectral content of the fluctuations.

A. Power spectrum

Let us define Fθ (t) as the temporal “signal” which is
associated with a trajectory that starts at the piston with θ

collision angle. This signal consists of delta spikes, the first
one being qθδ(t). The correlation function can be expressed as

〈F (0)F (t)〉 =
〈
qθ

τθ

Fθ (t)

〉
θ

(42)

=
〈
q2

θ

τθ

〉
θ

δ(t) + correlations, (43)

where the first term represents the self-correlation of the spikes.
It is convenient to subtract from 〈F (0)F (t)〉 its global offset
and to define the correlation function as

C(t) = 〈F (0)F (t)〉 − 〈F 〉2. (44)

The associated power spectrum is the Fourier transform (FT):

C̃(ω) =
〈
qθ

τθ

F̃θ (ω)

〉
θ

−
〈
qθ

τθ

〉2

θ

2πδ(ω). (45)

Note that F̃θ (ω) is the FT of Fθ (t). It is not the same as F̃ (ω)
of Eq. (19). The latter has a random phase due to a time
displacement of the time origin, while in the case of Fθ (t) the
time origin is fixed by the presence of F (0) in Eq. (42).

B. Infinite frequency limit

The first obvious observation is that for large frequencies
the power spectrum becomes flat and reaches a constant value
that reflects the self-correlation peak of Eq. (43):

C̃(∞) =
〈
q2

τ

〉
= C∞, (46)

where C∞ is given by Eq. (37). This result, if it is applied to
finite frequencies, is termed in the literature the “white noise
approximation.”

C. Zero deformation

Let us consider the nondeformed integrable billiard. Then
the bouncing trajectories consist of equal spikes and may
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have an arbitrary long period τθ . The Fourier transform of
Fθ (t) = ∑

j qθ δ(t−tj ) is a reciprocal comb, namely,

F̃θ (ω) = qθ

∑
n

2π

τθ

δ

(
ω − 2π

τθ

n

)
. (47)

The power spectrum is obtained using Eq. (45). It consists of
two components. One component is the zero-frequency peak
which reflects the dispersion of the impact pulses:

C̃(ω ∼ 0) = Var
[q

τ

]
2πδ(ω). (48)

This zero-frequency peak would be broadened if the defor-
mation were nonzero, as discussed in the next section. The
second component of the power spectrum consists of ballistic
peaks at ωn = (πvE/Lx)n, which merge to C∞ in the infinite
frequency limit:

C̃(ω > 0) = C∞
∑
ωn>ω

3

2n

(ω/ωn)4√
1 − (ω/ωn)2

. (49)

Figure 8 presents the numerical data for a slightly deformed
billiard. Disregarding the broadened zero-frequency peak, the
above zero-deformation result provides a practical overall
approximation.

D. Small deformation

For small deformation the main effect is the broadening of
the δ function in Eq. (48). Assuming a θ -independent γ , the
δ(ω) is replaced by the Lorentzian (1/π )γ /(ω2 + γ 2). Hence,
we get for small frequencies

C̃(ω � �L) ≈ Var
[q

τ

] 2/γ

1 + (ω/γ )2
. (50)

We further illuminate this result using the time-dependent and
number variance approaches in Appendix B. If γ = γ0 is well
defined there is a well-defined limiting value as ω → 0. With
the identification γ ∼ 1/tR one should realize that the power
spectrum at zero frequency is enhanced by the factor tR/tL;
hence,

C̃(ω = 0) ≈ 1

u
C∞. (51)

But if γ is given by Eq. (41) we have to perform an ergodic
average over θ . This becomes interesting if γ0 is very small or
zero, as discussed in the next section.

E. Bouncing effect

It has been proven [15,16] that in strictly hyperbolic
billiards the time correlation function exhibits an exponential
decay rate. But if there are bouncing trajectories that do not
collide with the deformed surfaces and can be of arbitrarily
long length, then a power law decay shows up as in the
hard-sphere gas [17] and in the stadium [18]. Our billiard, with
γ as given by Eq. (41), can be regarded as a related variation on
this theme. Assuming that γ0 is very small, the trajectory has
a very long bouncing period when θ ∼ π/2. Consequently,
the ergodic average over 1/γ generates a logarithm factor
log(1/γ0), or at finite frequency it becomes log(1/ω). Let us be

more precise in the γ0 = 0 case. Averaging over the Lorentzian
we get

C̃(ω) = m2v3
E

2L2
x

R√
1 + ω2R2

v2
E

arctanh

⎡
⎣ 1√

1 + ω2R2

v2
E

⎤
⎦

= m2v4
E

4L2
x

tR√
1 + ω2t2

R

ln

⎡
⎣1 +

2 + 2
√

1 + ω2t2
R

ω2t2
R

.

⎤
⎦ (52)

For small ω the above expression can be further simplified:

C̃(ω � �R) ≈ m2v3
E

R

2L2
x

ln

[
2

ωtR

]
. (53)

In the zero-frequency limit, if γ0 is finite, the logarithmic
factor in the above expression is replaced by ln[2/(γ0tR)].
Consequently, the result gc = 1/u which is implied by
Eq. (51) is replaced by

gc = ln

[
2
�R

γ0

]
1

u
(for ωc → 0). (54)

In the quantum case, which we discuss later, the finite
level spacing provides an additional lower cutoff �0 that
“competes” with γ0 as discussed in Sec. VI.

V. PERTURBATION THEORY ANALYSIS

In this section we see what comes out for the matrix
elements Fnm within the framework of quantum perturba-
tion theory to leading order: zero-order evaluation for the
“large” elements, and first-order perturbation theory (FOPT)
for the “small” elements. In Sec. VI we try to reconcile
the perturbation theory results with the classical results of
Sec. IV.

The small parameter in the perturbative treatment is u. The
eigenstates n̄ = (nx,ny) of the nondeformed billiard are

ψ (n̄)(x,y) = 2√
LxLy

sin

(
nx

π

Lx

x

)
sin

(
ny

π

Ly

y

)
. (55)

The deformation profile is

Du(y) =
√

R2 − (y−ε)2 −
√

R2 − (Ly−ε)2. (56)

In the FOPT treatment the perturbation term in the Hamiltonian
is calculated using an expression analogous to Eq. (24), with
Du replacing Df along the left wall, leading to

Un̄m̄ = − π

mL3
x

(Dny−my
− Dny+my

)nxmx, (57)

where

Dν ≡ 1

Ly

∫ Ly

0
Du(y) cos

(
ν

π

Ly

y

)
dy. (58)

In the numerical analysis, we calculate Dν and hence Unm

numerically. But here, for presentation purposes, we introduce
a practical approximation:

|Unm| ≈
(

D0

mL3
x

)
nxmx

1 + |ny − my |α . (59)

066216-8



“WEAK QUANTUM CHAOS” AND ITS RESISTOR . . . PHYSICAL REVIEW E 83, 066216 (2011)

In this expression an exponent α = 1 would arise due to the
discontinuity of Du(y) at y = 0. However, the effective value
of α is larger because this discontinuity is very small and
hardly expressed numerically. Furthermore, we would not like
to restrict the analysis to the specific deformation that had been
assumed in the numerics. We therefore regard α, for the sake
of further discussion, as a fitting parameter.

