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Uniform approach to linear and nonlinear interrelation patterns in multivariate time series
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Currently, a variety of linear and nonlinear measures is in use to investigate spatiotemporal interrelation patterns
of multivariate time series. Whereas the former are by definition insensitive to nonlinear effects, the latter detect
both nonlinear and linear interrelation. In the present contribution we employ a uniform surrogate-based approach,
which is capable of disentangling interrelations that significantly exceed random effects and interrelations that
significantly exceed linear correlation. The bivariate version of the proposed framework is explored using a simple
model allowing for separate tuning of coupling and nonlinearity of interrelation. To demonstrate applicability
of the approach to multivariate real-world time series we investigate resting state functional magnetic resonance
imaging (rsfMRI) data of two healthy subjects as well as intracranial electroencephalograms (iEEG) of two
epilepsy patients with focal onset seizures. The main findings are that for our rsfMRI data interrelations can
be described by linear cross-correlation. Rejection of the null hypothesis of linear iEEG interrelation occurs
predominantly for epileptogenic tissue as well as during epileptic seizures.
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I. INTRODUCTION

Physiologic time series are often multivariate in the sense
that various channels are recorded, which either represent
different types of data (e.g., heart rate, blood pressure, breath
rate, and oxygen saturation) or the same type of data recorded
from different spatial locations (e.g., multichannel electrocar-
diogram or electroencephalogram). Quantitative analysis of
this type of time series can be divided into three disciplines,
concentrating on univariate or bi- and multivariate aspects.
Whereas the univariate approaches treat data channels as
if they were completely independent of each other, the
purpose of bi- and multivariate approaches is investigation of
interrelations between channel pairs or even within the whole
system.

Two time series X1(t) and X2(t) are interrelated if knowl-
edge of X1(t) confines the range of X2(t) (or vice versa). In
scatter plots of X2 against X1 interrelation becomes visible by
cumulation of the data. If the interrelation is linear, i.e.,

X2(t) = a + bX1(t) + ε(t) (1)

with some error ε(t), the cumulation is around a straight line
with intercept a and slope b. Its amount can be quantified
by Pearson’s product-moment correlation coefficient. More
generally, interrelation can be described by a mapping

X2(t) = f [X1(t)] + ε(t) (2)
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with some function f [·]. In many cases a linear approximation
to f [·] may describe the character of the interrelation consid-
erably well. However, if interrelation is significantly stronger
than described by Eq. (1) we term it significantly nonlinear.

A nonlinear time-series analysis of neurophysiologic data
[1–3] has long been “en vogue.” Later, the importance of non-
linearity in neurophysiological time series, and especially the
capability of measures to detect these reliably from short and
noisy experimental data, has been challenged. As a univariate
example, signs of low dimensional chaos as measured by the
correlation dimension of electroencephalographic (EEG) data
turned out to be insignificant after careful re-examination of
the data by the same authors [4,5]. Comparing the sensitivity
and specificity of various bivariate interrelation measures for
model data, it was recently found that linear measures perform
equally well or even better than nonlinear measures—even
if the signals or the interrelation were indeed nonlinear
[6–8]. Finally, in the context of epileptic seizure prediction
using intracranial electroencephalographic (iEEG) data it has
been shown that linear cross-correlation may outperform
sophisticated nonlinear measures in terms of sensitivity and
specificity [9,10].

Focusing on bivariate and multivariate analysis strategies,
the present paper tries to contribute to the debate between
supporters of nonlinear and linear approaches. Using a rigor-
ous hypothesis testing paradigm based on uni- and multivariate
linear surrogates and cross-correlation and mutual information
as interrelation measures, we separate for each channel pair,
(i) linear correlation that goes significantly beyond what is
possible for completely independent signals with conserved
univariate linear properties (“significant linear correlation”)
and (ii) mutual information that goes significantly beyond
the degree explained by linear time series with the same
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cross-correlation pattern (despite caveats [11] we occasionally
denote this type as “significantly nonlinear interrelation” here).

Whereas the general idea for this type of hypothesis testing
already has been applied to pairs of time series [3,11] (for
recent applications, see Refs. [12–15]), we here propose a
computationally feasible variant that qualifies for data of high
dimensionality and time-resolved applications. In addition, we
investigate the implications of rejection of our null hypotheses
on truly multivariate entities like eigenvalues and eigenvectors
of interrelation matrices. In this way we assess the system
character of the multivariate time series, which has the
potential to reveal different information than an approach
limited to bivariate aspects.

The paper is organized as follows: In Sec. II we discuss
equal-time cross-correlation and mutual information. As an
extension of the concept of the cross-correlation–based matrix
MCCS

ij introduced in Ref. [16] to mutual information, novel
bivariate measures are suggested, which concentrate on special
aspects of the interrelation. The performance of these is tested
at the example of a simple tunable model in Sec. III. Thereafter,
application to neurophysiological data [resting state functional
magnetic resonance imaging (rsfMRI) and periseizure iEEG]
is made in Sec. IV. Finally, results are summarized and
discussed in Sec. V.

II. LINEAR AND NONLINEAR INTERRELATION
MEASURES

A. Cross-correlation and mutual information

A common interrelation measure is given by Pearson’s
equal-time (zero-lag) cross-correlation (CC)

Cij = 1

T

T∑
t=1

X̃i(t)X̃j (t) ∈ [−1,1], (3)

where the tilde denotes normalization of the time series Xi(t)
to zero mean and unit variance (i = 1, . . . ,M counts the
channels of the multivariate data set and t = 1, . . . ,T is the
temporal sample point, given a piece of length T ). Equation (3)
allows computationally effective and robust estimation of
dependencies even between short and noise-corrupted time
series. Despite these favorable features there is the drawback
of being limited to linear interrelation a priori, i.e., missing
even simple nonlinear relations. The most prominent example
where CC fails completely to report interrelation is X2(t) =
(X1(t))2.

