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Weak-chaos ratchet accelerator
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Classical Hamiltonian systems with a mixed phase space and some asymmetry may exhibit chaotic ratchet
effects. The most significant such effect is a directed momentum current or acceleration. In known model
systems, this effect may arise only for sufficiently strong chaos. In this paper, a Hamiltonian ratchet accelerator
is introduced, featuring a momentum current for arbitrarily weak chaos. The system is a realistic, generalized
kicked rotor and is exactly solvable to some extent, leading to analytical expressions for the momentum current.
While this current arises also for relatively strong chaos, the maximal current is shown to occur, at least in one
case, precisely in a limit of arbitrarily weak chaos.
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I. INTRODUCTION

Classical [1–6] and quantum [3,6–12] Hamiltonian ratchets
have attracted considerable theoretical interest during the
past decade. In addition, several kinds of quantum ratchets
have been experimentally realized using atom-optics methods
with cold atoms or Bose-Einstein condensates [13–16]. The
classical Hamiltonian ratchet effect is a directed current in
the chaotic region generated by an unbiased force (having
zero mean in space and/or time) and due to some spatial
and/or temporal asymmetry [1–6]. This is analogous to
the ordinary ratchet effect [17,18], but with deterministic
chaos replacing the usual noisy environment. Dissipation,
an important ingredient in ordinary ratchets for breaking
time-inversion symmetry, is absent in Hamiltonian ratchets.

A well-studied class of systems are those described by
time-periodic Hamiltonians H (x,p,t) for which both the force
F = −∂H/∂x and the velocity v = ∂H/∂p are periodic in x

and F has zero mean over (x,t). The classical ratchet current
is usually defined as the average of v over (x,p,t), where
(x,p) is restricted to the chaotic region; see, e.g., Refs. [2,3]. It
is assumed that v is bounded, e.g., by Kolmogorov-Arnol’
d-Moser (KAM) tori. Then, necessary conditions for the
ratchet current to be nonzero are the breaking of some
symmetry and a mixed phase space featuring transporting
stability islands that propagate in the x direction [3]. In the
presence of bounding KAM tori, one can get, in principle,
a nonzero ratchet current also in near-integrable regimes,
corresponding to relatively weak and local chaos.

A different and much more significant Hamiltonian ratchet
effect was discovered in work [6] for generalized kicked-rotor
systems satisfying the well-known KAM scenario. Namely,
for sufficiently strong kicking, there exist no KAM tori
bounding the chaotic motion in the momentum (p) direction
and one thus gets strong global chaos. In addition, transporting
accelerator-mode islands [19] propagating in the p direction
may arise. This can lead, under some asymmetry conditions, to
a ratchet acceleration, i.e., a nonzero mean momentum velocity
(rather than the usual position velocity v) of the global chaotic
region [6] (see Sec. II for more details). Quantum analogs
of the classical ratchet acceleration were found in several
systems [9–12], either for special, quantum-resonance values
of a scaled Planck constant h̄ [9–11] or for generic values

of h̄ [12]. Quantum-resonance ratchet accelerators have been
experimentally realized in recent works [14,15].

In this paper we show that the phenomenon of ratchet accel-
eration is not limited to strong-chaos regimes. We introduce
a realistic Hamiltonian system exhibiting this phenomenon
most significantly in near-integrable regimes, corresponding
now to arbitrarily weak but global chaos. The system is a
generalized kicked rotor whose force function has zero mean
and is characterized by two nonintegrability parameters b1

and b2. A global chaotic region in the p direction arises
also for arbitrarily small values of these parameters, i.e., the
KAM scenario is not satisfied. As b1,b2 → 0, this non-KAM
[20] system tends to the well-known elliptic sawtooth map
[21,22], which has been used as a paradigmatic model of
pseudochaos (dynamical complexity with a zero Lyapunov
exponent) [22,23] in studies of both classical [22,24] and
quantum [25] systems. We show that accelerator-mode islands
exist for arbitrarily small b1 and b2. Then, when the system
is asymmetric (b1 �= b2), a ratchet acceleration A may arise
for arbitrarily weak chaos. In one particular case, we derive
analytical expressions for A as a function of b1 and b2. Paths of
maximal A in the (b1,b2) parameter space are determined. We
then show that, in sharp contrast with the systems considered
in work [6], A is most significant for relatively small Lyapunov
exponents and that its maximal value is attained precisely in a
limit b1,b2 → 0 of arbitrarily weak chaos.

This paper is organized as follows. In Sec. II we give a short
background on Hamiltonian ratchet accelerators. In Sec. III
we introduce our general model system and describe its basic
properties. In particular, in Sec. III C we derive the existence
conditions for the main accelerator-mode islands of the system.
In Sec. IV analytical expressions for the ratchet acceleration
A in one case are obtained for all values of the parameters. In
Sec. V we show that the maximal value of A is attained in a
limit of arbitrarily weak chaos. Conclusions are presented in
Sec. VI. Detailed derivations of several analytical results are
given in the Appendixes.