We can regard the deformation U as inducing scattering
between the ny modes of the rectangular “wave guide.” If the
box is not deformed (u = 0), which is like “no scattering,”
then ny is a good quantum number. Otherwise, for nonzero
deformation, the levels are mixed. The FOPT overlap between
perturbed and unperturbed states is

〈m̄|n〉 = Um̄n̄

En̄ − Em̄

. (60)

Note that by adiabatic continuation we assume in this expres-
sion an association of perturbed states n with unperturbed
states n̄ = (ny, ny). This association holds for those levels
that are not mixed nonperturbatively. Later we discuss the
coexistence of perturbative and nonperturbative mixing.

A. Zero-order elements

We turn to look at Fnm. For zero deformation it is block
diagonal with respect to ny . Namely,

Fn̄m̄ = −δny,my

π2

mL3
x

nxmx. (61)

Most of the matrix elements are zero, while a small fraction
are finite. Considering the elements within an energy shell E,
setting |n| ∼ |m| ∼ kEL, the size of the large elements is

|Fnm|0 ∼ 1

mL3
(kEL)2. (62)

In Appendix C we show that the fraction of elements that have
this large value is

p0 = 2

πkELy

. (63)

Consequently, the average value 〈〈|Fnm|2〉〉∞ of the elements
is p0|Fnm|20. In the more careful calculation of Appendix C we
show that

〈〈|Fnm|2〉〉∞ = 8

3π

k3
E

m2L2
xLy

, (64)

in consistency with the semiclassical relation Eq. (27).

B. FOPT elements

For small u the large size matrix elements of Fnm are hardly
affected by the mixing. But at the same time the deformation
gives rise to in-band small size matrix elements that would
have been zero if u were zero. Within FOPT the following
approximation applies:

Fnm =
∑
n′,m′

〈n|n̄′〉Fn̄′m̄′ 〈m̄′|m〉 (65)

≈ Fn̄m̄ + 〈n̄|m〉Fn̄n̄ + 〈m̄|n〉∗ Fm̄m̄ (66)

= Fn̄m̄ + 〈n̄|m〉 (Fn̄n̄ − Fm̄m̄). (67)

Hence, the emerging small elements are

|Fnm| =
∣∣∣∣ Un̄m̄

En̄ − Em̄

∣∣∣∣ |Fn̄n̄ − Fm̄m̄| (68)

≈ D0

mL4

(
n2

x − m2
x

)
nxmx

(|n|2 − |m|2)(1 + |ny − my |α)
, (69)

where for simplicity we had assumed Lx ∼ Ly ∼ L such that
En ≈ π2|n|2/(2mL2) with |n| ≡ (n2

x + n2
y)1/2.

Given an energy window around E, we would
like to estimate the typical size of the elements Fnm

that connect energy levels that have the separation
|En − Em| = ω. Our interest is in small frequencies
�0 � ω � �L. Setting ||n| − |m|| ∼ ω/�L, D0 ≈ L2/R,
and |nx−mx | ∼ |ny−my | ∼ |n| ∼ |m| ∼ kEL, we get for the
majority of elements the estimate

|Fnm|FOPT ∼
(

�R

ω

)
1

mL3
(kEL)3−α. (70)

This should be contrasted with the zero-order value Eq. (62)
of the large but rare elements: it is much smaller whenever the
FOPT estimate applies.

VI. QUANTUM ANALYSIS OF C̃(ω)

The QCC relation, Eq. (27), implies that C̃qm(ω) reflects
the algebraic average over the elements of the matrix {|Fnm|2}
along the diagonal |En − Em| ∼ ω. Our numerics show that
we can trust Eq. (27) up to the very small frequency �0.
This statement is based on some assumptions that should be
clarified.

First we would like to emphasize that, both classically and
quantum mechanically,

C̃qm(ω 
 �L) ≈ C∞. (71)

In the classical context this value merely reflects the self-
correlation of the spikes of which F (t) consists, and hence
it is proportional to the ratio between the area (length) of
the piston and the volume (area) of the box (billiard). In the
quantum context it reflects the associated assumption that well-
separated eigenstates look like uncorrelated random waves,
and hence |Fnm|2 is determined by the same ratio as in the
classical case. For more details, see the appendices of Ref. [33].

A. QCC condition

As we go to smaller frequencies, correlations on larger
time scales become important, and the validity of the QCC
relation, Eq. (27), becomes less obvious. Recall that, due to
the bouncing,

C̃cl(ω ∼ 0) ≈ 1

u
C∞. (72)

Recall also that the matrix elements are strictly bounded from
above. The maximal value is in fact given by Eq. (62) and
accordingly

C̃qm(ω) <
1

h̄
C∞. (73)

This has an immediate implication: QCC cannot hold globally
unless h̄ < u. This requirement can be illuminated from an
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optional perspective. The zero-frequency peak of C̃cl(ω) has
a width �R. This peak cannot be resolved by C̃qm(ω) unless
�R > �0. Again we get the same necessary condition,

h̄ < u (QCC requirement). (74)

B. Sum rule

Extending the discussion with regard to Eq. (71), it is
important to realize that the integral over C̃cl(ω) equals Var(F ),
and accordingly it does not depend on u, but only on the ratio
between the area (length) of the piston and the volume (area)
of the box (billiard). Note that the height of the zero-frequency
peak is proportional to 1/u, while its width is proportional to
u in consistency with this observation.

In complete analogy, in the quantum analysis the sum∑
m |Fnm|2 does not depend on u. If the diagonal elements

can be neglected, it follows that C̃qm(ω) does not depend on
u. But if h̄ > u, the zero-frequency peak cannot be resolved,
and the deficiency can be attributed to the diagonal elements,
in consistency with the FOPT analysis.

C. FOPT

In the regime u < h̄, it is instructive to contrast the lower
bound FOPT result, which is implied by Eq. (70), with the
semiclassical (SC) result, which is implied by Eq. (50):

C̃qm-FOPT(ω) ∼
(

1

h̄

)3−2α
�2

R

ω2 + �2
0

C∞, (75)

C̃qm-SC(ω) ≈ �L�R

ω2 + �2
R

C∞. (76)

The lower cutoff �0 in the FOPT expression has been entered
by hand to indicate its existence. It is implicit here that the
frequency range of interest is �R � ω � �L. In the worst
case of having a deformation with discontinuity (α = 1), the
ratio between these two results, in the frequency range of
interest, is as one could expect: (u/h̄) � 1. We discuss the
relevance of the FOPT and semiclassical expressions below
and also in Sec. VII.