A generalization of Eq. (3) based on information theory that
is applicable independently from any model assumption and
especially not restricted to Gaussianity or linear interrelation
is given by mutual information (MI)

Iij =
∑
i,j

pij log
pij

pipj

� 0. (4)

It quantifies the deviation of the joint distribution pij of the
signal amplitudes Xi(t) and Xj (t) from the product pipj of the
marginal distributions pi = ∑

j pij and pj = ∑
i pij , which

implies statistical independence and Iij = 0. For correlated

Gaussian noise there is a one-to-one correspondence between
MI and CC:

Iij � IG
ij = −1

2
log

(
1 − C2

ij

)
. (5)

The inequality can be used to find a lower bound for MI
and quantify the deviation of the data from Gaussianity [14].
Inspired by the relation of Eq. (5) we normalize MI to the
interval [0,1] using the transformation [17]

NMIij = √
1 − exp(−2Iij ) ∈ [0,1], (6)

which warrants NMIG
ij = |Cij | for Gaussian data.

In the present study, MI is estimated from time
series using the k-nearest-neighbor algorithm [18] as
implemented in the publicly available MILCA package
(http://www.klab.caltech.edu/˜kraskov/MILCA/). In a recent
comparative study this algorithm has been shown to be superior
to other estimators, especially for short (T � 1000) and noisy
time series [19]. We use the same value k = 3 as in the
comparative study. This choice of a small k reduces the bias of
the estimator at the expense of larger variance [18]. In addition,
the computational workload is smaller for small k.

B. Specialized interrelation measures

In Refs. [16,20] CC-based interrelation measures were
introduced that focus on complementary aspects of equal-time
cross-correlation. Surrogate data were employed to test the null
hypothesis of purely random correlation between independent
time series of length T and given power spectrum. Separate
matrices sensitive to “random correlations” and “genuine
cross-correlations” were defined.

Here, we generalize the previously introduced procedure
in two directions. First, we use two types of interrelation
measures: CC of Eq. (3) and NMI of Eq. (6). If not further
specified, normalized bivariate interrelation measures are
denoted by the placeholder Aij in the sequel (−1 � Aij � 1
and Aii = 1). Second, we test two types of null hypotheses
that the observed multivariate time series is produced by

H uni
0 : two independent univariate stochastic linear pro-

cesses fulfilling the requirements of stationarity and Gaussian-
ity or

H multi
0 : one multivariate stochastic linear process with

given linear cross-correlation patterns and fulfilling the re-
quirements of stationarity and Gaussianity.

In both cases the observations might have been distorted by
monotonic but nonlinear measurement functions. For testing
these null hypotheses, iterative amplitude adjusted Fourier
transform (IAAFT) surrogate data are used. If not specified
further, the surrogates will be denoted by the placeholder B

in the sequel. Under randomization independent univariate
IAAFT surrogates [21] destroy all nonlinear features of the
input time series as well as correlations between them but con-
serve linear univariate properties (amplitude distributions, au-
tocorrelations, power spectra). In addition multivariate IAAFT
surrogates [22] also conserve the linear cross-correlations
between the input signals under randomization. These features
make univariate and multivariate IAAFT surrogates ideal
frameworks to test H uni

0 and H multi
0 , respectively.
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TABLE I. Nomenclature for specialized interrelation measures
MA,B

ij .

Interrelation Null hypo-
Measure measure A thesis N Surrogates B

MCC,uni
ij CC H uni

0 Univariate IAAFT

MCC,multi
ij CC H multi

0 Multivariate IAAFT

MNMI,uni
ij NMI H uni

0 Univariate IAAFT

MNMI,multi
ij NMI H multi

0 Multivariate IAAFT

Although, in general, all conceivable inversions of the
formulations of H uni

0 and H multi
0 can lead to rejections of

the null hypotheses, see, e.g., the discussion in Ref. [11],
we interpret rejection of H uni

0 in the sense that observed
interrelations are likely beyond random effects. Similarly we
interpret rejection of H multi

0 as a strong sign for nonlinearity in
the interrelations. Construction of surrogates that explicitly
exclude all conceivable alternative causes for rejection of
H multi

0 (e.g., nonstationary or non-Gaussian stochastic pro-
cesses) except nonlinearity of the interrelation is a very hard
task, if not impossible.

In the following we integrate interrelation measures A

and surrogate data B into a uniform framework of four
bivariate measures MA,B

ij that quantify different aspects of the
dynamics and allow us to disentangle linear from nonlinear
interrelations; see Table I. Depending on the testable null
hypothesis, for the input time series a set of Nsurr surrogate
time series XB

i (t) of type B is generated from a portion of data
of length L first. Surrogate and original time series are then
subdivided into Nens possibly overlapping segments of length
T < L and the interrelation measure Aij is calculated for each
segment. As a result, one obtains samples of Nens interrelation
estimates A

(n)
ij between the original time-series segments

X
(n)
i (t) and X

(n)
j (t) (n = 1, . . . ,Nens) as well as NsurrNens

estimates A
B,(n,n′)
ij for the surrogate segments X

B,(n,n′)
i (t) and

X
B,(n,n′)
j (t) (n = 1, . . . ,Nens and n′ = 1, . . . ,Nsurr). To fix the

notation we define the medians μij = med{|A(n)
ij |}, μB

ij =
med{|AB,(n,n′)

ij |}, νij = med{A(n)
ij }, and νB

ij = med{AB,(n,n′)
ij }

of the absolute and signed interrelation coefficients of the
ensembles of original and surrogate time series, respectively.
Following [16] we define

MA,B
ij = sign(νij )

μij − μB
ij

1 − μB
ij

sij for i �= j (7)

and MA,B
ii ≡ 1. In Eq. (7) the numerator quantifies the

amount of interrelation between signals Xi and Xj that
cannot be explained by the surrogates B and sij indicates
the significance of the difference. Note that it is the me-
dian of the absolute interrelation coefficients μij that enters
Eq. (7). The denominator puts all channel pairs i and j on the
same scale independently and assures that for identical time
series MA,B

ij = 1. As the distribution of the absolute matrix
elements |Aij | and |AB

ij | cannot be expected to be Gaussian
(their distribution is confined to the interval [0,1] and very
skew) we use a nonparametric test procedure for determination

of sij . The difference μij − μB
ij is accepted on a significance

level 0 < α′ < 1 only if a Mann-Whitney-Wilcoxon U test [23]
rejects the null hypothesis of equal medians. In this case we
let sij = 1 and sij = 0 otherwise.