II. BACKGROUND ON HAMILTONIAN RATCHET
ACCELERATORS

The concept of the Hamiltonian ratchet accelerator was
introduced in Ref. [6] by adaptation of a formalism developed
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in Refs. [2,3]. We give here a self-contained summary of
these works, leading to the main result [Eq. (6) below], a
sum rule for the ratchet acceleration A. We shall focus on
realistic models, the generalized kicked-rotor systems with
scaled Hamiltonian H = p2/2 + KV (x,t)

∑∞
s=−∞ δ(t − s),

where K is the nonintegrability parameter and the potential
V (x,t) is periodic in x, V (x + 1,t) = V (x,t). Particular cases
of these systems were considered in Ref. [6]. The map for H

from t = s − 0 to s + 1 − 0 is given by

M : ps+1 = ps + Kfs(xs), xs+1 = xs + ps+1mod(1),

(1)

where the force function fs(x) = −dV (x,t = s)/dx. Be-
cause of the periodicity of V (x,t) in x, fs(x) satisfies the
ratchet (zero-flux) condition: 〈fs(x)〉 = ∫ 1

0 fs(x)dx = 0. As
in Ref. [6], we shall assume that the kicking parameter K is
large enough that all the rotational (horizontal) KAM tori are
broken. Thus there are no barriers to motion in the p direction,
leading to a global and strongly chaotic region. These barriers
cannot exist if there are accelerator modes, i.e., orbits that are
periodic under the map in Eq. (1) in the following sense:

ps+m = ps + w, xs+m = xs, (2)

where m is the period and w, the winding number, is an nonzero
integer. Periodic orbits can be defined in the generalized way
of Eq. (2) (w �= 0) due to the obvious periodicity of the map
in Eq. (1) in p with period 1. If an accelerator mode is linearly
stable, each of its points (xs,ps) will usually be surrounded
by an island Is , an accelerator-mode island (AMI). Because
of Eq. (2), Is+m is just Is translated by w in the p direction.
For arbitrary initial conditions z0 = (x0,p0) in phase space,
the mean acceleration (momentum current or velocity) in
n iterations of the map in Eq. (1) is

An(z0) = pn − p0

n
(3)

and the average of Eq. (3) in some region R with area SR is

〈An〉R = 1

SR

∫
R

An(z0) dz0. (4)

In the case that R is an AMI I with winding number w, it
follows from Eqs. (2)–(4) that

lim
n→∞〈An〉I = ν = w

m
. (5)

Now, because of the periodicity of the map [Eq. (1)] in p

with period 1, one can also take ps+1 modulo (1) in Eq. (1),
leading to a map M̄ on the unit torus T 2 : 0 � x, p < 1;
this is the unit cell of periodicity of the map in Eq. (1). The
reduced phase space T 2 can be fully partitioned into the global
chaotic region C with area SC and all the stability islands I (j )

with areas Sj , where j labels the island: SC + ∑
j Sj = 1. The

average acceleration [Eq. (5)] of I (j ) is νj = wj/mj , where
νj = 0 for a normal (nonaccelerating) island. We then have
the following sum rule relating νj to the ratchet acceleration
A = 〈A〉C = limn→∞〈An〉C of the global chaotic region:

SCA +
∑

j

Sj νj = 0. (6)

Equation (6) is easily derived from the obvious relation
〈An〉T 2 = SC〈An〉C + ∑

j Sj 〈An〉I (j ) by taking n → ∞ and
using 〈An〉T 2 = 0, a result following straightforwardly from
the map in Eq. (1):

〈An〉T 2 =
〈

n∑
s=1

ps − ps−1

n

〉
T 2

= K

n

n−1∑
s=0

∫
T 2

dz0fs(xs)

= K

n

n−1∑
s=0

∫
T 2

dzsfs(xs) = 0, (7)

where we used area preservation (dz0 = dzs), the invariance
of T 2 under M̄ , and the ratchet condition 〈fs(x)〉 = 0. An
immediate consequence of the sum rule in Eq. (6) is that A

vanishes if the map in Eq. (1) is invariant under inversion,
(x,p) → (−x, − p), i.e., one has the inversion (anti)symmetry
fs(−x) = −fs(x). This is because under this symmetry for
each AMI with mean acceleration νj �= 0 there exists an AMI
with the same area but with mean acceleration −νj . As we
shall see in the following sections for a simple case of fs(x),
A is generally nonzero when AMIs are present and inversion
symmetry is absent.

III. GENERAL MODEL SYSTEM AND ITS BASIC
PROPERTIES

A. General

The general model system introduced and studied in this
paper is the generalized kicked-rotor system described by a
simple map in Eq. (1):

M : ps+1 = ps + Kf (xs), xs+1 = xs + ps+1mod(1), (8)

where 0 < K < 4 and, for 0 � x < 1,

f (x) =
⎧⎨
⎩

l1x for 0 � x � b1,

c − x for b1 < x < 1 − b2,

l2(x − 1) for 1 − b2 � x < 1,

(9)

with f (x + 1) = f (x). Here b1 and b2 are positive parameters
with b1 + b2 < 1 while l1, l2, and c, also positive, are fixed
by requiring f (x) to be continuous and to satisfy the ratchet
condition

∫ 1
0 f (x)dx = 0 (see Appendix A):

l1 = (1 − b1)(1 − b1 − b2)

b1(2 − b1 − b2)
, l2 = (1 − b2)(1 − b1 − b2)

b2(2 − b1 − b2)
,

c = 1 − b2

2 − b1 − b2
. (10)

Kicked systems with a smooth piecewise linear force function
such as Eq. (9) have been studied either on the phase plane
[26] or on a cylindrical phase space [27], corresponding to
the very special case of the map in Eq. (8) with b1 = b2 =
1/4. Apparently, however, these systems have not yet been
considered in the context of Hamiltonian ratchet transport,
i.e., for general values of b1 and b2 with b1 �= b2, leading to
an asymmetric force function in Eq. (9). This general system
is realistic since it may be experimentally realized using, e.g.,
optical analogs as proposed in Ref. [26]. As we shall see
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below, the system generally does not satisfy the KAM scenario
assumed in Sec. II, i.e., it is a non-KAM system.