D. Evaluation of gc

Coming back to the regime h̄ < u, assuming that the
QCC relation, Eq. (27), can be trusted, we deduce that the
unrestricted average value of the matrix elements at energy E

is

〈〈|Fnm|2〉〉∞ =
(

2π

�0

)−1

C∞. (77)

Our interest is in the response characteristics of the system
for low-frequency driving, which we further discuss later
in Sec. VIII. We assume that the spectral content of the
driving is characterized by a cutoff frequency �R < ωc < �L.
Therefore, we look at the band-averaged value:

〈〈|Fnm|2〉〉a ≡
(

2π

�0

)−1 1

ωc

∫ ωc

�0

C̃qm(ω)dω (78)

≡ gc〈〈|Fnm|2〉〉∞. (79)

If QCC holds, and �0 is taken to be zero, then we should
get the classical result: in accordance with the “sum rule,” the
expected enhancement factor would be gc ≈ 1 if ωc ∼ �L,
and gc ≈ �L/�R if ωc ∼ �R. But �0 is finite, and we get

gc[qm] ≈
[

1 − �0

�R
ln

(
2
�R

�0

)]
gc[cl], (80)

which is analogous to “weak localization corrections” to the
mesoscopic conductance of closed rings [36].

E. Evaluation of gs

The typical value of the elements, unlike the average value,
is dominated by the majority of small elements. In order
to calculate gs as defined in Eq. (32), we have to bridge
between the FOPT and the semiclassical analysis. To do it
in a mathematically rigorous way seems to be impossible. We
therefore extend standard phenomenology and test it against
numerical results. The basic idea is that FOPT cannot be trusted
globally once levels are mixed nonperturbatively, but still it can
be used in a restricted way. The analogy here is with Wigner’s
Lorentzian, whose tails are given correctly by FOPT in spite
of the nonperturbative mixing of levels. See the discussion of
this issue in Ref. [33].

It is natural to expect FOPT to hold as an estimate for
the majority of small elements as long as it does not exceed
the semiclassical estimate. If we take a band matching cutoff
ωc ∼ �R and calculate the ratio of the area under Eq. (75) to
the area under Eq. (75) we get

gs ≈
(

1

h̄

)6−4α

u2. (81)

Note that with α = 1 it follows that gs ∝ (u/h̄)2. In our
numerics we fix ωc as the first minimum of Ca(ω) implying
ωc ∼ �L, and consequently gc ∼ 1, and g ∼ gs . Our numerics
fits well to g ∝ u2/h̄, indicating that the effective α is
somewhat larger than unity.

At this point one should appreciate how the contradicting
FOPT and semiclassical results reconcile. The former applies
to the majority of elements while the latter applies to the
algebraic average which is dominated by relatively rare
elements. The WQC regime where this picture is valid is
further discussed in Sec. VII.

For completeness one should be aware that the typical
(median) value of the elements in X provides an underestimate
for the resister network average 〈〈X〉〉s . The reason is very
simple: even if the matrix is very sparse (s � 1), a network
becomes percolating if the bandwidth is large enough. An
RMT perspective [31], which uses a generalized variable-
range-hopping approach, implies the following prescription:

g �→ max
{

1,g exp
[√

− ln b ln g
]}

. (82)

Here b = ωc/�0 is the dimensionless bandwidth. This pre-
scription allows us to “correct” the result that has been deduced
for g on the basis of a typical value estimate of the matrix
elements. It is required if b is large.
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VII. THE WQC REGIME

Quantum mechanics introduces in the billiard problem an
additional frequency scale �0 that corresponds to the mean
level spacing. We can associate with it the Heisenberg time
tH = 2π/�0. It is also possible to define the Ehernfest time tE
which is required for the exponential instability to show up in
the quantum dynamics. One can write

tH = (1/h̄)d−1tL, (83)

tE = [log(1/h̄)]tR, (84)

where d = 2. The traditional condition for “quantum chaos”
is tE � tH, but if we neglect the log factor it is simply
tR � tH. This can be rewritten as �R 
 �0, which we call
the frequency domain version of the quantum chaos condition.
Optionally one may write a parametric version of the quantum
chaos condition, namely u 
 ub, where

ub = h̄ (de Broglie deformation). (85)

Note that it is the same as the QCC requirement of
Eq. (74). Namely, the frequency domain version of this
condition implies that it should be possible to resolve the
zero-frequency peak of C̃(ω) as in Fig. 8, while the parametric
version means that a de Broglie wavelength deformation of the
boundary is required to achieve quantum chaos.

In practice we witness a WQC regime instead of hard chaos.
We observe in the top of Fig. 9 that gs is significantly smaller
than unity, even for very small values of h̄ for which u > ub is
definitely satisfied. For completeness we show in the bottom
plot additional data points in the regime u < ub where this
breakdown of QCC is not a big surprise. We conclude that
QCC for u > ub is restricted to C̃(ω) and does not imply hard
quantum chaos (HQC), but only WQC. In the WQC regime,
C̄s(r) � C̄a(r) and consequently gs � 1, indicating sparsity.

This emergence of the WQC regime can be explained by
extrapolating FOPT considerations. If a wall of a billiard
is deformed, the levels are mixed. FOPT is valid provided
|Unm| < �0. This condition determines a parametric scale uc.
If the unperturbed billiard were chaotic, the variation required
for level mixing would be [37]

uc ≈ h̄/(kEL)1/2 = h̄3/2 (not applicable). (86)

This expression assumes that the eigenstates look like random
waves. In the Wigner regime (uc < u < ub), there is a
Lorentzian mixing of the levels and accordingly

number of mixed levels ≈ (u/uc)2 (not applicable). (87)

But our unperturbed (rectangular) billiard is not chaotic;
the unperturbed levels of the nondeformed billiards are not
like random waves. Therefore, the mixing of the levels is
nonuniform. Figure 5 illustrates the mixing versus u.

By inspection of the Unxny,mxmy
matrix elements one ob-

serves that the dominant matrix elements that are responsible
for the mixing are those with large nx but small |ny−my |.
Accordingly, within the energy shell Enxny

∼ E, the levels
that are mixed first are those with maximal nx , whereas those
with minimal nx are mixed last. The mixing threshold for the
former is

uc ≈ h̄/(kEL) = h̄2, (88)

while for the latter, one finds u∞
c ∼ h̄0, which is much larger

than ub = h̄1. In our numerics g ≈ u2/h̄, implying that the
WQC-HQC crossover is at

us = h̄1/2 (89)

and not at ub = h̄. Accordingly, the WQC regime extends well
beyond the traditional boundary of the Wigner regime, and in
any case it is well beyond the FOPT border uc.

A. WQC in broader perspective

In a broader perspective, the term WQC is possibly appro-
priate also for a system with zero Lyapunov exponent (tR =
∞), e.g., the triangular billiard [19] and pseudointegrable
billiards [20], and for systems with a classical mixed phase
space. But in the present study we wanted to consider a
globally chaotic system, under semiclassical circumstances
such that �R is quantum mechanically resolved and QCC is
naively expected. In this context there are of course other
interesting aspects, such as bouncing-related corrections to
Weyl’s law [21] and nonuniversal spectral statistics issues (see
below), while our interest is with regard to the semilinear
response characteristics of the system.

B. Spectral statistics in the WQC regime

The spectral statistics in the WQC regime was studied in
Ref. [22] concerning a nearly circular stadium billiard and in
Ref. [23] concerning circular billiards with a rough boundary.
The model that we analyze is not identical, but it can be
regarded as a variation on the same theme. In Fig. 10 we display
some results for the level spacing statistics P (S), where the
statistics is over Sn = (En+1 − En)/�0. It can be fitted to the
cumulative Brody distribution

F (S) = 1 − e−bSq+1
, b =

[
�

(
q + 2

q + 1

)]q+1

, (90)

which interpolates between the Poisson distribution (q =
0) and the Wigner surmise (q = 1). This cumulative
distributions can be transformed into linear functions
T (x) = ln {− ln[1 − F (ex)]} with respect to the variable x =
ln(S), and the fitting to our data gives q = 0.38.