Due to possible spatial and temporal dependencies, exact
determination of the significance is a hard task. Here we
resort to approximation. In order to have an overall chance
0 < α < 1 of an M-dimensional matrix MA,B

ij with one or
several elements that were erroneously judged significant the
significance level α is Bonferroni corrected for multiple U
tests α → α′ = 2α/[M(M − 1)]. Thus, in the multivariate
situation the testing procedure implies that the matrices MA,B

ij

occasionally become very sparse, i.e., they have many off-
diagonal elements, MA,B

ij = 0.
The calculation of Eq. (7) involves several parameters, some

of which can be confined by physical properties of the time
series under investigation. The segments L used for surrogate
generation have to be long enough to contain several cycles
of the lowest frequencies present in the data and short enough
to account for possible nonstationarities. In addition to T < L

in the multivariate case we have to demand T > M to avoid
spurious rank deficiency of the interrelation matrices Aij due
to dependence of its elements.

Large ensemble sizes Nens and Nsurr are desirable as they
make the U tests more powerful. However, Nens > �L/T �
leads to overlapping segments and, consequently, to potential
serial dependence of ensemble members Aij , which may bias
the outcome of the U test used to fix sij in Eq. (7). Last but
not least, the computational workload needed to estimate the
matrices MA,B

ij is proportional to the number of surrogates
Nsurr. In Sec. III B we investigate the dependence of the
interrelation estimates of Eq. (7) on Nens and Nsurr.

Equation (7) is a generalization of the matrix MCCS
ij

introduced in Ref. [16], which represents the special case
where Aij = Cij and B are univariate IAAFT surrogates.
The matrix MCC,uni

ij ≡ MCCS
ij (see Table I) identifies genuine

cross-correlations beyond the randomly present correlation in
independent time series of equal length and power spectrum.
Without using the normalized form of Eq. (7) a similar
bootstrapping approach to significance of (maximal finite-
lag) cross-correlation has independently been undertaken in
Ref. [12]. Note that, by construction, MCC,multi

ij (see Table I)
is expected to resemble the identity matrix.

III. BIVARIATE APPLICATION TO MODEL DATA

Before application of the definition Eq. (7) to multivariate
neurophysiological time series in Sec. IV we investigate its
performance using the example of a simple bivariate model
with tunable coupling and nonlinearity.

A. The model

As a test frame that combines realistic univariate features
of arbitrary real-world input time series with tunable coupling
and nonlinearity we use a mixing model similar to the one
suggested in Ref. [24] to produce a pair X1(t) and X2(t) of
interrelated time series of length L. From the type of real-world
signals one wants to simulate, four independent univariate
IAAFT surrogate signals are generated: ξ1(t), ξ2(t), α(t), and
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β(t). Rather than applying them for hypothesis testing we
here solely exploit that in univariate IAAFT surrogates by
construction all nonlinearities and cross-correlation between
the input signals are destroyed. The surrogates as well as the
squared time series β2(t) are normalized separately to zero
mean and unit variance. The procedure of signal normalization
is denoted by a tilde here; see Eqs. (8) to (11).

Two coupling time series ζ1(t) and ζ2(t) are defined by

ζ1(t) = 1

Nζ

[(1 − σ )α̃(t) + σ β̃(t)] (8)

ζ2(t) = 1

Nζ

[(1 − σ )α̃(t) + σ β̃2(t)] (9)

and mixed with independent components ξ1(t) and ξ2(t) with
coupling strength ρ:

X1(t) = 1

NX

[(1 − |ρ|)ξ̃1(t) + |ρ|ζ1(t)] (10)

X2(t) = 1

NX

[(1 − |ρ|)ξ̃2(t) + ρζ2(t)] (11)

With 0 � σ � 1 and −1 � ρ � 1 and using the normalization
constants

Nζ = 1 − 2σ + 2σ 2 (12)

NX = 1 − 2|ρ| + 2ρ2 (13)

the signals ζ1(t), ζ2(t), X1(t), and X2(t) are automatically
normalized. The nonlinearity parameter σ of Eqs. (8) and (9)
switches between entirely linear (σ = 0) and quadratic (σ =
1) interrelation and the mixing parameter ρ of Eqs. (10)
and (11) controls sign and degree of interrelation between
X1(t) and X2(t). Note that, due to the employment of
surrogates of real-world input signals, the output time series
X1(t) and X2(t) still mimic their univariate linear properties
[24] (see Fig. 1 of that publication).

B. Performance

The model of Eqs. (8)–(13) was used to investigate the
performance of the interrelation measures MA,B

ij for varying
coupling ρ and nonlinearity σ . Simulations (N = 20) of
the model were performed starting from the same bivariate
real-world time series as input but different realizations of
IAAFT surrogates for ξ1(t), ξ2(t), α(t), and β(t). For each cycle
the whole ρ-σ -parameter space was scanned. Figures 1 and 2
show the resulting interrelation estimates for the model using
surrogates of rsfMRI time series as input. Segments overlapped
86%. Without showing additional figures we note that we
found qualitatively the same behavior for surrogates of rsfMRI
time series with half and double T as well as for surrogates
of nonseizure and seizure iEEG time series with fsamp =
512 Hz, L = 512,1024,2048,4096, and T = L/2. The sim-
ilarity of our simulation results for iEEG signals recorded
from so drastically different conditions over a wide range of L

and T provides confidence that the influence of the potentially
confounding factor nonstationarity on our interpretation of
MA,B

ij is not too large. Using surrogates of rsfMRI data as
input we also checked that the MI-based measures are almost
insensitive to the choice of k in the wide range k = 3, . . . ,11.