B. Phase space and limit cases

The phase space of the map [Eq. (8)] in the basic periodicity
torus T 2 (0 � x, p < 1) is illustrated in Fig. 1 for some values
of the parameters. We clearly see in all cases a connected
chaotic region encircling T 2 in both the x and p directions,
implying global chaos and the nonexistence of KAM tori
bounding p. An understanding of this numerical observation
will be achieved here and in Sec. III C. We first consider here
the map in Eq. (8) in the limit of b1,b2 → 0. From Eqs. (10)
one has l1b1,l2b2,c → 1/2 in this limit, so that the function in
Eq. (9) tends to the sawtooth

f (x) = 1/2 − x (0 � x < 1), f (x + 1) = f (x), (11)

with discontinuity at x = 0. The map in Eq. (8) with Eq. (11)
and 0 < K < 4 is the well-known elliptic sawtooth map
(ESM) [21,22,24,25] having the property that its linearization
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FIG. 1. Global chaotic regions of the map [Eq. (8)] within the unit
torus of periodicity 0 � x, p < 1 for b1 = 0.05, b2 = 0.02, and three
values of K corresponding to the following values of α in Eq. (12):
(a) α = 2π/3 (K = 3); (b) α = 6π/5 (K ≈ 3.618); and (c) α =
π (

√
5 − 1)/2 (K ≈ 2.7247). These values of α represent the three

main cases discussed in the text. The left (L) and right (R) period-1
accelerator-mode islands (AMIs), see Sec. III C, are indicated in each
case.
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FIG. 2. Global pseudochaotic regions of the ESM for the same
values of α (or K) as in Fig. 1. In practice, these regions were
generated by iterating a large initial ensemble using the map in Eq. (8)
with very small b1 = b2 = 10−7. The initial ensemble uniformly
covered the vertical hyperbolic strip in Eq. (13). The left and right
AMIs are again indicated.

DM is a constant 2 × 2 matrix with eigenvalues λ± on the unit
circle:

λ± = exp(±iα), 2 cos(α) = 2 − K. (12)

This means that orbits of the ESM that do not cross the
discontinuity line x = 0 lie on ellipses with average rotation
angle α. In general, however, an orbit will cross the x = 0
line. Then the combination of the mod(1) operation in Eq. (8)
with the local ellipticity of the ESM will usually lead to
a complex dynamics with zero Lyapunov exponent, known
as pseudochaos [22]. The phase space generally consists of
the pseudochaotic region, associated with all iterates of the
discontinuity line [21], and a set of islands. More specifically,
one has to distinguish between three main cases of the ESM,
illustrated in Fig. 2 for the same values of K as in Fig. 1:
(a) the integrable case of integer K = 1,2,3 [corresponding to
α/2π = 1/6,1/4,1/3 in Eq. (12)], in which no pseudochaos
arises and the phase space consists just of a finite number of
separatrix lines (iterates of the discontinuity line) bounding
a finite number of islands [see Fig. 2(a)]; (b) the case of
noninteger K with rational α/2π in Eq. (12), in which
numerical work [21] indicates that one has an infinite set of
islands and that the pseudochaotic region is a fractal with zero
area (see Fig. 2(b) and exact results for the fractal dimension
of such regions in other maps with discontinuities [23]); (c)
the case of irrational α/2π , in which one typically has again
an infinite set of islands but the pseudochaotic region appears
numerically to cover a finite area [21] [see Fig. 2(c)]. Since
the momentum p assumes all values on the discontinuity line
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and is thus unbounded, the pseudochaos [or the separatrix in
case (a)] is global.

For finite and small b1 and b2, the continuous map in Eq. (8)
may be considered as a perturbed ESM, with the discontinuity
line replaced by a vertical strip B of width b1 + b2 in T 2 (see
also the caption of Fig. 2):

B : 0 � p � 1, 0 � x � b1 or 1 − b2 � x < 1. (13)

This should be contrasted with the perturbed ESM in Ref. [24]
for which the discontinuity line is not removed by the
perturbation. The linearization DM of Eq. (8) is again a
constant 2 × 2 matrix in each of the three intervals in Eq. (9).
In the middle interval, it is the same matrix as for the ESM,
with stability eigenvalues [Eq. (12)]. In the other two intervals,
where the strip in Eq. (13) is located, DM can be easily
shown to have real positive eigenvalues λ± with, say, λ+ > 1
and λ− = λ−1

+ < 1, i.e., there is local hyperbolicity. One can
then expect that already for small b1 and b2 a global chaotic
region with a positive Lyapunov exponent will emerge from
the vertical strip in Eq. (13) and will replace the global
pseudochaos (or separatrix) for b1 = b2 = 0. This can be
clearly seen by comparing Figs. 1 and 2. The nature of
the chaotic region will be discussed further in the following
sections, where it will be shown numerically that the Lyapunov
exponent indeed tends to zero as b1,b2 → 0.

C. Accelerator-mode islands and their existence conditions

We show here that AMIs for the map in Eq. (8) rigorously
exist in broad ranges of the parameters, including arbitrarily
small values of b1 and b2. This exactly implies global and
arbitrarily weak chaos. We shall consider only period-1 AMIs,
associated with stable accelerator modes satisfying Eq. (2)
with m = 1 and w �= 0. As we shall see, there appear to be
no higher-period AMIs at least in the case of K = 3 on which
we shall focus from Sec. IV on. The initial conditions (x0,p0)
for m = 1 stable periodic orbits in Eq. (2) must necessarily lie
in the middle interval in Eq. (9), b1 < x0 < 1 − b2, since only
in this interval the matrix DM exhibits stability eigenvalues
[Eq. (12)]. Thus, from Eqs. (2), (8), and (9), we get

x0 = c − w

K
, p0 = 0 mod(1), (14)

b1 < c − w

K
< 1 − b2. (15)

For w = 0 one has a nonaccelerating stable fixed point (x0 =
c,p0 = 0), the center of a normal (nonaccelerating) island. We
show that w may take only two nonzero values and this only
in some interval of K:

w = ±1, 2 � K < 4. (16)

In fact, from Eqs. (9) and (10) it follows that the maximal value
of |f (x)| is max(l1b1,l2b2) < 1/2. Then, since w = Kf (x0)
from Eqs. (2) and (8), we have |w| � [K/2], where [ ] denotes
the integer part. This implies, for 0 < K < 4, that w may take
the only nonzero values of ±1 provided 2 � K < 4.