Let us remind very briefly how the WQC border is
determined in this context. It is convenient to describe the
dynamics using a Poincaré map, which relates the angle θτ

of successive collisions (τ = 1,2,3, . . .) with the piston. One
observes that, due to the accumulated effect of collisions with
the deformed boundary, there is a slow diffusion of the angle
with coefficient

Dθ ∼ u2. (91)

Accordingly, the classical ergodic time is

τu ∼ 1/Dθ ∼ 1/u2 (92)

and the quantum break time due to a dynamical localization
effect is

τh ∼ Dθ/h̄
2 ∼ (u/h)2. (93)

The border of the WQC regime is defined by the condition
τh < τu leading to Eq. (89). However, we do not want to
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FIG. 10. (Color online) (a) Cumulative histogram for the level
spacing distribution P (S) with fitting to Brody distribution (q =
0.38), and contrasted with Poisson distribution (q = 0) and the
Wigner surmise (q = 1). (b) The Brody parameter is determined via
the slope of T (x) as explained in the text.

overemphasize this consistency because it is not a priori
clear that spectral statistics and sparsity-related characteristics
always coincide.

C. Intensity statistics in the WQC regime

WQC is also reflected in the intensity statistics of the wave
functions. If we had HQC we would expect Porter-Thomas
(Gaussian) statistics and random wave correlations. The wave
functions that we find do not look like random waves. In
Fig. 11 we show the statistics of the integrated intensity:

In = 1

2k2
n

∫ Ly

0
|ϕ(n)(y)|2dy = − 1

2En

Fnn. (94)

Note that the total intensity, which is obtained by integrating
along the whole boundary with proper weight, gives unity,
corresponding to the normalization of the wave function.

VIII. THE HEATING RATE PROBLEM

In this section we would like to discuss the physical
significance of g with regard to the response characteristics of
cold atoms that are trapped in an optical billiard. We identify
it as the dimensionless absorption coefficient, and we inquire
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FIG. 11. (Color online) Wave function intensity statistics: The
cumulative distribution of the integrated intensity In of Eq. (94) is
presented. As R becomes larger, the distribution further deviates from
Gaussian statistics. The statistics includes all the eigenfunctions in the
energy windows 100 < E < 4000 (EW1) and 10 000 < E < 14 000
(EW2).

about the feasibility of witnessing the quantum suppression
factor gs which is related to the connectivity of the induced
Fermi golden rule (FGR) transitions.

A. LRT

In linear response theory one has to know the following
information in order to calculate the EAR: (i) the temperature
T of the preparation, (ii) the spectral fluctuations C̃(ω) of the
system, and (iii) the spectral content S̃(ω) of the driving. Let
us elaborate on the third item. The rms value of the vibrating
wall velocity can be written as

ḟ [rms] ∼ ωcA, (95)

where A is the amplitude of the wall movement. The power
spectrum of f (t) has a spectral support ωc. To be specific let
us assume that

S̃(ω) = ḟ 2 1

2ωc

exp

(
−|ω|

ωc

)
. (96)

The wall vibrations induce diffusion in energy space. Within
LRT the diffusion coefficient is given by the Kubo formula,
which in the following version can be regarded as an Einstein
fluctuation-dissipation relation:

D =
∫ ∞

0
C̃(ω)S̃(ω)dω. (97)

The EAR per particle for strongly chaotic dynamics, assuming
that correlations between collisions can be neglected, is given
by the wall formula [7–9]. Here we use the 2D version [33]:

Ė = D

T
= 1

2T

[
8

3π

m2v3
E

Lx

]
ḟ 2 ≡ G0ḟ

2. (98)
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Regarding the ballistic period as the time unit, and T as the
energy unit, the dimensionless EAR is

Ė

T �L
= 8

3π2

(
ωc

�L

)2 (
A

L

)2

. (99)

In the quantum context the level spacing �0 sets the natural
units for both energy and time measurements. Accordingly,
we calculate the dimensionless quantity

D

�3
0

= 8

3π2

(
�L

�0

)3 (
ωc

�0

)2 (
A

L

)2

. (100)

B. FGR

The LRT formula, Eq. (97), can be obtained from a classical
derivation, say, using a kinetics Boltzmann picture that does
not assume applicability of the FGR picture. The same formula
is obtained from FGR but with reservations that we illuminate
in the next section. It is therefore important to figure out the
border between the quantum FGR regime and the classical
Boltzmann regime. The strict FGR condition states that the
near-neighbor transitions between levels should have a rate
w0 < ωc. Taking into account that the diffusion coefficient
can be written as D ≈ bcw0�

2
0, where bc = ωc/�0, it follows

that the strict FGR condition can be written as

D

�3
0

<

(
ωc

�0

)power

(101)

with power = 2. But to witness FGR physics we can allow
nonperturbative mixing on microscopic energy scales. The
more careful analysis of Ref. [38] leads to the same condition
but with power = 3.

C. SLRT

It has been illuminated in a series of publications [29–31]
that in the FGR regime one should refer in general to
semilinear response theory. SLRT applies to circumstances
in which the environmental relaxation is weak compared
with the f (t)-induced transitions. In such circumstances the
connectivity of the transitions from level to level is important,
and the diffusion coefficient is obtained via a resistor network
calculation. Let us give a more precise quantitative description
of this latter statement. The absorption coefficient G is defined
via Eq. (1). This is strictly analogous to the Joule law:
here the heating is due the vibration of the piston, while
in the Joule-Drude problem it is due to the oscillation of
an electric field. The calculation of G can be done either
within the framework of LRT using the Kubo formula (getting
GLRT) or within the framework of SLRT [29–31] using a
resistor-network calculation (getting GSLRT). The correlations
between collisions lead in the LRT case to a result that one can
write as

GLRT = gcG0, (102)

where the expression for G0 is implied by Eq. (98), and gc is
defined as in Eq. (33). Similarly it is convenient to write the
outcome of the SLRT analysis as follows:

GSLRT = gsGLRT = gsgcG0 = gG0, (103)

where g and gs are defined as in Eqs. (34) and (32). If QCC
considerations apply, then gs ∼ 1 with small h̄-dependent
corrections as in Eq. (80).

The results of SLRT differ from those of LRT if the
perturbation matrix is either sparse or textured, which is the
case if we have WQC circumstances. The LRT and SLRT
numerical results for gc and for g are displayed in Fig. 9.