Figures 1(a) and 1(b) reveal that linear CC decreases with
increasing nonlinearity σ . The reason is that a linear approx-
imation to the nonlinear interrelation becomes inappropriate
when σ becomes too large. The measure MCC,uni

1,2 ≡ MCCS
1,2

originally introduced in Ref. [16] and displayed in Figures 1(c)
and 1(d) reveals that for σ � 0.5 the linear correlation detected
by CC is no longer significant. The same is true for |ρ| � 0.5,
where coupling is too small to induce significant interrelation.
Finally, utilizing CC as interrelation measure and normalizing
to multivariate surrogates as done in MCC,multi

1,2 , no significant
deviation of cross-correlation between the original data and
the surrogates can be detected anywhere in the ρ-σ plane
[Figs. 1(e) and 1(f)]. This result confirms the theoretical
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FIG. 1. (Color online) Interrelation estimates for cross-correlation–based measures. The test framework of Eqs. (8)–(13) was based on
real-world rsfMRI time series with fsamp = 0.5 Hz, L = 256, and T = 128. Nsurr = 10 IAAFT surrogates were produced and ensemble size
was Nens = 8. The significance level for U tests was set to α = 0.01. [(a) and (b)] Equal-time cross-correlation C1,2; [(c) and (d)] MCC,uni

1,2 ; and
[(e) and (f)] MCC,multi

1,2 . The top and bottom panels show average and standard deviation of the estimates over N = 20 independent realizations,
respectively. Note that the color scale differs in the top and bottom panels.
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FIG. 2. (Color online) Mutual information-based interrelation estimates (k = 3) for the same data Fig. 1: [(a) and (b)] normalized mutual
information NMI1,2; [(c) and (d)] MNMI,uni

1,2 ; [(e) and (f)] MNMI,multi
1,2 .

expectation and shows that the measures are well defined and
numerical errors of our implementation are small.

Using the same data and normalized MI as underlying
interrelation measure the results are displayed in Fig. 2 . NMI
is sensitive to linear as well as nonlinear coupling but cannot
distinguish the sign of ρ [Figs. 2(a) and 2(b)]. The measure
MNMI,uni

1,2 shown in Figs. 2(c) and 2(d) is finite only if the null
hypothesis H uni

0 is rejected; see the definition of sij in Eq. (7).
Our simulation demonstrates that even weak coupling (small
|ρ|) is revealed with significance if the nonlinearity is large
enough (σ � 0.8). Note that in Fig. 1(c) linear correlation
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FIG. 3. (Color online) Dependence of the interrelation estimates
MCC,uni

1,2 (top) and MNMI,multi
1,2 (bottom) on the ensemble size param-

eters. Results are shown for rsfMRI time series as input data for
the model of Eqs. (8)–(13). In the left panels Nsurr = 10 is fixed,
whereas Nens is varied, determining the overlap of segments of length
T = 128 within L = 256. On the right Nens = 8 is fixed, while the
number of surrogates Nsurr varies. The coupling is chosen as ρ = 0.6
in all panels and three degrees of nonlinearity σ are tested. Mean and
standard deviation are estimated from N = 100 independent runs.

turned out to be insignificant in this region of the parameter
space.

In Figs. 2(e) and 2(f) the performance of the newly
introduced measure MNMI,multi

1,2 is demonstrated. Values are
more significant for larger nonlinearity σ and coupling |ρ|. As
expected, for weakly coupled, weakly nonlinear situations the
null hypothesis H multi

0 cannot not be rejected. For increasing
nonlinearity σ > 0 the coupling strength |ρ| needed for
rejection decreases linearly, confirming that MNMI,multi

1,2 may
be utilized to detect significantly nonlinear coupling, i.e.,
situations where a linear approximation becomes insufficient.

Based on these findings we recommend a combined use
of the matrices MCC,uni

1,2 [Figs. 1(c) and 1(d)] and MNMI,multi
1,2

[Fig. 2(e) and 2(f)] to disentangle purely linear and nonlinear
features. The first measure is blind to nonlinear effects but
detects genuine (i.e., nonspurious, nonrandom) linear cross-
correlation, whereas the second is sensitive to interrelation
that cannot be explained by linear interrelation.

We tested the dependence of our interrelation estimates
on the choice of Nens and Nsurr. In Fig. 3 coupling was
chosen as ρ = 0.6 and nonlinearity σ was varied. From
Figs. 1(b) and 1(d) it becomes clear that, except for very
small Nsurr � 2, the means and standard deviations of MCC,uni

1,2

and MNMI,multi
1,2 are independent of the number of surrogates.

This remarkable behavior allows us to keep Nsurr (and
computation time) small. The reason can be traced back
to the use of nonparametric statistics, as both the medians
μ and the U tests entering Eq. (7) are known to be very
robust. The uncertainties of the estimates are largest for
σ = 0.5, whereMCC,uni

1,2 loses andMNMI,multi
1,2 gains sensitivity,

cf. Figs. 1(c), 1(d), 2(e), and 2(f). We have checked that
for larger ρ these uncertainties become smaller. Also the
dependence on Nens [Figs. 1(a) and 1(c)] is small, except
for those parameter regions where MCC,uni

1,2 and MNMI,multi
1,2

have large fluctuations; see Figs. 1(d) and 2(f). The deviating
estimates at Nsurr = 1,2 (very small surrogate ensembles)
and Nens = 2 (zero overlap of segments) can be explained
from the fact that for these choices the ensembles are
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FIG. 4. Absolute values of interrelation matrices for ROI time series of a rsfMRI measurement of subject 1. Channels L1–L49 correspond
to the left hemisphere and channels R1–R49 to the right hemisphere.

too small and consequently the U tests lack discrimination
power.