Now, according to Eq. (14) for x0, the values of w = 1 and
−1 should correspond, respectively, to a left (L) and a right
(R) AMI (see Figs. 1 and 2 ). An explicit existence condition
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FIG. 3. Curves b2 = F (b1) and b1 = F (b2) [with F (b1) given by
Eq. (17) for K = 3] defining the domains of existence of the left and
right period-1 AMI for K = 3 in the (b1,b2) plane. In domain L (R),
only the left (right) AMI exists. In domain LR, both AMIs exist. No
AMIs exist elsewhere.

for the left AMI (w = 1) is derived, after some simple algebra,
from the left inequality in Eq. (15) using Eq. (10) for c:

b2 < F (b1) ≡ Kb2
1 + (1 − 2K)b1 + K − 2

K − 1 − Kb1
(17)

(see also note [28]). It is easily verified that the right inequality
in Eq. (15) is identically satisfied. Similarly, the existence
condition for the right AMI is b1 < F (b2). One thus has three
cases (compare with Fig. 3 for K = 3).

(a) Both AMIs L and R exist (see, e.g., Figs. 1 and 2) if

b2 < F (b1), b1 < F (b2). (18)

Clearly, this will be always satisfied for K > 2 and sufficiently
small b1 and b2 since F (b1) ≈ (K − 2)/(K − 1) for b1 
 1 in
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FIG. 4. Global chaotic region for K = 3, b1 = 0.226, and b2 =
0.02. For these values of b1 and b2 only the right period-1 AMI exists
(compare with Fig. 3).
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Eq. (17); thus, both AMIs exist in the arbitrarily weak chaos
regime. For K = 3, this case corresponds to the domain LR

in Fig. 3.
(b) Only one AMI, say the right one R, exists (as, e.g., in

Fig. 4) if

b2 � F (b1), b1 < F (b2). (19)

Similarly, if b2 < F (b1) and b1 � F (b2) only the left AMI
L exists. For K = 3, this case corresponds to the domain R or
L in Fig. 3.

(c) No AMIs exist if

b2 � F (b1), b1 � F (b2). (20)

It is easy to show from the expression for F (b1) in Eq. (17)
(see also note [28]) that F (b1) � (K − 2)/(K − 1) − b1. One
then gets from Eqs. (18)–(20) a simple necessary condition for
the existence of at least one AMI:

b1 + b2 <
K − 2

K − 1
. (21)

For the symmetric system (b1 = b2), the condition in
Eq. (17) reads b1 < F (b1), which can be significantly sim-
plified:

b1 <
1

2
− 1

K
. (22)

It follows from the condition in Eq. (22) that no period-1 AMIs
can exist if b1 = b2 � 1/4 for any value of K in the relevant
interval of 2 � K < 4. This is consistent with the known fact
that bounding KAM tori exist for some K if b1 = b2 = 1/4
[27], which is apparently the only case of the map in Eq. (8)
studied until now.

IV. RATCHET ACCELERATION FOR K = 3

In this section the ratchet acceleration A in the case of
K = 3 will be calculated analytically in the framework of
a plausible assumption (see below), supported by extensive
numerical evidence and exact results. To use the sum rule in
Eq. (6), we first identify the global chaotic region C in the basic
periodicity torus T 2. Let us denote by C the set of all iterates
of the vertical strip B in Eq. (13) under M̄ , i.e., the map in
Eq. (8) modulo T 2 (see Sec. II):

C =
∞⋃

s=−∞
M̄sB. (23)

Exact results for the set in Eq. (23) are derived in Appendixes
B–E. Here we note that orbits that never visit B (and thus
also C) are all stable since they lie entirely within the middle
interval in Eq. (9) where the linearized map DM has stability
eigenvalues [Eq. (12)]. Thus the global chaotic region C
must be entirely contained within C, in agreement with our
expectation at the end of Sec. III B. Our extensive numerical
studies indicate that C is indistinguishable from C [compare,
e.g., Figs. 1(a) and 4 with Figs. 11 and 12 in Appendix C].
In fact, finite-time Lyapunov exponents of orbits starting from
initial conditions covering B uniformly were all found to be
strictly positive. We shall therefore assume in what follows that
C precisely coincides with C. The rest of phase space outside
C consists of no more than three stability regions [see, e.g.,

Figs. 1(a) and 4]: the left AMI L (w = 1), the right AMI R

(w = −1), and a normal island (w = 0) lying between L and
R. Using the sum rule in Eq. (6) with νj = wj [since m = 1
in Eq. (5)], we then get a formula for the ratchet acceleration:

A = SR − SL

SC

. (24)

Exact expressions for the areas SL, SR , and SC are derived in
Appendixes D and E using simple geometry [see Eqs. (D2),
(D3), and (E2)–(E4) therein]. Inserting these expressions in
the formula in Eq. (24), we obtain, after some algebra, explicit
results for A in different cases.