IX. EXPERIMENTAL MANIFESTATION OF QUANTUM
ANOMALY

With slight changes in notations which we find appropriate
for the experimental context, we summarize again the main
parameters of the problem:

ωL = ballistic frequency, (104)

ωR = Lyapunov ergodization rate, (105)

ωc = vibrations frequency span, (106)

ω0 = mean level spacing. (107)

The length scales are the linear dimension L, the de Broglie
(thermal) wavelength λE as determined by the temperature
(calculated for E ∼ T ), and the radius of curvature of the
walls, R. The associated dimensionless parameters are

h̄ = λE/L = dimensionless Planck, (108)

u = L/R = deformation parameter, (109)

b = u/h = dimensionless bandwidth, (110)

a = A/L = scaled vibration amplitude. (111)

Note that u determines the ratio ωR/ωL, while h determines the
ratio ω0/ωL; hence, b = ωR/ω0. Our interest is in the nontrivial
possibility h < u � 1, else ωR cannot be resolved.

A. The system

Following Refs. [10,12,13] we consider 85Rb atoms (m =
1.4 × 10−25 kg), that are laser cooled to a low temperature
of T ≈ 0.1 μK, such that the de Broglie wavelength is λE

= 1 μm. The atoms are trapped in an optical billiard whose
blue-detuned light walls confine the atoms by repulsive optical
dipole potential. The motion of the atoms is limited to the
billiard plane by a strong perpendicular optical standing wave.
Assuming that the linear size of the billiard is L = 10 μm, the
dimensionless Planck is h̄ = 0.1 leading to ωL/ω0 = 30. Note
that

ωL = [2π ]vE/(2L) = 220 Hz, (112)

ω0 = [2π ]h̄2
Planck/(mL2) = 7.5 Hz, (113)

where the [2π ] should be omitted for Hertz units. Assuming
10% deformation, the dimensionless bandwidth can be tuned
as b ∼ 10.
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By modulating the laser intensity, one of the billiard walls
can be noisily vibrated. We assume that the driving is band
matched, i.e., ωc ∼ ωR. These are roughly the same parameters
as in our analysis, for which we expect gs ∼ 0.1.

B. The SLRT anomaly

The commonsense expectation is that if QCC applies with
regard to C̃(ω) then from Eq. (97) we should get for the
absorption coefficient roughly the same result classically and
quantum mechanically. SLRT challenges this expectation. It
applies to circumstances in which the environmental relaxation
is weak compared with the f (t)-induced transitions. In such
circumstances the connectivity of the transitions from level to
level is important, and the LRT result should be multiplied
by gs .

In order to witness the SLRT anomaly, the driving amplitude
A should be large enough to have a measurable heating
effect, but small enough such that the FGR condition is not
violated. Disregarding prefactors of order unity, it follows from
Eqs. (99) and (101) that the requirements are

a2 > 10−3, (114)

b5a2 < b3. (115)

The first condition is based on the assumption that it is
possible to hold the atoms for a duration of ∼1000 bounces.
Accordingly, there is a range where both conditions are
satisfied, and there the SLRT anomaly should be observed,
provided environmental relaxation effects can be neglected.

It is worth noting that our theory for G is called SLRT
because on the one hand S̃(ω) �→ cS̃(ω) leads to G �→ cG,
but on the other hand S̃(ω) �→ S̃1(ω) + S̃2(ω) does not lead
to G �→ G1 + G2. This semilinearity can be tested in an
experiment in order to distinguish it from linear response.

X. BALLISTIC VERSUS DIFFUSIVE SCATTERING

The EAR due to low-frequency driving is determined by
the couplings |Fnm|2 between nearby levels. Let us see how
conflicting expectations with respect to its dependence on u

reconcile by way of the analysis that we have introduced. For
a small deformation, FOPT implies that the couplings are ∝u2

and, hence,

Ė ∝ u2 (FOPT expectation). (116)

As u becomes larger, the common expectation, based on
Wigner theory, is to have Lorentzian mixing, leading to
couplings ∝1/u2, and hence one expects

Ė ∝ 1/u2 (Wigner expectation). (117)

In the formally equivalent problem of a conductance calcula-
tion this “Joule law” implies that the conductance is G ∝ 1/u2,
where u represents the strength of the disordered potential. For
the purpose of derivation, instead of using the FGR or Wigner
picture, one can use the equivalent Drude picture, where the
Born mean free path is � ∝ 1/u2. On the other hand, QCC

considerations, based on Eq. (27) and using Eq. (51), imply
that the couplings should be ∝1/u, and hence one expects

Ė ∝ 1/u (QCC expectation). (118)

We therefore encounter here three conflicting expectations for
the dependence of the EAR on the deformation parameter. The
analysis that we have presented resolves the conflict. Let us
emphasize the main insights.

A. Ballistic scattering

We have assumed a smooth deformation: the worst case was
α = 1, but more generally we might have softer deformations
with α > 1. Consequently, the mixing is not uniform: there
are levels that are not mixed even if the perturbation is strong
enough to mix some other levels. This leads to an interesting
coexistence of semiclassical theory and FOPT. Namely, we
observe that the 〈〈|Fnm|2〉〉a agrees with semiclassics, while
〈〈|Fnm|2〉〉s is given essentially by FOPT. The standard Wigner
theory does not apply, and the EAR is ∝u2 or ∝1/u

depending on whether LRT or SLRT applies; as the driving
strength is increased we expect a crossover from LRT to
SLRT.

B. Diffusive scattering

If the deformation profile Du(y) is erratic on the sub-λE

scale, then U is somewhat similar to the white disorder that
was analyzed in Refs. [31,39]. Under such circumstances all
the matrix elements of Unm are comparable. Consequently,
one would observe Lorentzian mixing ∝u2. Therefore, C̃(ω)
would have a Lorentzian peak of width ∝u2, which differs from
the semiclassical peak ∝u. Furthermore, taking into account
that the area under the central peak of C(r) remains the same
irrespective of u, one deduces that

〈〈|Fnm|2〉〉a/s ∝ 1

u2
[Wigner mixing] (119)

and hence very different from both the FOPT prediction ∝u2,
and from the semiclassical expectation ∝u. In other words, for
diffusive scattering, unlike ballistic scattering, QCC does not
apply. If U were like “white disorder,” the quantum dynamics
would be characterized by the Born mean free path, which is
very different from the classical mean free path.

XI. SUMMARY

It is important to realize that we are studying in this work
a driven chaotic system and not a driven integrable system.
Remarkable examples for driven integrable systems are the
kicked rotator [40–43] and the vibrating elliptical billiard [44].
In the absence of driving, such systems are integrable, while
in the presence of driving a mixed phase space emerges. This
is not what we call here weak chaos. Rather our focus is on
completely chaotic systems that have a very small Lyapunov
exponent compared with the ballistic scale.

Weakly chaotic systems do not fit the common RMT
framework. The Hamiltonian matrix of such a driven system
does not look like one that is taken from a Gaussian
ensemble, but rather it is very sparse. One can characterize

066216-14



“WEAK QUANTUM CHAOS” AND ITS RESISTOR . . . PHYSICAL REVIEW E 83, 066216 (2011)

this sparsity by parameters s and g that reflect the percentage
of large elements and their connectivity, respectively. For
g we have used a resistor-network calculation that has a
direct relation to the semilinear response characteristics of the
system.

We have highlighted that weakly chaotic systems possess
a distinct WQC regime, much wider than originally expected,
where semiclassics and Wigner-type mixing coexist. Then we
discussed the implications of this observation with regard to
the theory of response.