IV. MULTIVARIATE APPLICATION TO
NEUROPHYSIOLOGICAL TIME SERIES

Having explored the performance of the interrelation
measures MA,B

ij using bivariate model time series we now
proceed to applying the measures to two types of multivariate
neurophysiological time series. The EEG directly measures
the integrated electrical activity of millions of neurons with
excellent temporal (millisecond range) but limited spatial res-
olution (several square centimeters for scalp EEG). In certain
epilepsy patients it can become necessary to improve the small
spatial resolution and reduce sizable artifact corruption of
scalp EEG by implanting intracranial electrodes. Intracranial
EEG has better signal-to-noise ratio and spatial resolution
(square millimeter range); however, this is at the expense of
reduced spatial sampling due to incomplete coverage of the
cortex. The limitations of EEG are contrasted by functional
magnetic resonance imaging (fMRI), which measures the
metabolic response to electrical brain activity via the blood
oxygen level–dependent (BOLD) contrast. fMRI has excellent
spatial sampling and resolution [volumetric image elements
(“voxels”) of only a few cubic millimeters] but limited
temporal resolution (range of seconds).

A. Resting-state functional magnetic resonance imaging of
healthy volunteers

First, we applied our method to investigate functional
connectivity (FC) of the human brain using BOLD-fMRI.
Functional connectivity has been defined as the temporal
correlation of spatially distant neuropyhsiological time series
[25] and thus is a good choice to test our analysis framework.
Strong FC between brain regions has been recently found
in synchronous, low-frequency BOLD-signal fluctuations of
awake subjects lying in the MR scanner without performing
experimental tasks (“resting-state FC,” rsFC); see Ref. [26]
for a review. Patterns of resting-state FC show a high degree
of topographical symmetry between brain hemispheres and
are highly reproducible within and between subjects; see, e.g.,
Refs. [27,28]. One of the most common approaches to rsFC
consists in defining a set of regions of interest (ROI) across the
brain, based on neuroanatomical criteria or prior experimental
hypotheses, and compute the CC of their bandpass filtered
BOLD-signal time series, e.g., Refs. [27,29].

For the MRI data acquisition of two healthy male volunteers
(age 32 and 36 years), we used a 3-T Siemens Magnetom
Trio TIM MR Scanner (Erlangen, Germany). Resting-state
fMRI data were acquired using a multislice single-shot T2*
-weighted echo planar imaging (EPI) sequence with 35
slices. Three hundred functional volumes were measured
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FIG. 5. Same as described in the caption to Fig. 4 but for subject 2.

and spaced at 2000 ms. A standard fMRI preprocessing
protocol was implemented using the freely available MATLAB

code for neuroimaging analysis (Statistical Parametric
Mapping 5, SPM5, Wellcome Trust Centre for Neuroimaging,
University College London, http://www.fil.ion.ucl.ac.uk/
spm/software/spm5); see Ref. [30] for a brief general intro-
duction. From the preprocessed data, time series (length 300
sample points) were extracted in three-dimensional ROIs from
the Jülich histological atlas (JHA) [31]. The mean time courses
of 49 gray-matter ROIs per hemisphere were used for further
analysis.

All M = 98 ROI time series were regressed to the motion
parameters (three orthogonal translations and three rotations)
and the global signals of white matter and cerebrospinal fluid
to minimize common influences. Finally, the residuals were
bandpass filtered in the range 0.009 Hz < f < 0.08 Hz and
subjected to interrelation analysis using the matrices MA,B

ij

defined in Eq. (7). For generation of Nsurr = 10 surrogate
time series L = 256 data points were used ignoring the
first 30 time steps (60 s). Segments (Nens = 8) of length
T = 120 (4 min, overlap ∼84%) were used to generate the
ensembles.

In Figs. 4 and 5 we show a comparison of the interrelation
matrices MA,uni

ij [Figs. 4(b) and 5(b) and 4(d) and 5(d)] with
the matrices Cij [Figs. 4(a) and 5(a)] and NMIij [Figs. 4(c)

and 5(c)] for both subjects. The normalization to independent
univariate IAAFT surrogates eliminates the background and
reveals the underlying pronounced interrelation pattern. For
MCC,uni

ij and model data this feature has been shown already
in Ref. [16]. In the figures only absolute values of the matrix
elements are shown. We note that only very few anticorrelated
matrix elements turn out to be significant in the case of CC. The
most prominent patterns of the normalized matrices are similar,
regardless of the fact that only MNMI,uni

ij is sensitive to both
linear and nonlinear interrelation. The matrices NMIij have,
in general, rather large positive values, which may confound
multivariate analysis of the eigenvalues and eigenvectors by
a huge repulsion between the largest and smaller eigenvalues
and quasiuniform distribution of the components of the largest
eigenvector. Similar to Cij and MCC,uni

ij the matrix MNMI,uni
ij

does not suffer from this problem.
The matrices MA,uni

ij reveal a striking symmetry between
the left (ROIs L1–L49) and right (ROIs R1–R49) hemisphere
as can be seen from the repetition of diagonal blocks
and clearly visible off-diagionals. Also remarkable is the
similarity of interrelation matrix patterns across subjects.
The strongly interrelated ROIs with number L4–L10 and
R4–R10 correspond to a cluster representing the sensorimotor
areas. Other examples for strongly interrelated clusters are
ROIs L15–L17 and R15–R17, which represent main memory

066215-7



CHRISTIAN RUMMEL et al. PHYSICAL REVIEW E 83, 066215 (2011)

0 50 100 150 200
t

0.0

0.05

0.1

0.15

0.2

0.25

0.3

T
C

S
(M

ijA
B

)

-120 -90 -60 -30 0 30 60 90 120

time in seconds

1

12

18

24

30

36

42

49

i2 (M
ijC

C
,u

ni
)

-120 -90 -60 -30 0 30 60 90 120

time in seconds

1

12

18

24

30

36

42

49

i2 (M
ijN

M
I,

un
i )

-120 -90 -60 -30 0 30 60 90 120

time in seconds

1

12

18

24

30

36

42

49

i2 (M
ijN

M
I,

m
ul

ti
)

0.0

0.1

(a)

(b)

(c)

(d)

FIG. 6. Multivariate analysis of the interrelation patterns of a periseizure iEEG recording of patient 1 suffering from epileptic focal onset
seizures. (a) TCS calculated from the matrices MCC,uni

ij (dotted in gray), MNMI,uni
ij (dashed in black), and MNMI,multi

ij (fully drawn in black). (b)

Weighted sum ν2
i calculated from eigenvectors of the matrix MCC,uni

ij ; (c) weighted sum ν2
i calculated from eigenvectors of the matrix MNMI,uni

ij ;

(d) weighted sum ν2
i calculated from eigenvectors of the matrix MNMI,multi

ij . Electrographic seizure onset and termination are marked by vertical
lines. The patient became seizure free after surgical removal of the brain tissue marked by black bars on the left and right of panels (b) to (d).

structures, and ROIs L11–L13 and R11–R13 (primary visual
areas).