(a) If both AMIs exist, i.e., the case in Eq. (18),

A = (b1 − b2)[1 − 3(b1 + b2)]

2(2 − b1 − b2)(b1 + b2)
. (25)

(b) If only one AMI, say the right one, exists, i.e., the case
in Eq. (19),

A = (2 − 3b2 − 3c)2

6(b1 + b2) − 6(b1 + b2)2 + (3c − 3b1 − 1)2
. (26)

(c) If no AMIs exist, i.e., the case in Eq. (20), A = 0, of
course.

In general, the results in Eqs. (25) and (26) were found to
agree very well with numerical calculations of A (see examples
at the end of the following section). This is additional evidence
for the validity of the basic assumption above concerning the
chaotic region, C = C.

V. MAXIMAL RATCHET ACCELERATION FOR
ARBITRARILY WEAK CHAOS

In this section we show that the maximal ratchet accelera-
tion A for K = 3 is attained in a limit b1,b2 → 0 of arbitrarily
weak chaos. In Fig. 5 we plot |A| as function of b1 and b2 using
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FIG. 5. (Color online) Pseudocolor plot of |A| as a function of
b1 and b2 for K = 3. The thin solid lines (defining the three domains
L, R, and LR) are the same as those in Fig. 3. The thick solid line
in domain LR is the maximal path [Eq. (27)] on which A is given
by Eq. (28). The dashed line is the maximal path b2(b1) [defined
similarly to Eq. (27)] on which A < 0.
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FIG. 6. (Color online) Pseudocolor plot of the Lyapunov expo-
nent σ of the chaotic region as a function of b1 and b2 for K = 3.

the formulas in Eqs. (25) and (26) and A(b2,b1) = −A(b1,b2).
The Lyapunov exponent σ of the chaotic region as a function
of b1 and b2 was calculated numerically with high accuracy
and is plotted in Fig. 6. As one could expect, σ vanishes in
the limit of b1,b2 → 0, where the map in Eq. (8) tends to the
ESM (see Sec. III B). It is clear from Fig. 5 that |A| assumes its
largest values in the parameter domain LR, where both AMIs
exist. We shall therefore focus on this domain in which A is
given by Eq. (25). We shall first calculate analytically the value
of b1 where |A(b1,b2)| is maximal at fixed b2; this will define a
path b1(b2) in the (b1,b2) plane [a path b2(b1) can be similarly
defined]. We then show that |A(b1,b2)| is maximal on this path
in the limit of b1,b2 → 0. Let us take the partial derivative
of the function in Eq. (25) with respect to b1 and require that
∂A/∂b1 = 0. After a tedious but straightforward calculation,
we find that the latter equation reduces to a quadratic one with
the only positive root:

b1(b2) = 2[5b2(1 − b2)]1/2 − b2(7 − 6b2)

5 − 6b2
. (27)

The path in Eq. (27) corresponds to the lower curve in
Fig. 5, with b1 � b2. This curve starts at b1 = b2 = 0, with
b1 ≈ 2

√
b2/5 for b2 
 1, and terminates at b1 = b2 = 1/6,

on the boundary of the LR domain. For b2 � 1/6, we find
that ∂2A/∂b2

1 < 0 at the value of b1 in Eq. (27), which thus
corresponds to a local maximum. From Eqs. (25) and (27), the
ratchet acceleration on the path in Eq. (27) is

A(b2) = {5 − 6[5b2(1 − b2)]1/2}2

20{5 − 4b2 − [5b2(1 − b2)]1/2} . (28)

In the limit of b2 → 0 (b1 ≈ 2
√

b2/5), we get, from Eq. (28),

lim
b2→0

A(b2) = 1/4. (29)

After a simple but lengthy calculation we find that the function
in Eq. (28) satisfies ∂A/∂b2 < 0 for b2 � 1/6. Thus A(b2)
decreases monotonically from 1/4 (at b1 = b2 = 0) to 0 (at
b1 = b2 = 1/6) on the path in Eq. (27). Since this path gives

the single extremum (a local maximum) of A(b1,b2) for b1 �
b2 at fixed b2 and since A(b1,b2) = 0 for b1 = b2, we conclude
that in the lower part (b1 � b2) of the LR domain A(b1,b2) � 0
and A(b1,b2) assumes its maximal value of 1/4 in the limit
b1,b2 → 0 of arbitrarily weak chaos on the path in Eq. (27).

Since A(b2,b1) = −A(b1,b2), in the upper (b2 > b1) part
of the LR domain A(b1,b2) < 0 and A(b1,b2) assumes its
maximal negative value of −1/4 in the limit of b1,b2 → 0 on
a path b2(b1) (the dashed curve in Fig. 5), defined similarly to
b1(b2). The difference between the limiting values of A(b1,b2)
on the two paths reflects the discontinuity of the ESM, i.e., the
map in Eq. (8) in the limit of b1,b2 → 0. In general, |A(b1,b2)|
can assume in this limit all values <1/4 on other, nonmaximal
paths. For example, on the straight-line path b1 = b2/a, where
a is some arbitrary constant, we find from Eq. (25) that

lim
b2→0

A(b2) = (1 − a)

4(1 + a)
. (30)

We remark that the path in Eq. (27) is tangent to the b1 axis
at b1 = b2 = 0 since b1 ≈ 2

√
b2/5 for b2 
 1. Similarly, the

second maximal path b2(b1) is tangent to the b2 axis in this
limit. Thus, as expected, the maximal value of |A| = 1/4 is
associated with the largest possible asymmetry, b1/b2 = ∞ or
b2/b1 = ∞ [a = 0 or a = ∞ in Eq. (30)].

Figures 7 and 8 show plots of A versus the Lyapunov
exponent σ for small b2 on both the maximal path in
Eq. (27) and the path b1 = 3b2. We see in both plots excellent
agreement between the values of A calculated numerically and
those calculated from the formulas in Eqs. (25), (26), and (28).