The heating of particles in a box with vibrating walls is
a prototype problem for exploring the limitations of linear
response theory and the quantum-to-classical correspondence
principle. In the experimental arena this topic arises in the
theory of nuclear friction [7–9] and in the studies of cold atoms
that are trapped in optical billiards [10–13]. Mathematically
it is related to the analysis of mesoscopic conductance of
ballistic rings [39]. In typical circumstances the classical
analysis predicts an absorption coefficient that is determined
by the Kubo formula [33,45–52], leading to the wall formula in
the nuclear context, or to the analogous Drude formula in the
mesoscopic context. The question arises [14,29,30,33,50–56]
if there are circumstances in which the quantum theory leads
to a novel result that does not resemble the semiclassical
prediction.

The low-frequency driving that we assume is stochastic
rather than periodic. This looks to us realistic, reflecting the
physics of cold atoms that are trapped in optical billiards with
vibrating walls. It is also theoretically convenient, because
we can use the Fermi golden rule picture. If one is interested
in periodic driving of a strictly isolated system, then there
are additional important questions with regard to dynamical
localization [40–43,57] that can be handled, e.g., within the
framework of the Floquet theory approach.

We predict that the EAR of a weakly chaotic system in
the WQC regime would exhibit a SLRT anomaly: a LRT-to-
SLRT crossover is expected as the intensity of the driving
is increased, and the linearity with respect to the intensity
of the source is maintained but with a different (smaller)
coefficient, while the linearity with respect to the addition
of independent sources is lost. This anomaly reflects that the
absorption process in the mesoscopic regime might resemble
a percolation process due to the sparsity of the perturbation
matrix. In systems with diffusive scattering, which are in the
focus of standard condensed-matter textbooks, such an effect
could not arise.
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APPENDIX A: THE RESISTOR-NETWORK AVERAGE

We use the notation 〈〈X〉〉 in order to indicate the average
value of its in-band elements. First we would like to define
the standard algebraic average. It is essential to introduce a
weight function that defines the band of interest. In the physical

context this function reflects the spectral content of the driving
sources. In practice we use a rectangular or exponential weight
function, say,

F (r) = 1

2bc

e−|n−m|/bc , (A1)

which corresponds to Eq. (96). For characterization purposes
we assume a band-matching weight function, meaning that bc

is chosen as the natural bandwidth of the matrix, corresponding
to �R. The algebraic average is defined in the standard way:

〈〈X〉〉a = 1

N

∑
n,m

F (n − m)Xnm, (A2)

where N is the size of the matrix, which is assumed to be very
large. The algebraic average is a linear operation, meaning
that

〈〈λX〉〉 = λ〈〈X〉〉, (A3)

〈〈X + Y 〉〉 = 〈〈X〉〉 + 〈〈Y 〉〉. (A4)

There are different type of “averages” in the literature,
such as the harmonic average and the geometric average,
and we can also include the median in the same list. All
these “averages” are semilinear operations because only the
〈〈λX〉〉 = λ〈〈X〉〉 property is satisfied for them. Irrespective
of the semilinearity issue, any type of average should satisfy
the following requirement: if all the elements equal the same
number, then also the average should equal the same number.

In this paper we highlight a type of average that we call
a resistor-network average. The defining prescription for its
calculation is simple: given Xnm, we associate with it a resistor
network Gnm via Eq. (31) and define 〈〈X〉〉s as its inverse
resistivity.

There are a few cases where an analytical expression is
available for the inverse resistivity G of a network Gnm. If only
near-neighbor nodes are connected, allowing Gn,n+1 = gn to
be different from each other, then “addition in series” implies
that the inverse resistivity calculated for a chain of length N is

G =
[

1

N

N∑
n=1

1

gn

]−1

. (A5)

If Gnm = gn−m is a function of the distance between the nodes
n and m then it is a nice exercise to prove that “addition in
parallel” implies

G =
∞∑

r=1

r2gr . (A6)

Note that in the latter case the resistor network average
coincides with the algebraic average. In order to have a differ-
ent result the diagonals of the matrix should be nonuniform,
which is the case for sparse or textured matrices.

In general an analytical formula for G is not available, and
we have to apply a numerical procedure. For this purpose we
imagine that each node n is connected to a current source In.
The Kirchhoff equations for the voltages are∑

m

Gmn(Vn − Vm) = In. (A7)
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This set of equations can be written in a matrix form:

GV = I, (A8)

where the so-called discrete Laplacian matrix of the network
is defined as

Gnm =
[∑

n′
Gn′n

]
δn,m − Gnm. (A9)

This matrix has an eigenvalue zero which is associated with a
uniform voltage eigenvector. Therefore, it has a pseudoinverse
rather than an inverse, and the Kirchhoff equation has a
solution if and only if

∑
n In = 0. In order to find the resistance

between nodes nin = 0 and nour = N , we set I0 = 1 and
IN = −1 and In = 0 otherwise, and solve for V0 and VN .
The inverse resistivity is G = [(V0 − VN )/N]−1.

APPENDIX B: INTENSITY OF FLUCTUATIONS:
OPTIONAL DERIVATIONS

In this appendix we clarify the low-frequency behavior of
C̃(ω) using two optional approaches. We assume that γ ∼ γ0

is roughly a constant, so there is a well-defined correlation
time

tR = 1

γ
. (B1)

A. Time domain approach

Observe that

∫ t

−0
Fθ (t)dt =

⎧⎪⎨
⎪⎩

qθ , t � tL,

(qθ/τθ )t, tL � t � tR,

〈qθ/τθ 〉t, t 
 tR.

(B2)

From Eq. (42) it follows that 〈F (0)F (t)〉 looks as follows:
at t = 0 it contains a self-correlation δ peak; within t � tR
it is the θ -averaged comb of δ peaks due to bouncing; for
t 
 tR it flattens and reflects the squared average value of F .
Accordingly, the short time average and the long time average
values of 〈F (0)F (t)〉 are c0 and c∞ of Eqs. (38) and (39).
Consequently, the area under the correlation function is

C̃(ω = 0) ≈ (c0 − c∞)2tR, (B3)

in agreement with Eq. (51).

B. Number variance approach

It is instructive to deduce C̃(ω = 0) using an oversimplified
derivation via the number variance approach, as in the analysis
of spectral rigidity [58]. This oversimplified approach treats the
spikes as having equal size (below q = 1). The variance in the
number of collisions during time t is given by the expression

Var(N (t)) = 2

π2

∫ ∞

0

C̃(ω)

ω2
sin2(πωt)dω. (B4)

Consequently,

C̃(ω = 0) = Var(N (t))
t

= diffusion in counting. (B5)

Assuming that the step in this random walk process is of
duration tR, the diffusion coefficient is

C̃(ω = 0) = 1

tR
Var

(
tR

τ

)
= 1

γ
Var

(
1

τ

)
, (B6)

which leads upon restoration of q to Eq. (51).

APPENDIX C: THE Fnm MATRIX FOR ZERO
DEFORMATION

Here we calculate the large-scale sparsity p0, and the
average value of |Fnm|2, in the case of a rectangular box. It is
tempting to identify p0 as “s,” but in fact the latter is ill defined
because it refers to the sparsity of the in-band elements, while
for u = 0 the bandwidth �R is zero.