The matrices of Eq. (7) based on multivariate IAAFT
surrogates are not shown in Figs. 4 and 5. As expected
MCC,multi

ij turn out as identity matrices in both subjects. More

surprisingly, also in the matrices MNMI,multi
ij , not a single

nonzero off-diagonal matrix element survives Bonferroni cor-
rection on significance level α = 0.01 (i.e., α′ = 2.1 × 10−6),
implying that the null hypothesis H multi

0 of entirely linear
correlation cannot be rejected. Our observation is consistent

with recent findings that nonlinear interrelation as measured
by MI plays only a minor role in rsfMRI time series [14].

B. Periseizure intracranial electroencephalography

In addition to rsfMRI, we applied the matrices defined
in Eq. (7) to a number of peri-seizure iEEG recordings of
epilepsy patients, who were potential candidates for epilepsy
surgery at the Inselspital Bern. To also demonstrate the
potential usefulness of the matrices MA,B

ij for these types of
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FIG. 7. Multivariate analysis of spatiotemporal patterns of the matrix MNMI,multi
ij for a periseizure iEEG recording of patient 2 suffering

from epileptic focal onset seizures. (a) TCS; (b) weighted sum ν2
i calculated from the eigenvectors. Electrographic seizure onset and termination

are marked by vertical lines. The patient became seizure free after surgical removal of the brain tissue marked by black bars on the left and
right of panel (b).

data, we present two representative examples here. Patients
suffered from long-standing pharmacoresistant epilepsy with
focal-onset seizures and noninvasive studies had not allowed
us to unequivocally localize the epileptogenic zone (defined
as the brain region that is necessary and sufficient for seizure
generation [32]). To decide on the possibility of epilepsy
surgery, the patients had to undergo long-term iEEG with
intracranial electrodes. They gave written informed consent
that the long-term EEG data might be used for research
purposes and our study was approved by the local ethics
committee.

The iEEG was recorded at a sampling rate of 512 Hz using
a NicoletOne recording system. For a detailed description
of the amplifier specifications, see Ref. [33]. Before quan-
titative analysis the data were rereferenced to the median
of all artifact-free channels and filtered in the range 0.5 to
150 Hz. The analyzed periseizure iEEG segments contained
patient characteristic seizures and several minutes of pre-
and postseizure recording. Seizure onset and termination
times were visually defined by an experienced epileptol-
ogist/electroencephalographer (K.S.) and are indicated by
vertical lines in Figs. 6 and 7. The iEEG recordings were
analyzed using a moving window approach (steps of 1 s)
with window length L = 4096 corresponding to 8 s such
that four full cycles of the lowest frequency were contained.
From these Nsurr = 10 univariate and multivariate IAAFT
surrogate sets were sampled and for U tests ensembles of
size Nens = 10 were generated shifting segments of length
T = 1024 corresponding to 2 s within the larger windows
(overlap ∼67%).

Figure 8 displays examples of the absolute interrelation
matrices MA,B

ij for a seizure of the first patient (M = 49
artifact-free iEEG channels, complex partial seizure of 46.5 s

duration) taken at different time points relative to seizure
onset. The matrix MCC,uni

ij (left column) shows genuine cross-
correlation in blocks involving mainly the channels 3–5 and
7–10 (all located on a depth electrode implanted into the left
temporal lobe) and 44–49 (left frontopolar strip electrode). As
can be seen from Figs. 8(a), 8(d), and 8(g), the basic features of
the linear correlation pattern are remarkably stable over time.
Surgical removal of the tissue recorded by channels 1–4 and
12–14 led to seizure freedom in this patient. Consequently, the
epileptogenic tissue must have been contained in the area these
channels recorded from. Note that these channels apparently
do not play a prominent role in the linear correlation patterns
of Figs. 8(a), 8(d), and 8(g).

The matrix MNMI,multi
ij of interrelation that cannot be

explained by the null hypothesis H multi
0 is shown in the right

column. At seizure onset [Fig. 8(c)] it is the identity matrix,
reflecting that nonlinear interrelation does not reach the level
of significance at this time point in this patient. This situation
is representative for pre- and postseizure situations; see
Figs. 6(a) and 6(d). Eight seconds after seizure onset
[Fig. 8(f)] there is pronounced nonlinear interrelation of
channels 1 and 2 (the first two contacts on the tip of
the depth electrode implanted into the left temporal lobe)
and 12 (contact on the tip of the strip electrode cover-
ing the pole of the left temporal lobe) with each other
and many other channels. Note that at the same time
these channels are not involved in linear correlation pat-
terns [Fig. 8(d)]. Later during seizure evolution (t = 30s,
panel i) nonlinear interrelation is very pronounced for channels
3–7, 12, and 47. Remarkably, the linear and nonlinear
interrelation within the surgically removed channels seems
to be rather small at this stage [see Figs. 8(g) and 8(i)]. The
middle column of Fig. 8 shows the matrix MNMI,uni

ij capturing
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FIG. 8. Snapshots of absolute interrelation matrices MA,B
ij for multivariate iEEG time series of an epilepsy patient taken at different times

after seizure onset. The channels recording from tissue that was later surgically removed are indicated by black bars on the x and y axes.

linear as well as nonlinear interrelation. Essentially, it turns
out to be a mixture of the matrices MCC,uni

ij and MNMI,multi
ij .