0.2 0.4 0.6 0.8
0

0.04

0.08

0.12

0.16

σ

A

0.07 0.12 0.17 0.22

0.18

0.2

0.22

σ

A

FIG. 7. Circles represent numerical results for A versus the
Lyapunov exponent σ on the maximal path in Eq. (27) with b2

distributed uniformly on the interval 0.005 � b2 � 0.165; these
results were obtained by averaging (pn − p0)/n (n = 120 000) over
an ensemble of 104 initial conditions (x0,p0) in the chaotic region,
i.e., all having positive finite-time Lyapunov exponents. The solid line
plots the analytical result in Eq. (28). The inset shows the continuation
of the main plot to smaller values of b2, distributed uniformly on
the interval 0.000 25 � b2 � 0.004 75. In this interval of very weak
chaos, A is close to its maximal value of 1/4 [see Eq. (29)].
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0.1 0.3 0.5 0.7 0.9
0

0.03

0.06

0.09

0.12

σ

A

FIG. 8. Circles represent numerical results for A versus σ on the
path b1 = 3b2 with b2 distributed uniformly on the interval 0.005 �
b2 � 0.1 [this path crosses both domains LR and R (see Fig. 3)];
these results were obtained as described in the caption of Fig. 7. The
solid line plots the analytical results from the formulas in Eqs. (25)
and (26). For small σ , A ≈ 0.12, close to the predicted limiting value
of A = 0.125 from Eq. (30) (a = 1/3).

VI. CONCLUSIONS

In this paper we have introduced a realistic non-KAM
system exhibiting, in weak-chaos regimes, the most signifi-
cant Hamiltonian ratchet effect of directed acceleration. The
system, defined by the generalized standard map in Eq. (8)
with Eq. (9), may be viewed as a perturbed ESM with a
perturbation that removes the ESM discontinuity. Thus the
global weak chaos featured by the system may be generally
considered as a perturbed global pseudochaos. Our main exact
result is that for K = 3 the maximal ratchet acceleration A

is attained precisely in a limit b1,b2 → 0 of arbitrarily weak
chaos with an infinite asymmetry parameter (b1/b2 = ∞ or
b2/b1 = ∞). Despite this, the limiting system is interestingly
the completely symmetric ESM (see phase spaces in Fig. 2).
By continuity considerations, one expects that at least for
values of K sufficiently close to K = 3 one should again
observe a significant increase of the absolute value |A| of the
acceleration as the chaos strength decreases. We have verified
this numerically in parameter regimes where good accuracy
could be achieved within the limitations of our available
computational resources. An example is shown in Fig. 9.

Our main result that the strongest Hamiltonian ratchet
effect can arise in a limit of arbitrarily weak chaos apparently
has no analog in ordinary ratchets if chaos is viewed as
the deterministic counterpart of random noise. In fact, a
sufficiently high level of noise is essential for the functioning of
ordinary ratchets or Brownian motors [17,18]. Actually, it was
recently shown that for a Lévy ratchet the current decreases
algebraically with the noise level [18], in clear contrast with
our results.

The quantized version of our non-KAM system may be
experimentally realized using, e.g., optical analogs as proposed
in Ref. [26] and is expected to exhibit, in general, a rich variety

0 0.02 0.05 0.08 0.11 0.14
0

0.01

0.02

0.03

0.04

0.05

0.06

b
2

A

FIG. 9. Circles represent numerical values of A (obtained as
described in the caption of Fig. 7) for K = 2.99 on the path b1 = 0.25
and 0.005 � b2 � 0.14; this path lies entirely in domain R (see Fig. 3
for the nearby value of K = 3). The Lyapunov exponent on the path
varies in the interval 0.4787 < σ < 0.8326. The solid line plots the
analytical results from the formula in Eq. (26) for K = 3.

of quantum phenomena, including the quantum signatures
of the weak-chaos ratchet acceleration. The study of these
phenomena is planned to be the subject of future work.
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APPENDIX A

We derive here Eqs. (10). First, continuity of the function
in Eq. (9) at x = b1 and 1 − b2 implies that

l1b1 = c − b1, l2b2 = 1 − b2 − c. (A1)

Then, using Eqs. (9) and (A1) in the ratchet condition∫ 1
0 f (x)dx = 0, we find that∫ 1

0
f (x) dx = c − b1

2
c + b2

2
(1 − c) − 1

2
= 0,

yielding the expression for c in Eqs. (10). After inserting this
expression in Eqs. (A1), we get the expressions for l1 and l2 in
Eqs. (10).

APPENDIX B: REGION C FOR K = 3

In this Appendix and in the following ones, we derive,
for K = 3, exact results for the region C in Eq. (23).
As mentioned in Sec. IV, several arguments and extensive
numerical evidence indicate that C coincides with the chaotic
region C for K = 3. We show here that one has the simple
relation

C = C ′ = B ∪ M̄B ∪ M̄2B. (B1)
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To show this, we first denote

B̄(1) = M̄B − B ∩ M̄B, (B2)

B̄ (2) = M̄B̄(1) − B ∩ M̄B̄(1). (B3)

We derive below the relation

M̄B̄(2) ⊆ B. (B4)

Then, from the definition of C ′ in Eq. (B1) and from Eqs. (B2)–
(B4) it follows that

M̄C ′ ⊆ C ′. (B5)

Equation (B5) and the fact that M̄ is area preserving imply
that M̄C ′ = C ′ or M̄−1C ′ = C ′. Thus C ′ = M̄sB ∪ M̄s+1B ∪
M̄s+2B for all integers s, which is possible only if C ′ is equal
to C in Eq. (23). Relation (B1) is thus proven.