We consider the matrix elements that reside inside an energy
window of width δE. The levels (nx, ny) within this window
belong to the energy shell E < Enx,ny

< E + δE. We define
the “radius” of this shell as kE = (2mE)1/2. For a given ny

section, the width of the shell is denoted as δnx , and in wave
number units it is given by the expression

δkx = δ

√
k2

E − k2
y ≈ kEδkE√

k2
E − k2

y

. (C1)

The total number of levels within this window can be calculated
in a complicated way as

N =
∫ kE

0
δnxdny (C2)

= LxLy

π2

∫ kE

0

mδE√
k2

E − k2
y

dky = δE

�0
. (C3)

Similarly we can calculate the number of coupled levels, and
hence the large-scale sparsity:

p0 = 1

N 2

∫ kE

0
δn2

xdny (C4)

= 4

πLy

∫ kE

0

1

k2
E − k2

y

dky = 2

πkELy

ln

[
2kE

dk

]
.

The FOPT perturbed matrix is sparse and textured. Its
nonzero elements are of size k2

x/mLx as implied by Eq. (61).
The algebraic average of the elements is given by

〈〈|Fnm|2〉〉∞ = 1

N 2

∫ kE

0
δn2

xdny

[
k2
x

mLx

]2

= 4

πLy

∫ kE

0

1

k2
E − k2

y

dky

[
k2 − k2

y

mLx

]2

= 8

3π

k3
E

m2L2
xLy

, (C5)

which is the same result, Eq. (28), as in the semiclassical
estimate.

066216-16



“WEAK QUANTUM CHAOS” AND ITS RESISTOR . . . PHYSICAL REVIEW E 83, 066216 (2011)

[1] M. Feingold and A. Peres, Phys. Rev. A 34, 591 (1986).
[2] M. Feingold, D. M. Leitner, and M. Wilkinson, Phys. Rev. Lett.

66, 986 (1991).
[3] M. Wilkinson, M. Feingold, and D. Leitner, J. Phys. A 24, 175

(1991).
[4] M. Feingold, A. Gioletta, F. M. Izrailev, and L. Molinari, Phys.

Rev. Lett. 70, 2936 (1993).
[5] T. Prosen and M. Robnik, J. Phys. A 26, L319 (1993)
[6] T. Prosen, Ann. Phys. (NY) 235, 115 (1994).
[7] D. H. E. Gross, Nucl. Phys. A 240, 472 (1975).
[8] J. Blocki, Y. Boneh, J. R. Nix, J. Randrup, M. Robel, A. J. Sierk,

and W. J. Swiatecki, Ann. Phys. 113, 330 (1978).
[9] S. E. Koonin, R. L. Hatch, and J. Randrup, Nucl. Phys. A 283,

87 (1977).
[10] N. Friedman, A. Kaplan, D. Carasso, and N. Davidson, Phys.

Rev. Lett. 86, 1518 (2001).
[11] A. Kaplan, M. Andersen, N. Friedman, and N. Davidson, in

Chaotic Dynamics and Transport in Classical and Quantum
Systems, edited by P. Collet, M. Courbage, S. Metens, A.
Neishtast, and G. Zaslavsky, NATO Science Ser. II (Springer,
New York, 2004), Vol. 182, p. 239.

[12] A. Kaplan, N. Friedman, M. F. Andersen, and N. Davidson,
Phys. Rev. Lett. 87, 274101 (2001).

[13] M. F. Andersen, A. Kaplan, T. Grunzweig, and N. Davidson,
Phys. Rev. Lett. 97, 104102 (2006).

[14] A. Stotland, D. Cohen, and N. Davidson, Europhys. Lett. 86,
10004 (2009).

[15] L. A. Bunimovich and Ya. G. Sinai, Commun. Math. Phys. 78,
479 (1981).

[16] L.-S. Young, Ann. Math. 147, 585 (1998).
[17] B. J. Alder and T. E. Wainwright, Phys. Rev. A 1, 18 (1970).
[18] F. Vivaldi, G. Casati, and I. Guarneri, Phys. Rev. Lett. 51, 727

(1983).
[19] G. Casati and T. Prosen, Phys. Rev. Lett. 85, 4261 (2000);

Degli Esposti, S. O’Keefe, and B. Winn, Nonlinearity 18, 1073
(2005).

[20] E. B. Bogomolny, U. Gerland, and C. Schmit, Phys. Rev. E 59,
R1315 (1999).

[21] A. Backer, R. Schubert, and P. Stifter, J. Phys. A 30, 6783 (1997).
[22] F. Borgonovi, G. Casati, and B. Li, Phys. Rev. Lett. 77, 4744

(1996).
[23] K. M. Frahm and D. L. Shepelyansky, Phys. Rev. Lett. 78, 1440

(1997).
[24] A. Stotland, L. M. Pecora, and D. Cohen, Europhys. Lett. 92,

20009 (2010).
[25] E. J. Austin and M. Wilkinson, Europhys. Lett. 20, 589 (1992).
[26] T. Prosen and M. Robnik, J. Phys. A 26, 1105 (1993).
[27] Y. Alhassid and R. D. Levine, Phys. Rev. Lett. 57, 2879

(1986).

[28] Y. V. Fyodorov, O. A. Chubykalo, F. M. Izrailev, and G. Casati,
Phys. Rev. Lett. 76, 1603 (1996).

[29] D. Cohen, T. Kottos, and H. Schanz, J. Phys. A 39, 11755 (2006).
[30] M. Wilkinson, B. Mehlig, and D. Cohen, Europhys. Lett. 75,

709 (2006).
[31] A. Stotland, T. Kottos, and D. Cohen, Phys. Rev. B 81, 115464

(2010), and further references therein.
[32] R. Ram-Mohan, Finite Element and Boundary Element Applica-

tions in Quantum Mechanics (Oxford University, Oxford, U.K.,
2002).

[33] D. Cohen, Ann. Phys. 283, 175 (2000).
[34] A. Barnett, D. Cohen, and E. J. Heller, Phys. Rev. Lett. 85, 1412

(2000).
[35] A. Barnett, D. Cohen, and E. J. Heller, J. Phys. A 34, 413 (2001).
[36] For a review, see A. Kamenev and Y. Gefen, Int. J. Mod. Phys.

B 9, 751 (1995).
[37] D. Cohen, A. Barnett, and E. J. Heller, Phys. Rev. E 63, 46207

(2001).
[38] I. Sela, J. Aisenberg, T. Kottos, and D. Cohen, J. Phys. A 43,

332001 (2010).
[39] A. Stotland, R. Budoyo, T. Peer, T. Kottos, and D. Cohen, J.

Phys. A 41, 262001 (2008).
[40] B. V. Chirikov, Phys. Rep. 52, 263 (1979).
[41] S. Fishman, D. R. Grempel, and R. E. Prange, Phys. Rev. Lett.

49, 509 (1982).
[42] S. Fishman, in Proceedings of the International School of

Physics “Enrico Fermi,” Course CXIX, edited by G. Casati, I.
Guarneri, and U. Smilansky (North-Holland, Amsterdam, 1991).