To ease the interpretation of the matrix evolution in the
course of time we employ rank-ordered eigenvalues λl � λl−1

and corresponding eigenvectors vl of the matrices MA,B
ij

in the sequel. As a compact representation of the total
interrelation present in the system, we use the coefficient of
total correlation strength (TCS) introduced in [20]:

TCS = 1

2(M − 1)

M∑
l=1

|λl − 1|. (14)

Presence of significant interrelation in the matrix MA,B
ij leads

to a repulsion of some eigenvalues λl from 1. TCS normalizes
the sum of these deviations in an appropriate way, yielding
TCS = 0 for fully independent and TCS = 1 for identical
time series. To represent the involvement of data channels in

interrelation patterns in a compact way we calculate the fol-
lowing weighted sum of squared eigenvector components v2

il :

ν2
i = 1

2(M − 1)TCS

M∑
l=1

|λl − 1| v2
il . (15)

The weighting factor |λl − 1| assures that eigenvectors
corresponding to repelled eigenvalues contribute with larger
weight. Due to the larger absolute repulsion eigenvalues
located at the upper end of the eigenvalue spectrum typically
contribute stronger than those at the lower end. Eigenvectors
that are not involved in any interrelation pattern are suppressed.
Note that there is a certain similarity between Eq. (15) and
the “participation indices” introduced in Refs. [34,35],
which weight squared eigenvector components v2

il with the
eigenvalues λl instead of the repulsion. The advantage of our
definition is that also the eigenvalues located at the lower end
of the spectrum contribute.
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In Fig. 6(a) we show the temporal evolution of TCS
calculated from the matrices MA,B

ij of the first patient.

TCS(MCC,uni
ij ) and TCS(MNMI,uni

ij ) behave very similarly.

In pre- and postseizure phases TCS(MNMI,multi
ij ) is basically

zero. At the beginning and in the second half of the seizure
this quantity is positive, implying that for this patient iEEG
nonlinearities might be significant mainly during seizures.
Using the model of Eqs. (8)–(13) we have checked that the
performance of the matrices MA,B

ij is independent of the
spectral composition of time series for the chosen parameters
(rsfMRI data or interictal or ictal iEEG data; data not
shown). Therefore, we exclude artifacts of our surrogate
implementation as a valid explanation for this observation.

The channels contributing to genuine cross-correlation
patterns as measured by the eigenvectors of the matrix
MCC,uni

ij are widely distributed and very stable temporally; see
Fig. 6(b). The surgically removed tissue does not contribute
to these patterns. Very similar observations can be made for
the eigenvectors of MNMI,uni

ij [Fig. 6(c)]. This is true, although

the matrix MNMI,uni
ij is a mixture of the matrices MCC,uni

ij and

MNMI,multi
ij and consequently sensitive to linear and nonlinear

interrelations alike (see Fig. 8).
In contrast, patterns measured by the matrix MNMI,multi

ij

[Fig. 6(d)] display a pronounced temporal variation, which can
easily be overlooked when analyzing multivariate quantities
of inclusive interrelation measures like MNMI,uni

ij [Fig. 6(c)].
Around t = 8 s channels 1 and 2 contribute most to ν2

i ; cf.
Fig. 8(f). From t = 20s until seizure termination the nonlin-
ear interrelation pattern differs, comprising mainly channels
3–7, 12, and 47; cf. Fig. 8(i). The pattern arising after seizure
termination is similar to the example at t = 8 s.

Finally, we show the example of a periseizure iEEG
recording of another patient (M = 102 artifact-free channels,
complex partial seizure of 88 s duration) in Fig. 7. In contrast
to the previous case, here the null hypothesis H multi

0 is rejected
also before and after seizure, leading to a positive TCS
[Fig. 7(a)]. Figure 7(b) reveals that the brain areas that
mainly contribute to the eigenvectors are identical to the tissue
whose surgical removal led to seizure freedom. The examples
presented in Figs. 6 to 8 suggest that the matrices MA,B

ij are
a valuable tool for investigating linear and nonlinear aspects
of the spatiotemporal iEEG dynamics of epileptic seizures.
Comprehensive results will be published elsewhere.

V. SUMMARY AND DISCUSSION

In the present paper we generalized previously defined
matrices [16] to Eq. (7), which offers a uniform approach
to linear and nonlinear interrelations between time series.
The matrix MCC,uni

ij is based on equal-time cross-correlation
and employs independent univariate IAAFT surrogates for
testing the null hypothesis of uncorrelated time series. It
has nonzero elements only if for given data T the linear
cross-correlation between the data is significantly larger than
for fully independent surrogate time series with equal power
spectrum. In contrast, the matrix MNMI,multi

ij is based on
normalized mutual information and uses multivariate IAAFT
surrogates as a reference. Consequently, nonzero elements

indicate interrelations that are measurable by normalized MI
but cannot be explained by surrogate data with conserved
CC pattern. It is important that in this context “significantly
nonlinear” interrelation is a stronger statement than significant
interrelation as detected by a nonlinear measure.

The performance of the proposed framework was tested
using a simple model allowing separate tuning of coupling
(parameter −1 � ρ � 1) and nonlinearity (parameter 0 �
σ � 1); see Eqs. (8)–(13). The complementary character
of MCC,uni

ij and MNMI,multi
ij and the inclusive character of

MNMI,uni
ij was confirmed by these tests; see Fig. 2.
A special aspect of the definition Eq. (7) is the denominator,

which independently puts all matrix elements on the same scale
between 0 and ±1. This is especially important for MNMI,multi

ij

where deviations between original and surrogate data are
often highly significant but small in absolute size. Without
the normalizing denominator such effects could easily remain
undetected, especially when aiming at multivariate analysis in
terms of matrix eigenvalues and eigenvectors.