To derive Eq. (B4) we start by obtaining an explicit
expression for B̄(1) in Eq. (B2). For K = 3, the iterate of
any initial condition (x0,p0) under M̄ satisfies p1 = x1 −
x0 mod(1), x1 = x0 + p0 + 3f (x0) mod(1). Clearly, when p0

varies in [0,1) at fixed x0, x1 varies in the whole interval [0,1).
Then, taking (x0,p0) in B and using Eqs. (13) and (B2), we
get

M̄B = {(x,p)|0 � x < 1, x − b1 � p � x + b2}mod(T 2),

(B6)

B̄(1) = {(x,p)|b1 < x < 1 − b2, x − b1 � p � x + b2}.
(B7)

The region in Eq. (B7) is a strip (parallelogram) of slope 1,
shown in Fig. 10(b) and corresponding to the strip B in
Fig. 10(a). Next we determine the region

B(2) = M̄B̄(1). (B8)

The second iterate (x2,p2) of (x0,p0) under M̄ , with (x0,p0) ∈
B and (x1,p1) ∈ B̄(1), is given by

p2 = p1 − 3(x1 − c) mod(1)

= −2x1 − x0 + 3c mod(1), (B9)

x2 = x1 + p2 mod(1) = −2x1 + p1 + 3c mod(1). (B10)

From Eq. (B9) and the first equality of Eq. (B10) we find that

p2 = 2x2 + x0 − 3c mod(1). (B11)

Equation (B11) and the second equality of Eq. (B10) imply
that the region in Eq. (B8) is the following set of phase-space
points:

B(2) = {(x,p)}

:

{
x = −2x1 + p1 + 3c mod(1), (x1,p1) ∈ B̄(1),

p = 2x + x0 − 3c mod(1), − b2 � x0 � b1.

(B12)

The region in Eq. (B12) is clearly a parallelogram of slope
2 folded into T 2, as shown in Fig. 10(c). The region B̄(2)

in Eq. (B3) is given by Eq. (B12) with x restricted to the

0

0.5

1
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p

0

0.5 (b)

1

2

3

4

p
0 0.5 1

0

0.5 (c)

1

2

3

4

x
p

FIG. 10. (Color online) Shown, for K = 3, b1 = 0.1, and b2 =
0.05, are (a) the strip B [see Eq. (13)], (b) the region B̄ (1) [see Eq. (B2)
or (B7)], and (c) the region B (2) [see Eq. (B8) or (B12)].

interval b1 < x < 1 − b2. Then, using also Eq. (B11), we get,
for (x0,p0) ∈ B and (x2,p2) ∈ B̄(2),

M̄B̄(2) = {(x,p)}

:

{
p = p2 − 3(x2 − c) mod(1) = x0 − x2 mod(1),
x = x2 + p mod(1) = x0 mod(1).

(B13)

The result in Eqs. (B13) and Eq. (13) imply Eq. (B4).

APPENDIX C: AMIs AND THE SHAPE OF C

We study here the shape of the region C for K = 3 in several
cases. Let us write Eq. (B1) as C = C ′ = B ∪ B̄(1) ∪ B(2), i.e.,
the union of the three sets in Fig. 10. This union is shown in
Fig. 11, exhibiting a case in which both the L and R AMIs
exist (see Secs. III C and IV). For values of b1 and/or b2 larger
than those in Figs. 10 and 11, there may exist only one AMI
or no AMIs (see Fig. 3). A case of C for which only the R

AMI exists is shown in Fig. 12 and is clearly different from
that in Fig. 11. We show below that the existence of AMIs
and the shape of C in different cases depend on the location
of the vertices (x(j ),p(j )) (j = 1,2,3,4) of the parallelogram
in Eq. (B12) [shown in Fig. 10(c)] relative to the strip B.
Because of Eq. (B8), one has (x(j ),p(j )) = M̄(x̄(j ),p̄(j )), where
(x̄(j ),p̄(j )) (j = 1,2,3,4) are the vertices of the parallelogram
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FIG. 11. (Color online) Region C, given by the union of the
three regions shown in Fig. 10, with overlaps indicated by green
(dark gray). Both AMIs L and R exist in this case. See the text for
more details.

in Eq. (B7), shown in Fig. 10(b). Clearly,

(x̄(1),p̄(1)) = (b1,0), (x̄(2),p̄(2)) = (b1,b),
(C1)

(x̄(3),p̄(3)) = (1 − b2,1), (x̄(4),p̄(4)) = (1 − b2,1 − b),

where b = b1 + b2. To derive explicit expressions for
(x(j ),p(j )) = M̄(x̄(j ),p̄(j )), one has to properly determine the
additive integers from the modulo operations in M̄ so that

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

R

R

d

e f

e
f

g

x

p

FIG. 12. (Color online) Region C = B ∪ B̄ (1) ∪ B (2) for K = 3,
b1 = 0.3, and b2 = 0.03, with overlaps indicated by green (dark gray).
Only the R AMI exists in this case. See the text for more details.

(x(j ),p(j )) will lie within the basic torus T 2. We find that the
values of x(j ) are

x(1) = 3c − 2b1 − 1, x(2) = x(4) = x(1) + b,
(C2)

x(3) = x(1) + 2b,

indeed satisfying 0 < x(j ) < 1 in the relevant cases in which
at least one AMI exists. In fact, in these cases one has
b < 0.5 [from Eq. (21) with K = 3] and the latter in-
equality implies by simple algebra that the smallest value
of x(j ) in Eqs. (C2), i.e., x(1), satisfies x(1) > 0 while the
largest value (x(3)) satisfies x(3) < 1. In addition, it is clear
from Figs. 10–12 that the R AMI exists only if x(3) <

1 − b2 (vertex 3 is outside B); it is easy to show that
the latter inequality is indeed equivalent to the existence
condition b1 < F (b2) for the R AMI, derived in Sec. III C.
Similarly, the L AMI exists only if x(1) > b1 (vertex 1
is outside B), which can be easily shown to be equivalent
to the existence condition in Eq. (17). Thus, when both AMIs
exist, b1 < x(j ) < 1 − b2 (j = 1,2,3,4).