[43] M. Raizen, in Proceedings of the International School of Physics
“Enrico Fermi,” Course CXLIII, edited by G. Casati, I. Guarneri,
and U. Smilansky (IOS Press, Amsterdam, 2000).

[44] F. Lenz, F. K. Diakonos, and P. Schmelcher, Phys. Rev. Lett.
100, 014103 (2008); Europhys. Lett. 79, 2002 (2007).

[45] E. Ott, Phys. Rev. Lett. 42, 1628 (1979).
[46] R. Brown, E. Ott, and C. Grebogi, Phys. Rev. Lett. 59, 1173

(1987).
[47] R. Brown, E. Ott, and C. Grebogi, J. Stat. Phys. 49, 511 (1987).
[48] C. Jarzynski, Phys. Rev. E 48, 4340 (1993).
[49] C. Jarzynski, Phys. Rev. Lett. 74, 2937 (1995).
[50] M. Wilkinson, J. Phys. A 21, 4021 (1988).
[51] M. Wilkinson and E. J. Austin, J. Phys. A 28, 2277 (1995).
[52] J. M. Robbins and M. V. Berry, J. Phys. A 25, L961 (1992).
[53] D. Cohen, Phys. Rev. Lett. 82, 4951 (1999).
[54] D. Cohen and T. Kottos, Phys. Rev. Lett. 85, 4839 (2000).
[55] D. M. Basko, M. A. Skvortsov, and V. E. Kravtsov, Phys. Rev.

Lett. 90, 096801 (2003).
[56] A. Silva and V. E. Kravtsov, Phys. Rev. B 76, 165303 (2007).
[57] T. Prosen and D. L. Shepelyansky, Eur. Phys. J. B 46, 515 (2005).
[58] M. V. Berry, Nonlinearity 1, 399 (1988).

066216-17

http://dx.doi.org/10.1103/PhysRevA.34.591
http://dx.doi.org/10.1103/PhysRevLett.66.986
http://dx.doi.org/10.1103/PhysRevLett.66.986
http://dx.doi.org/10.1088/0305-4470/24/1/025
http://dx.doi.org/10.1088/0305-4470/24/1/025
http://dx.doi.org/10.1103/PhysRevLett.70.2936
http://dx.doi.org/10.1103/PhysRevLett.70.2936
http://dx.doi.org/10.1088/0305-4470/26/6/005
http://dx.doi.org/10.1006/aphy.1994.1093
http://dx.doi.org/10.1016/0375-9474(75)90305-X
http://dx.doi.org/10.1016/0003-4916(78)90208-7
http://dx.doi.org/10.1016/0375-9474(77)90701-1
http://dx.doi.org/10.1016/0375-9474(77)90701-1
http://dx.doi.org/10.1103/PhysRevLett.86.1518
http://dx.doi.org/10.1103/PhysRevLett.86.1518
http://dx.doi.org/10.1103/PhysRevLett.87.274101
http://dx.doi.org/10.1103/PhysRevLett.97.104102
http://dx.doi.org/10.1209/0295-5075/86/10004
http://dx.doi.org/10.1209/0295-5075/86/10004
http://dx.doi.org/10.1007/BF02046760
http://dx.doi.org/10.1007/BF02046760
http://dx.doi.org/10.2307/120960
http://dx.doi.org/10.1103/PhysRevA.1.18
http://dx.doi.org/10.1103/PhysRevLett.51.727
http://dx.doi.org/10.1103/PhysRevLett.51.727
http://dx.doi.org/10.1103/PhysRevLett.85.4261
http://dx.doi.org/10.1088/0951-7715/18/3/009
http://dx.doi.org/10.1088/0951-7715/18/3/009
http://dx.doi.org/10.1103/PhysRevE.59.R1315
http://dx.doi.org/10.1103/PhysRevE.59.R1315
http://dx.doi.org/10.1088/0305-4470/30/19/017
http://dx.doi.org/10.1103/PhysRevLett.77.4744
http://dx.doi.org/10.1103/PhysRevLett.77.4744
http://dx.doi.org/10.1103/PhysRevLett.78.1440
http://dx.doi.org/10.1103/PhysRevLett.78.1440
http://dx.doi.org/10.1209/0295-5075/92/20009
http://dx.doi.org/10.1209/0295-5075/92/20009
http://dx.doi.org/10.1209/0295-5075/20/7/003
http://dx.doi.org/10.1088/0305-4470/26/5/029
http://dx.doi.org/10.1103/PhysRevLett.57.2879
http://dx.doi.org/10.1103/PhysRevLett.57.2879
http://dx.doi.org/10.1103/PhysRevLett.76.1603
http://dx.doi.org/10.1088/0305-4470/39/38/004
http://dx.doi.org/10.1209/epl/i2006-10182-9
http://dx.doi.org/10.1209/epl/i2006-10182-9
http://dx.doi.org/10.1103/PhysRevB.81.115464
http://dx.doi.org/10.1103/PhysRevB.81.115464
http://dx.doi.org/10.1006/aphy.2000.6052
http://dx.doi.org/10.1103/PhysRevLett.85.1412
http://dx.doi.org/10.1103/PhysRevLett.85.1412
http://dx.doi.org/10.1088/0305-4470/34/3/308
http://dx.doi.org/10.1142/S0217979295000306
http://dx.doi.org/10.1142/S0217979295000306
http://dx.doi.org/10.1103/PhysRevE.63.046207
http://dx.doi.org/10.1103/PhysRevE.63.046207
http://dx.doi.org/10.1088/1751-8113/43/33/332001
http://dx.doi.org/10.1088/1751-8113/43/33/332001
http://dx.doi.org/10.1088/1751-8113/41/26/262001
http://dx.doi.org/10.1088/1751-8113/41/26/262001
http://dx.doi.org/10.1016/0370-1573(79)90023-1
http://dx.doi.org/10.1103/PhysRevLett.49.509
http://dx.doi.org/10.1103/PhysRevLett.49.509
http://dx.doi.org/10.1103/PhysRevLett.100.014103
http://dx.doi.org/10.1103/PhysRevLett.100.014103
http://dx.doi.org/10.1209/0295-5075/79/20002
http://dx.doi.org/10.1103/PhysRevLett.42.1628
http://dx.doi.org/10.1103/PhysRevLett.59.1173
http://dx.doi.org/10.1103/PhysRevLett.59.1173
http://dx.doi.org/10.1007/BF01009347
http://dx.doi.org/10.1103/PhysRevE.48.4340
http://dx.doi.org/10.1103/PhysRevLett.74.2937
http://dx.doi.org/10.1088/0305-4470/21/21/011
http://dx.doi.org/10.1088/0305-4470/28/8/019
http://dx.doi.org/10.1088/0305-4470/25/15/011
http://dx.doi.org/10.1103/PhysRevLett.82.4951
http://dx.doi.org/10.1103/PhysRevLett.85.4839
http://dx.doi.org/10.1103/PhysRevLett.90.096801
http://dx.doi.org/10.1103/PhysRevLett.90.096801
http://dx.doi.org/10.1103/PhysRevB.76.165303
http://dx.doi.org/10.1140/epjb/e2005-00282-4
http://dx.doi.org/10.1088/0951-7715/1/3/001