The employment of U tests for significance checking [factor
sij ∈ {0,1} in Eq. (7)] may seem artificial at first sight as
it requires two segment lengths (L and T < L) as well as
generation of ensembles of size Nens (whose members should
be as independent as possible) to calculate the medians μij

and νij of the interrelation measure Aij . A more intuitive
approach to the significance sij consists in sampling m/α′ − 1
surrogates (L = T , Nens = 1 and m is an oversampling factor)
and rejecting the null hypothesis on significance level α′ =
2α/(M − 1)/M if |Aij | is larger than the mth largest value
found for the surrogates. To exclude sensitivity to outliers in
the sample the data should be oversampled by a factor m 
 1,
a strategy which has been followed in Ref. [14] (α = 0.05,
m = 5, M = 2, no Bonferroni correction). We have checked
that this approach is computationally feasible for the bivariate
case and produces results very similar to those shown in
Figs. 1 and 2.

For large M 
 2 and m 
 1, however, the extensive
surrogate generation becomes computationally prohibitive,
whereas in our approach the workload is limited to Nsurr

IAAFT surrogates. As except for extremely small Nsurr the
results are almost independent, this parameter can be chosen
to be rather small; see Figs. 1(b) and 1(d). Similarly, we have
checked the dependence of our results on the overlap of the
segments of size T as determined by the parameter Nens. For
not-too-large overlaps we found only small variations; see
Figs. 1(a) and 1(c).

Application of the matrices MA,B
ij in situations without

temporal evolution is easily feasible. Using Nsurr = 10, the
calculation of the matrices shown in Figs. 4 and 5 took
approximately 10 min on a desktop computer with 2.0-GHz
CPU. In contrast, a time-dependent application as shown in
Figs. 6 and 7 remains computationally demanding due to
repeated generation of univariate and multivariate IAAFT
surrogate ensembles of size Nsurr on every time step. For
example, the same computer calculated for more than 2 days to
produce the matrices underlying Fig. 6 with a time resolution
of 1 s.

Further generalization of the matrices MA,B
ij defined in

Eq. (7) to other bivariate interrelation measures A is possible.
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The merit of using partial correlation matrices [36,37] and
partial mutual information matrices [38] is currently under
investigation. Moreover, generalization to different types of
surrogates B is conceivable. To reduce computation time in
our application the iterative amplitude adjustment could be
dropped from the procedure as also done in Refs. [12,14].
If L is large enough to contain many cycles of the slowest
frequency present in the data and only H uni

0 were to be
tested without testing H multi

0 as well, the much faster shift
surrogates could be considered [39]. Other examples include
pseudoperiodic surrogates [40], which are especially suitable
for systems with strong periodicities, or twin surrogates
[41,42], which allow testing the null hypothesis of absence
of phase synchronization.

For compact representation of all eigenvectors of the
matrices MA,B

ij we introduced in Eq. (15) the weighted sum
of squared components. This measure summarizes which data
channels contribute prominently to any of the eigenvectors
(see Figs. 6 and 7) and large eigenvalue repulsion at both ends
of the eigenvalue spectrum is weighted as stronger.

Although the proposed framework is not limited to neuro-
physiological data, we have shown two examples of possible
application. In resting-state fMRI data multivariate correlation
analysis on basis of the matrix MCC,uni

ij revealed linear
resting-state functional connectivity patterns among prede-
fined homologous cytoarchitectonic ROIs known to sustain
sensorimotor and visual functions that were reproducible
between two subjects; see Figs. 4 and 5. In agreement with
Ref. [14] where technical details of the implementation
were treated differently (e.g., different ROI definition, use
of noniterative procedures instead of IAAFT surrogates, and
no Bonferroni correction for multiple testing), using MI we
found that nonlinear interrelation is of minor importance in
resting-state data.

As a second example the matrices of Eq. (7) were applied
to representative intracranial EEG recordings of two epilepsy
patients. We found that during seizure linear and nonlinear
interrelation can be complementary to each other. Although in
relatively long pre- and postseizure parts of the recording the
interrelation pattern of nonepileptogenic brain areas is well
described by linear cross-correlation, it might miss important
nonlinear interrelation of epileptogenic tissue and during
seizure (Figs. 6 to 8). Note that nonlinear measures alone,
i.e., without testing the null hypothesis of linear correlation,
could also miss these effects.

Our result that interictal EEG can well be described
by linear properties with nonlinearities mainly confined to

epileptic seizures and seizure generating tissue is in line
with previous findings. For univariate EEG properties of
healthy subjects it was shown that only very small parts
of the respective EEG data sets were not compatible with
linear dynamics, with examples including the correlation
dimension [5,43] and the nonlinear prediction error [44]. For
epilepsy patients it was found in Ref. [45] using the corre-
lation integral that nonlinearities of iEEG signals recorded
from epileptogenic brain regions were more significant than
those recorded from healthy regions. In Refs. [43,46] a
significantly lowered correlation dimension of ictal EEG
signals was found. Intracranial EEG showed its confinement
mainly within and near the seizure onset zone. Analyzing
different types of EEG recorded from epilepsy patients and
using the nonlinear prediction error as well as effective
correlation dimension [47], it was found that nonlinearities are
strongest during epileptic seizures and for seizure generating
tissue.

In Ref. [48] nonseizure iEEG of 29 patients suffering from
mesial temporal lobe epilepsy was analyzed using several
linear and nonlinear univariate measures. Lateralization of
the epileptic focus was best when nonlinear measures were
corrected for IAAFT surrogates. Very recently, these authors
conducted a similar study using linear and nonlinear bivariate
measures, finding increased interrelation in the focal hemi-
sphere [15]. Moreover, significance and accuracy of focus
lateralization turned out highest if a nonlinear interrelation
measure based on rank statistics [49] was corrected for
bivariate IAAFT surrogates. Although the applied nonlinear
interrelation measure differs, our bi- and multivariate results
are consistent with these recent findings.

The relation between epileptogenic tissue and iEEG chan-
nels rejecting the null hypothesis H multi

0 before or during
seizure seems interesting but nontrivial and is the topic
of ongoing research. Combined application of the matrices
MCC,uni

ij and MNMI,multi
ij to larger clinical cohorts of rsfMRI

and iEEG data sets is underway and will be published
elsewhere.
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