To determine the values of p(j ), we first notice that the
vertices (x(j ),p(j )) must touch the boundaries of the region
in Eq. (B6); this is because the vertices in Eq. (C1), shown in
Fig. 10(b), obviously touch the boundaries of the strip B in
Fig. 10(a) and (x(j ),p(j )) = M̄(x̄(j ),p̄(j )). Then, in the case
that both AMIs exist, i.e., b1 < x(j ) < 1 − b2 (see above),
(x(j ),p(j )) touch the boundaries p = x − b1 and p = x + b2

of the parallelogram in Eq. (B7) [see Figs. 10(b), 10(c), and
11], so that

p(1,2) = x(1,2) − b1, p(3,4) = x(3,4) + b2. (C3)

Assume now that only the R AMI exists, as in Fig. 12. Then
x(1) � b1 (from above), i.e., vertex 1 (the point d in Figs. 11
and 12) lies within the left part of strip B, on the boundary of
the region in Eq. (B6), given by p = x − b1mod(1); thus, for
x(1) < b1 (as in Fig. 12), p(1) in Eq. (C3) must be replaced
by x(1) − b1 + 1 while p(j ) for j > 1 remains unchanged.
Similarly, when only the L AMI exists, vertex 3 lies within
the right part of strip B, on the boundary of the region in
Eq. (B6), given by p = x + b2mod(1); for x(3) > 1 − b2, p(3)

in Eq. (C3) must be replaced by x(3) + b2 − 1.

APPENDIX D: AREAS OF AMIs

Consider the L AMI in Fig. 11. This is the triangle dfg

on the torus T 2, composed of two triangles def and efg. The
point d is vertex 1 in Fig. 10(c) and the segment de is part of
the upper boundary of the region in Eq. (B12). This boundary
is a line of slope 2 passing through vertex 1:

p − p(1) = 2(x − x(1)). (D1)

Then, since pe = 0, we get from Eqs. (C2)–(D1) that xe =
(3c − b1 − 1)/2. Also, xf = b1 and pf = 0. The point g, with
xg = b1, lies on the line in Eq. (D1) with p(1) replaced by
p(1) + 1. Thus pg = 2 + 3b1 − 3c. The area of the L AMI is
therefore

SL = Sdef + Sefg = 1
2 (xe − xf )[p(1) + (1 − pg)]

= 1
2 (3c − 3b1 − 1)2. (D2)
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By symmetry arguments, the area of the R AMI is obtained
from Eq. (D2) by inserting the expression for c from Eqs. (10)
and performing the exchange b1 ↔ b2. We get

SR = 1
2 (2 − 3b2 − 3c)2. (D3)

APPENDIX E: AREA OF C

The area of C can be calculated starting from the relation
C = B ∪ B̄(1) ∪ B(2) (see above), where B̄(1) and B do not
overlap. Then, because of Eqs. (B2) and (B8), B(2) also does
not overlap with B̄(1). However, it may overlap with B. The
area of C is thus given by

SC = SB + SB̄(1) + SB(2) − SB∩B(2) . (E1)

From Eq. (13), SB = b, where b = b1 + b2. The region B̄(1) in
Eq. (B7) is a parallelogram with basis b (in the p direction) and
height 1 − b (in the x direction) (see also Figs. 11 and 12). Thus
SB̄(1) = b(1 − b). From Eq. (B8) and the fact that M̄ is area
preserving, it follows that SB(2) = SB̄(1) . Finally, concerning
the overlap B ∩ B(2), we consider first the case that both AMIs
exist (see Fig. 11). In this case, B ∩ B(2) consists of the green
(dark gray) regions in Fig. 11. These are two parallelograms
having heights b1 and b2 (in the x direction) and basis b, i.e.,

the width of the region in Eq. (B12) in the p direction. Thus
SB∩B(2) = b2. The area in Eq. (E1) is therefore

SC = 3(b1 + b2) − 3(b1 + b2)2. (E2)

Consider now the case that only one AMI exists, say the R AMI
as in Fig. 12. In this case, as explained at the end of Appendix C,
the point d, i.e., the vertex 1 of region B(2), lies inside the left
part of strip B, on the boundary of the region in Eq. (B6). This
means that the black triangles def and efg in Fig. 12 are not
included in the region B(2) or B ∩ B(2) but they are actually
part of the region (B6). Thus, to calculate SB∩B(2) one must
subtract from b2 (the value of SB∩B(2) in the previous case) the
areas of def and efg. The area in Eq. (E1) is then obtained by
adding Sdef + Sefg to the expression in Eq. (E2). By comparing
Fig. 12 with Fig. 11, it is clear that the areas Sdef and Sefg can
be calculated precisely as in Appendix D and Sdef + Sefg is
given again by the formula in Eq. (D2). Therefore, the area in
Eq. (E2) increases precisely by an amount equal to the area in
Eq. (D2) of the missing L AMI:

SC = 3(b1 + b2) − 3(b1 + b2)2 + (3c − 3b1 − 1)2/2. (E3)

Similarly, when only the L AMI exists, one must add the area
in Eq. (D3) to Eq. (E2):

SC = 3(b1 + b2) − 3(b1 + b2)2 + (2 − 3b2 − 3c)2/2. (E4)
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